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Number-phase squeezing through nonunitary scaling
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A nonunitary operator scaling mechanism is presented, which produces number-phase squeez-
ing, useful at decreased signal power. It accounts for the performance of nonunitary schemes—
better than unitary—in attaining squeezing in the number.

The potential application of nonclassical light in low-
noise communications and high-precision measurements
has focused the attention of many researchers on meth-
ods of production of such kind of light. Squeezed and
amplitude-squeezed fields have recently been obtained in
a variety of physical systems,! and newly improved gen-
eration schemes are presently under study.

Squeezed and amplitude-squeezed states are minimum-
uncertainty states which can achieve an arbitrarily low
noise level in one of the conjugated observables. In the
squeezed states the conjugated pair corresponds to two
quadrature phase components of the field, whereas in the
amplitude (or number-phase) squeezing, the two observ-
ables are the number 7 and the phase of the field ®.

Squeezed states may lead to substantial improvement
of the sensitivity in high-precision interferometry. Never-
theless, they are not optimal for transmissions in which
information is coded on the low-noise component of the
field. In fact, reduction of the noise in a quadrature of
the field requires an increased average number of pho-
tons, and the maximum signal-to-noise ratio turns out
to be limited by the maximum power supported by the
communication channel.

In order to achieve the maximum channel capacity, the
information should be coded on the trasmitted photon
number 72, where the noise can be reduced to zero with-
out the requirement of an infinite number of photons.
Actually, reduction of the photon-number noise can be
attained to the detriment of the #-conjugated variable
&, whose enhanced noise does not consume energy at all.

Different schemes have been proposed to generate
number-phase squeezing. They can be essentially di-
vided into two main cathegories: (i) entropy-preserving
schemes, based on unitary time evolution of the state;
(i) entropy-varying schemes, in which 7-noise reduction
is obtained via nonunitary state reduction (i.e., quantum-
nondemolition measurements or quantum measurements
of the first kind).

In the entropy-preserving schemes the field evolves un-
der the action of a nonlinear (Kerr) Hamiltonian.? The
photon-number noise can be reduced well below the stan-
dard quantum limit, (AA%) < (n), but the Fano fac-
tor F = (An2) /() still suffers restriction by the aver-
age power. (The minimum achievable noise is (A7R2)min
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~ (7)'/3, much smaller than the optimum squeezed state
value® (An?) o~ (7)?/3)

The entropy-varying schemes are probably more suited
for amplitude-squeezing than the entropy-preserving
ones. As a matter of fact, the Fano factor is no more
limited by the power and, in principle, an arbitrarily
small (A7?) can be attained for every average number of
photons.* The common procedure in the entropy-varying
generation systems passes through two steps. The first
establishes a quantum-mechanical correlation between
the signal radiation field and an auxiliary probe degree
of freedom, using a nonlinear interaction. The second
is a nonunitary reduction of the signal state obtained
by detecting some variable of the probe. For exam-
ple, in the high-Q micromaser Fock state generation, the
probe is an inverted two-level atom entering the cavity
with a well-defined velocity;® the nonunitary reduction
of the signal field is then obtained by means of non-
selective measurements of the atomic variables. On the
other hand, in other schemes the role of the probe is
played by another electromagnetic wave: this is the case
of the quantum-nondemolition photon-number measure-
ment and the parametrically amplified idler photon count-
ing schemes proposed in Ref. 4. In the former, the probe
wave interacts with the signal mode, via Kerr effect, be-
fore being homodyne detected in a quadrature compo-
nent. In the latter, the probe is the idler wave interacting
with the signal in a second-order medium: the nonuni-
tary reduction of the signal is then achieved by an idler
photon-counting measurement.

This Brief Report presents a simple argument which
accounts for the better performance of nonunitary
schemes — as opposed to unitary — in producing
number-phase squeezing. A straightforward way to ob-
tain f-noise reduction and simultaneous ®-noise amplifi-
cation lies in the realization of a transformation of states
which rescales the moments as follows:

(@F) — r7(&)
(1)

(A7) — r7F(A) ,
with » > 1. Such a transformation preserves the product
of uncertainties (An2)(A®2) and has the great advantage
of rescaling the Fano factor
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F = (AR%)/(R) — r~'F (2)
by decreasing the average power
() — r~H(n) . (3)

To avoid depletion of the radiation toward the vacuum, a
driving unitary excitation of the state should be applied
first, leaving F' almost unchanged.

In the Heisenberg picture, the transformation corre-
sponds to an operator scaling Sy resulting in a multipli-
cation of the phase ® and a division of the number 7 by
the same factor r:

Su(®)=rd, ()
Sp(d)=rth. (5)

The general form for the operator scaling Sg can be in-
ferred from the definition of the phase operator ®:

By = e¥i® (6)
E4 denoting the shift operators

E_=(afa+ 1)V, E, = (E ), (7)
Egln)=|n+£1). (8)

(One should notice that, although & is not Hermitian, it
can be regarded as an almost Hermitian operator when
applied on highly excited states; i.e., states approxi-
mately orthogonal to the vacuum |0). Correspondingly,
in the limit of large mean numbers, one has the asymp-
totic commutation relation [f, ®] ~ i, which ensures that
7 and & constitute a conjugated pair.)

From Eq. (6) one can see that the rescaling of the phase
corresponds to transition from one-particle shift opera-
tors E4 to r-particle shift operators (E‘i)r,

Su(Ex) = (Bs) (9)
(E+)" now acting on the Fock space as follows:
(Ex)'|n) = Inxr). (10)

From Egs. (9) and (10) it turns out that the scaling Sy
of a generic operator O has the form

r—1
Su(0) =Y 5103, (11)
A=0

oo
Sy =€ n)(nr + A . (12)
n=0
[The phase factors are ineffective in the action (11) and
will be dropped in the following.] S) are nonunitary op-
erators satisfying the orthogonality and completeness re-
lations

5381 = 63,1, (13)
r—1

5’15} =1, (14)
A=0

where 1 = 5°2° |n)(n|. Although the scaling Sy is
nonunitary, it preserves the operator products
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8u(01)81(02) = Su(010,) , (15)

as it can be checked using the orthogonality conditions
(13). Furthermore, Sy can be inverted in the following
sense:

Sz'(Su(0)) =0, (16)

r—1
571 (0) = 135,081 . (17)

A=0
However, due to the nonunitarity of .SA’)\, the Inversion
S;Il does not preserve the operator product in general.

When applied on the particle operators ¢ and al the
operator scaling gives the result:

Su(a) = In—1)\/[n/rl(nl,
n=1

(18)
Su(al) = [Su()f,

where [z] denotes the maximum integer < z. Equations
(18) show that the scaled particle operators Sg(a) and

SH(aT) are nothing but the r-boson operators b(,)y and

bzr) introduced in Ref. 6:

o (a+mma)”
Su(a) = by = TGanl a’

(19)
SH(aT) = bzr)

In Eq. (19) b,y and bzrr) annihilate and create r photons
simultaneously and satisfy the commutation relations
[b(,),bgr)] =1, [#2,b(;)] = —rb(,y. From Eq. (15) it follows
that the scaling Sy of a generic operator O = F(a,aT)
(Hermitian analytic function of a and alf) can simply be
obtained substituting ¢ and at with by and bzr); ie.,
Sy(0) = F(b(r),bg,_)). Therefore, the present operator
scaling corresponds to the construction of the r-photon
observables of Ref. 7.

Regarding the scaling of the number operator 7, from
the defining equations (11) and (12) one obtains

Su(h) = [a/r] = b] )by -

It follows that the number operator satisfies the rescal-
ing (5) only asymptotically in the limit of large mean
numbers (R) > r,

(20)

Su(R)~r~ta.

(21)

In the Schrédinger picture the nonunitary evolution Sg
is defined by the identity
Tr[pSk(0)] = Tx[Ss(p) O] , (22)

where p denotes a general density matrix state. Using
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the invariance of trace under cyclic permutations one ob-
tains

r—1
Ss(p)= 3" %8] . (23)
A=0

The state evolution (23) is proportional to S;* and, as
a consequence, does not satisfy Eq. (15). However, Ss
is well defined on the density matrices p, because they
do not constitute an operator algebra. Due to the com-
pleteness relation (14) Sg preserves the normalization of
the state p, despite the fact that it is not unitary. It re-
sembles the reduced evolutions of the quantum unstable
systems,® as a consequence of the semigroup property of
the corresponding Heisenberg evolution Sy .

The nonpreservation of the operator product implies
also the nonpreservation of the Neumann-Shannon en-

tropy
S(p) = —Trplogp .

One then concludes that a transformation Sy rescaling
the moments as in Eq. (1) does not conserve the entropy
(24) in general. For example, starting with a pure state
p = |w)(w|, the mixed state is obtained,

(24)

Ss(lwdwl) = 3 1)@,
A=0

(25)
1Q3) = Salw) = D In)(nr + Aw) .

n=0

From Egs. (25) one can see that the number eigenstates
are left pure and the vacuum is invariant. Furthermore,
the entropy remains zero for an r-photon state® W) (r )

= S’I|w), whereas for an s-photon state (s # r) a frac-
tional s/r-mixed state is obtained.”

The experimental realization of the scaling evolution
Ss is probably not a simple task. As Sg does not conserve
the entropy, an open quantum system is needed,? the op-
erators (12) being eventually implemented by means of
ideal photon amplifiers.!! However, no other state trans-
formation is available which rescales the moments as in
Eq. (1) whichever input state is considered. At present,
the experimental realizations of phase-number squeezing
need a very careful tuning of the input state (see, for ex-
ample, Ref. 12) making the process very sensitive to the
destroying effect of damping.!3 Here, on the contrary, the
input states are only restricted by the inequality (R) > 7,
which, besides satisfying Eq. (21), ensures a good defi-
nition of the phase operator itself. The average number
(R) does not limit the minimum achievable noise (AA2),
which can be reduced in many low-r scaling steps, each
preceded by a driving excitation of the state.

As regards the possibility of implementing the rescal-
ing (4) and (5) by means of a unitary transforma-
tion, one should notice that an exact transformation is
not allowed by pure algebraic constraints. As a mat-
ter of fact, the mathematical constructed number-phase
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minimum-uncertainty states of Jackiw!* cannot be ob-
tained, for example, from a coherent state through a uni-
tary evolution.}® However, a crudely approximated scal-
ing may be achieved by an operator of the form

U = exp(3 logr(5a + 2S)) | (26)

S denoting the sine operator
A 1 - N
=—(E-—-FE
5= 5 +)

(§ ~ & for (&) = 0 and (A®?) < 1). The operator U re-
sembles the usual squeezing operator,'® where the roles of
S and 7 are played by two quadrature phase components
of the field. Numerical and asymptotical evaluations!”
show that the validity of the approximate commutation
[, 8] ~ i now restrict more dramatically the set of states
where the unitary transformation (26) attains the scal-
ings (1). In addition, no physical scheme is available
to realize the operator (26). At present, the unitary
production of amplitude-squeezing is obtained via self-
modulation processes, which are usually represented by
an operator of the form'®

U= exp(faT — &*a)exp[—ixn(n —1)]. 27)

The operator (27) simulates the action of the operator
(26) on coherent states, for a suitable choice of the pa-
rameters £ and x as a function of the input state.

The nonunitary scaling, as well as the unitary, is es-
sentially simulated in the experimental realizations of the
amplitude-squeezing based on entropy-varying schemes.
Here the role of the dummy variable A in Eq. (23) is
played by some quantum number of the auxiliary probe
field. There is no obvious strict comparison between
the theoretical scaling (23) and the actual realization of
amplitude-squeezing; however, some similarities can be
recognized a posteriori.

Let us consider, for example, the case of the high-Q
micromaser Fock state generation, where a monoener-
getic low-density beam of two-level atoms is injected in-
side a lossless single-mode cavity. The injection rate is
sufficiently low so that the atoms enter the cavity one
at a time, but still high enough that a large number of
atoms pass through the resonator before damping be-
comes important. Furthermore, exact resonance between
the field frequency and the atomic transition frequency
is assumed.

At the initial time ¢ = 0, when the first atom enters the
cavity, the state of the system is described by the density
matrix popas, po and p, being the density matrices of the
field and of the atom. When the atom exits the cavity
after the time of flight 7, the field density matrix reduces
to

pr = Tra[U(r)popaUT (7], (28)

where Tr, denotes the trace over the atomic variables
(the state of the atom is not measured as it exits the
cavity!®) and U(7) represents the evolution operator in
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the Dirac picture U(r) = exp(—iVr), the interacting
Hamiltonian V being

V =r(ay +ali_). (29)

Here k denotes the atom-field dipole coupling constant,
J3,J+ the usual Pauli spin matrices or the spin-J an-
gular momentum operators if the model is generalized
to the case of (2J + 1)-level atoms ([J4+,J_] = 2J3,
[J3,J+] = +J4). In the general case ( J > 1) the Hamil-
tonian (29) equivalently describes radiation interacting
with bunches of N = 2J two-level atoms having mean
interatomic distance much smaller than the wavelength
of the cavity field (but still well separated, so that their
wave functions do not overlap).!® For negligible dissipa-
tion, the field density matrix in the interaction represen-
tation does not evolve before the next atom (or bunch)
will enter the cavity. It follows that after N atoms pass
through the cavity, the field density matrix can be ob-
tained recursively as follows:

pn = Tra[U(P)pn-1paUT (7)] . (30)

In the experimentally interesting case, in which each
atom enters the cavity in the upper state and there are
no photons in the cavity at ¢ = 0, one has

2NJ

pn = (NN, (31)
A=0

where the probabilities pn(A) can be obtained recursively
as follows:

27
pPN(A) =D a,(A=v)pno1(A =),

v=0

(32)
ay(n) =| (2 —v|(n+ v | U(r)|n)|20)al? ,

[n}|o)a denoting the basis vectors [fi|n) = n|n), n > 0;
J3lo)a = (6—J)|0)a, 0 < 0 < 2J]. From Eq. (31) one can
see that the evolution of px simulates the same variation
of entropy attained by the scaling Sy acting on the pure
state |w){w|, where

W) = S Von @G+ 1)) (33)
n=0

The role of the scaling factor r is played by the total spin
multiplicity

r=2NJ+1. (34)

One can see that Eq. (33) represents a (r + 1)-photon
state, whereas the density matrix (31) is a fractional (1
+7)/r -mixed state.

The above correspondence can be further carried out
when a pure Fock state is reached in the limit N — oo.
This is the case, for example, of the trapping states,?
where J = -21- and the time of flight 7 is tuned to
have vanishing probability of photon-emission a;(ng)

= sinz(\/no + 1x7) when ngy photons are present in the

‘cavity. An asymptotic analysis!” in the neighborhood of

the trapping state |ng)(no| shows that (A) ~ ng —aN ™!
[@ = 4(no + 1)27~2], whereas (AA2) ~ nogaN~1. It fol-
lows that the Fano factor rescales according to the rule

F~aN7t. (35)

The asymptotic scaling (35) can also simply be checked
numerically. It further confirms the identification (34) of
the scaling factor r, as one can see by comparing Eq. (35)
with Eq. (2) and noting that 2NJ + 1 ~ N for J = %
and N — oo.
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