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ABSTRACT

We present a novel numerical method o solve Fokker-Planck equations in quantum
optics, based on a Monte Carlo simulation of the probability diffusion process. The
method is especially useful for multimode analysis, and hence for studying realistic
models of nonlinear optical systems. Two simple examples are given: the first is a
one-dimensional Fokker-Planck equation in the number representation, which describes
a simple model of optical amplifier; the second is a two-dimensional equation in the
P-function representation—the quasi-probability for normal-ordered averages—which
corresponds to the customary Van der Pol model of the laser threshold. In this case
also the field correlation function and spectrum are numerically simulated.

1. INTRODUCTION

Simulation methods have been recently introduced in quantum optics and proved to
be very efficient for treating complex nonlinear systems. In Refs. [1] a Monte Carlo wave
function method has been developed which allows the solution of the master equation.
The master equation approach, however, is not suited to large numbers of photons,
which determine the effective dimension of the truncated Hilbert space. This is an
often encountered case in practical situations, as for example when studying lasers or
optical amplifiers. Here the Fokker-Planck equation is a more suited tool for numerical
evaluations. Depending on the analytical form of the drift and diffusion matrices, it
can model a wide class of phenomenology in quantum optics, also allowing a precise
treatment of the noise of quantum origin in presence of saturation—and, more generally,
nonlinear—effects[2]. Apart from the case of very small numbers of photons, the Fokker-
Planck equation is thus suited to treat any range of radiation intensity.

In this paper we show a novel simulation method to solve the Fokker-Planck
equation. As in the case of any statistical integration method, the present approach
is particularly useful—especially for iime-consuming—when a multidimensional (i.e.
multimode) analysis is concerned. The main ingredient is simply the Monte Carlo
simulation of the Green-function solution for infinitesimal time steps. On the basis of
some examples we illustrate the large potentialities of the method in studying concrete
complex models in quantum optics.



2. OUTLINE OF THE METHOD

The Fokker-Planck equation in its most general form is
1
8.P(x,8) = ~Vx - [Q)P(x,1)] + ; Ve Vi : [D(x)P(x,2)]. (1)

In Eq. (1) P(x,t) is a probability (or quasi-probability) distribution in the d-dimensional
space of the vectors x € RY, Q(x) is the drift vector, and D(x) is the diffusion matrix.
For example, x can represent a set of photon numbers for different modes of radiation,
but also a set of complex field amplitudes in C* = R??: the former case corresponds to a
number representation probability distribution, the latter to a Wigner-function (quasi)-
probability. Notice that the present method needs to consider only the case of positive
definite P(x,t). For the more general case of non positive definite probabilities, as, for
example, the normal-ordering P-function, the problem can still be faced when both initial
condition and diffusion matrix ensure a positive definite probability for all times. An
example of such an application is given in the followings.

The Green-function of Eq. (1) for an “infinitesimal” evolution time A{—or for a finite
At, but constant drift and diffusion—has the Gaussian form

G(x,¥; At) = (detD(2rAty") ™ exp [ (¢ — x + QAL) - (2AtD) ™ (X — x + QAY)] . (2)

The Green-function (2) is the solution of Eq. (1) for initial condition P(x,0) = §(x — x').
The evolution of the probability distribution for short times is

P(x,t+ At) = fRd dx'G(x,x’; At)P(x/,t) . (3)

The integration (3) becomes very time-consuming—in practice, prohibitive—already for
dimensions d > 2. The Monte Carlo method avoids the problem of integration (3)
upon simulating the evolution of the probability for each point x, according to the
Gaussian process represented by the Green-function itself in Eq. (2). This only needs
a statistical sampling of the initial probability distribution, which can be obtained by
standard Metropolis algorithms.

Following the above indications, we describe the probability P(x,t) for a generic time
t by means of a statistical ensemble of NV events/points {x;(t),x2(t),...,xn(¢)}, which
are step-by-step time-evolved as

xi(t + At) = x:(t) + Q(xi(2))At + E(2) , ) (4)

where E(t) is a zero-average Gaussian process with variance D(x;(t))A¢. The quantities
of interest are statistically evaluated on the ensemble as usual

T =53 Flx(t) . (5)

=1
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Figure 1: Histograms representing the evolution of the probability distribution at r =2, 10, and 20, for
the one-dimensional Fokker-Planck equation with drift and diffusion coefficients given in Eqgs.(8,9). Here
n, = 10, # = 1.15, and # = # = 0. At r = 0 an input coherent state has been used with (#)o = 100.
The full line represents the result from direct numerical integration.

For N — oo the central-limit theorem ensures that

N
Jim Y F(®) = [ F)P(x e = (F(E) ®)

1=1

and for finite N the estimation of the error on the average is

AF(t) ~ \/3’% = M (M

which is a decreasing function of N, independently on the dimension of the configuration
space (this should be compared with the number of steps needed for convergence of
customary integration algorithms, which is an exponentially increasing function of the
dimension d). Bq. (7) also allows a self-consistent check of the whole procedure. The
only remaining source of (systematic) errors is, in practice, the choice of the time step
At, which has to be tuned short enough to satisfy Eq. (2), depending on the particular
form of the diffusion and drift coefficients (typically, at fixed At, one has larger systematic
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errors for increasing order of the evaluated distribution moment). On the other hand, it
is not necessary to use very large statistical ensembles, and in order to obtain reasonable
estimated error-bars it is sufficient to consider N ~ 10% + 10°. In the following we give
two examples of application of the above method.
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Figure 2: Gain G and noise figure F for the travelling wave optical amplifier of Ref. [5], as a function
of the input power.

3. APPLICATION TO A SIMPLE TWOA MODEL

In this first example we consider the Fokker-Planck equation which can be derived
from the laser one-mode master equation of Ref.[4] in the limit of large photon saturation
numbers. The probabﬂity distribution P(v,7) describes the evolution of the normalized
photon number v = = for saturation number n., and with T being the time rescaled by
the cavity damping tlme The drift and diffusion coefficients have the simple form

Q) =(w+n") [ﬁ +6(1+v+ n_“l)“l] —v [1 +a+46'(1+ u)“l] : (8)

D(v) = % {w+a) o+ +a)? o lento@+a)]}, @

where 7 is the thermal photon number, whereas § and §' are pumping parameters
which are proportional to the injection rates of atoms in the excited and ground state

50/ SPIE Vol. 2098

R (4aB)



respectively. The present simple model is suited also to describe a travelling wave optical
amplifier or, equivalently, an active fibre amplifier for negligible depletion of the pumping
radiation mode. A sample of the probability evolution is given in Fig. 1, where the function
P(v,7) is plotted for an input coherent state at three different values of 7. The approach
toward the stationary state is evident. In the present example, a typical problem of
diffusion equation simulation is encountered, namely that of diffusion beyond the domain
boundaries, here only represented by the positive nature of ». There are many methods
to handle such undesired behaviour, and typically, as in the present case, a suited trick
consists in simulating elastic reflections at the boundary.

As an application to a real system, we consider the travelling wave optical amplifier
of Ref. [5]. We evaluate the gain G and noise figure R defined as follows

daat o (8 R (10)

S; (S/R)out
In Eq. (10) S;, denotes the input mean photon number, whereas, for on-off modulation,
the output signal S,,; is the difference between the output mean values in presence
and absence of input, namely after subtraction of the amplified spontaneous emission
(the signal-to-noise ratio (S/R) = (n)?/(An?), contains the number fluctuations (An?)
averaged on equal on-off probabilities). In Fig. 2 the gain G and noise figure R obtained
from a numerical simulation are plotted. These results can be compared with those
reported in Ref. [5], where, however, the amplified spontaneous emission has not been
subtracted, leading to (unphysical) minimum noise figures lower than unit.

G =

4. APPLICATION TO THE VAN DER POL MODEL
OF LASER THRESHOLD

As a two-dimensional example, we consider the rotating Van der Pol oscillator, a popular
simple model for the laser threshold[6]. The Fokker-Planck equation now describes the
evolution of the quasiprobability P-function P(a,a*,t) in the interaction picture

%P(a, o) = {‘a% [(g— o) o] - E%- [(g—laf?) a] + 43-&%2-5} P(a,o”,t) . (11)

In Eq. (11) the complex field amplifude « and the time ¢ have been rescaled in order
to have only the free parameter g (g is 2 pumping parameter, g = 0 corresponds to
the threshold). As the diffusion matrix is constant positive, for initial positive definite
P(a,a”,0)—for example, a coherent state, i. e. a delta-like P(a,a”,0)—the probability
distribution remains positive for all times. Moreover, contrarily to the previous example,
here it is not necessary to impose particular boundary conditions (o is defined in the
whole complex plane)

In Fig. 3 a sample of the probability distribution in the a-plane along with the
respective number probability distribution is given for fixed g and three different times,
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Figure 3: a-plane representation of the P-function and number probability distribution for the Van der
Pol equation (11) with initial vacuum state, g = & and three different times i — 1/10,1/4,1/2.

starting from radiation in the vacuum state (P(a, a,0) = 6,(c) is equivalent to diffusing
Just the zero point). Notice that the evolution of the field is isotropic in the a-plane, as
expected from Eq. (11). The number probability distribution is obtained according to
the Fourier transform

+oo d £} iz

pmt)= [ e [PaP(a,ar, t)elofEmD) (12)
—oo T

As a test of the method, in Fig. 4 the simulation steady-state result (¢t = ¢, — oo) for

both the average (7) and the Fano factor F = (A#?)/ (i) is compared with the analytical

result which follows from the normal-ordered moments :

. 2 exp(—g’/4)
(B)e=t, = g + ﬁTﬁ(?/z_) ; (13)
(a'}?a?)tﬂa = e 9_2_% (14)

v 1+ 8(g/2)
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Figure 4: Van der Pol equation (11): steady-state average (#) and Fano factor F' versus the pumping
parameter g, in comparison with the analytical results

where ®(z) denotes the usual erf-function, and the moments are evaluated according to

(a.fma“) = fdzaP(a, ot )e' Tal, (15)

Finally, in Fig. 5 the field fluctuations are plotted for two different values of g, after
the steady state has been reached. The field correlation function is given by

e e,
) ;1 al(t + t,)ailt,) . (16)

The imaginary part of (a!( + t,)a(t,)) is vanishing, as a consequence of the isotropic
diffusion. The fluctuation spectrum in Fig. 5 is obtained by Fourier transforming the
correlation function. In order to estimate in a self-consistent way the error-bars for the
spectrum, the statistical ensemble has been divided into many sub-ensembles, evaluating
the statistics on the set of Fourier transforms of each sub-ensemble (notice that the high
frequency part of the spectrum has been cut off, as it only would exhibit nonphysical
oscillations due to statistical fluctnations at short times).

In conclusion, the present simulation approach is suited to the analysis of quantum
optical systems, in particular for multidimensional modeling, where the evaluation of

(al(t +t.)a(t,)) =
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Figure 5: Field correlation functions and corresponding lineshape for g = 3,7 (the same model as in
Fig. 4). The full lines are fits of the simulation points.

the physical quantities of interest by direct-integration algorithms becomes prohibitive
(but the method maybe conveniently used also for one-dimensional models). This Monte
Carlo Green-function method—which is essentially equivalent to a Langevin approach
with a locally-Gaussian noise—is a valid simulation technique for the high photon-
numbers regime, in alternative to the Monte Carlo wave function simulation of the master
equation[1], which can be profitably adopted in the opposite low photon-numbers case.
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