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Abstract
We study the problem of joint estimation of real squeezing and amplitude of the
radiation field, deriving the measurement that maximizes the probability density
of detecting the true value of the unknown parameters. More generally, we
provide a solution for the problem of estimating the unknown unitary action of
a nonunimodular group in the maximum likelihood approach. Remarkably,
in this case the optimal measurements do not coincide with the so-called
square-root measurements. In the case of squeezing and displacement we
analyse in detail the sensitivity of estimation for coherent states and displaced
squeezed states, deriving the asymptotic relation between the uncertainties in
the joint estimation and the corresponding uncertainties in the optimal separate
measurements of squeezing and displacement. A two-mode set-up is also
analysed, showing how entanglement between optical modes can be used to
approximate perfect estimation.

PACS numbers: 03.67.−a, 03.65.Ta, 42.50.−p

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Squeezing and displacement are the basic operations of continuous variables quantum
information [1], and are easily performed, the former by parametric amplifiers, the latter
by lasers and linear optics. Squeezing in the two-mode set-up is, for example, the tool to
generate entanglement in the Braunstein–Kimble teleportation scheme [2]. The combined use
of real squeezing and displacement allows one to encode efficiently classical information in
quantum channels using homodyne detection at the receiver [3]. In a quantum communication
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scenario where a coherent signal is sent through a non-linear medium and undergoes an
amplification process, the joint estimation of displacement and squeezing provides a two-fold
information: the amplitude modulation of the state and a property of the communication
channel itself. This may be useful in a communication scheme designed to be robust to photon
loss.

In this paper we consider the problem of jointly estimating real amplitude and real
squeezing of the radiation field. In a tomographic set-up, where a large number of equally
prepared copies are available, the maximum likelihood method turns out to be very efficient
in estimating the parameters that characterize the state of the quantum system [4, 5]. In this
approach, first one fixes a set of single-copy measurements (typically homodyne measurements
at some random phase) and then looks for the estimate that maximizes the probability (density)
of producing the observed data. However, the tomographic approach is not suitable to the case
when only a small number of copies are available, and one needs to use the limited resources
at disposal more efficiently. It becomes then important to optimize not only the posterior
processing of the experimental data, but also the choice of the measurement that is used to
extract these data from the system. The most natural framework to deal with this situation
is quantum estimation theory [6, 7], where the concept of positive operator valued measure
(POVM) provides a tool to describe at the same time both measurement and data processing.
The maximum likelihood approach in quantum estimation theory [8] then corresponds to
seek the measurement that maximizes the probability (density) that the estimated value of the
parameters coincides with the true value.

Joint estimation of squeezing and displacement is equivalent to infer an unknown
transformation of a group—in the present case the affine group. This is an example of a
frequent situation in quantum estimation, especially in communication problems, where a set
of signal states is generated from a fixed input state by the action of a group. Consider, for
example, the case of phase estimation for high-sensitivity interferometry and optimal clocks
[9–11], the estimation of rotation for the optimal alignment of reference frames [12], and
the estimation of displacement of the radiation field for the detection of a coherent signal in
Gaussian noise [13]. In these cases, the symmetry of the problem provides a physical insight
that allows one to simplify the search for efficient estimation strategies, and the concept of
covariant measurement [7] becomes crucial for optimization. The use of maximum likelihood
approach in the covariant setting has been shown to be particularly successful in obtaining
explicitly the optimal measurements and in understanding the fundamental mechanism that
leads to the ultimate sensitivity of quantum measurements [14, 15]. Group theoretical tools,
such as equivalent representations [14] and multiplicity spaces [15], far from being abstract
technicalities, are the main ingredients to achieve the ultimate quantum limits for sensitivity
[12, 16]. Moreover, in a large number of situations, the maximization of the likelihood
provides measurements that are also optimal according to a wide class of different figures of
merit [16].

From a group theoretical point of view, the action of real squeezing and displacement on
the wavefunctions provides a unitary representation of the affine group ‘ax + b’ of dilations
and translations on the real line. The structure of the affine group underlies the theory of
wavelets [17], and has been recently used in the characterization of SU(1, 1) coherent states
[18, 19], and in the study of oscillators in a Morse potential [20].

The affine group is particularly interesting, since it is the paradigmatic example of a
nonunimodular group, namely a group where the left-invariant Haar measure is different
from the right-invariant one. This leads to orthogonality relations that—differently from the
usual Schur lemmas—involve a positive unbounded operator, firstly introduced by Duflo,
Moore and Carey (DMC) in [21]. As we will see in this paper, the nonunimodularity of the
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group has some amazing consequences in the estimation problem. For example, the so-called
square-root measurements [22] that are commonly considered in quantum communication
and cryptography, do not coincide with the maximum-likelihood measurements, the latter
providing a higher probability density of correct estimation. Another bizarre feature is that
for maximum likelihood measurements, the most likely value in the probability distribution
can be different from the true one. While for unimodular groups this feature never happens,
for nonunimodular groups it is unavoidable, and a suitable choice of the input states is needed
to reduce the discrepancy between the true value and the most likely one.

The paper is organized as follows. In order to set the optimal joint estimation of real
squeezing and displacement in the general estimation method, first we derive in section 2
the optimal measurement for the problem of estimating the unknown unitary action of a
nonunimodular group. Then, as a special example, the general results will be used to
optimize the joint estimation of squeezing and displacement in section 3. The efficiency of
coherent states and displaced squeezed states is analysed in detail, and the asymptotic relation
between the uncertainties in the joint estimation and the uncertainties in the optimal separate
measurements of squeezing and displacement is derived. The conclusions are summarized
in section 4. The explicit derivation of group average over the affine group is given in the
appendix.

2. Maximum likelihood estimation for a nonunimodular group

2.1. Background and generalities

Suppose that a fixed input state ρ, corresponding to a density operator in the Hilbert space H,
is transformed by the unitary representation {Ug|g ∈ G} of the group G, so that it generates
the family of signal states

O =
{
UgρU †

g

∣∣ g ∈ G
}
. (1)

The typical quantum estimation problem is then to find the measurement that gives the best
estimate for the unknown transformation g according to some optimality criterion. Usually
the criterion is given by a cost function c(ĝ, g), which quantifies the cost of estimating ĝ when
the true value is g, and enjoys the invariance property c(hĝ, hg) = c(ĝ, g) ∀h, ĝ, g ∈ G.
For example, the maximum likelihood criterion corresponds to the delta cost-function
c(ĝ, g) = −δ(g−1ĝ) (loosely speaking, there is an infinite gain if the estimate coincides
with the true value, and no gain otherwise). Once a cost function is fixed, one can choose
two possible approaches to optimization, namely the Bayes approach and the minimax. In the
Bayes approach, one assumes some prior distribution of the unknown parameters, and then
minimizes the average over the true values of the expected cost c(g) =

∫
dĝ c(ĝ, g)p(ĝ|g),

where p(ĝ|g) is the conditional probability density of estimating ĝ when the true value is g. In
the minimax approach, one looks instead for the measurement that minimizes the supremum
of the expected cost over all possible true values of the unknown parameters.

An important class of estimation strategies is given by the covariant measurements, that
are described by POVMs of the form [7]

M(g) = UgξU
†
g, (2)

where ξ ! 0 is an operator satisfying the normalization condition
∫

G
dLg UgξU

†
g = 11, (3)
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dLg denoting the left-invariant Haar measure on the group, namely dL(hg) = dLg ∀h, g ∈ G.
Due to the symmetry of the set of states (1), covariant measurements play a fundamental role
in the search of the optimal estimation. For compact groups, the following proposition holds.

Proposition 1 (Holevo [7]). For compact groups, the search for the optimal measurement in
the minimax approach can be restricted without loss of generality to the class of covariant
measurements.

Moreover, for compact groups the optimality of covariant measurements holds also in the
Bayes approach [7], if the prior distribution is chosen to be the normalized Haar measure on
the group, i.e. the measure dg such that dg = d(hg) = d(gh) ∀g, h ∈ G and

∫
G dg = 1.

For non-compact groups, such as the affine group involved in the joint estimation of
squeezing and displacement, the situation is more involved. Of course, in the Bayes approach
it is no longer possible to choose the uniform Haar measure as prior distribution, since it is not
normalizable. However, in the minimax the optimality of covariant measurements still holds,
even though in this case the proof becomes rather technical [23]. In this paper we will adopt
the minimax approach to deal with noncompact groups, and this will allow us to restrict the
optimization to covariant POVMs.

2.2. Nonunimodular groups

As we will see in section 3, the action of real squeezing and displacement on one mode of the
radiation field yields a representation of the affine group ‘ax+b’ of dilations and translations on
the real line. This group is clearly non-compact, and, moreover, it is nonunimodular, namely
the left-invariant Haar measure dLg (with dL(hg) = dLg ∀h, g ∈ G) does not coincide
with the right-invariant one dRg (with dR(gh) = dRg ∀h, g ∈ G). Therefore, to face the
estimation problem with the affine group, we need some results about representation theory
and orthogonality relations for nonunimodular groups (for an introduction to these topics, see
for example [24]).

Let {Ug|g ∈ G} be a unitary representation of a locally compact group G. In the following,
we will make two assumptions on the representation {Ug} that are tailored on the concrete
problem of estimating real squeezing and displacement.

First assumption: discrete Clebsch–Gordan series. We require the representation {Ug} to be
a direct sum of irreducible representations (irreps), namely that its Clebsch–Gordan series is
discrete. In this case, there is a decomposition of the Hilbert space H as

H =
⊕

µ∈S

Hµ ⊗ Mµ, (4)

such that
Ug =

⊕

µ∈S

Uµ
g ⊗ 11Mµ

, (5)

where
{
U

µ
g

}
is an irreducible representation acting on the Hilbert space Hµ and 11Mµ

is the
identity in the space Mµ. The Hilbert spaces Hµ and Mµ are called representation and
multiplicity spaces, respectively, and the index µ labels the inequivalent irreps that appear in
the Clebsch–Gordan series S of the representation {Ug}.

Second assumption: square-summable irreps. We require each irreducible representation{
U

µ
g

}
in equation (5) to be square-summable. This means that there is at least one non-zero

vector |ψµ〉 ∈ Hµ such that∫

G
dLg

∣∣〈ψµ|Uµ
g |ψµ〉

∣∣2
< ∞. (6)
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Vectors such that the above integral converges are called admissible. It is possible to show
[24] that if a representation is square-summable, then the set of admissible vectors is dense in
the Hilbert space.

Let us consider now the group average of an operator A, defined as

〈A〉G =
∫

G
dLg UgAU †

g. (7)

In general, the average may not converge for any operator (for example, it diverges for
A = 11). By analogy with admissible vectors, we say that A is an admissible operator if the
group average in equation (7) converges in the weak operator sense. In such a case, one can
prove that 〈A〉G is given by

〈A〉G =
⊕

µ∈S

11Hµ
⊗ TrHµ

[Dµ ⊗ 11Mµ
A], (8)

where Dµ is a positive self-adjoint operator acting on the representation space Hµ. The
operator Dµ has been firstly introduced by Duflo, Moore and Carey (DMC) [21], and is the
characteristic feature of nonunimodular groups. In fact, if the group G is unimodular—i.e. if
the left- and right-invariant measures coincide—then the DMC operator is simply a multiple of
the identity, and formula (8) for the group average is equivalent to the ordinary Schur lemmas.
Contrarily, if the group G is nonunimodular, the DMC operator is a positive unbounded
operator, and its presence modifies the orthogonality relations dramatically, with remarkable
consequences in the estimation of an unknown group transformation.

The admissibility of vectors and operators has a simple characterization in terms of the
DMC operator. As regards vectors, the set of admissible vectors for the irrep

{
U

µ
g

}
can

be characterized as the domain of
√

Dµ. For unimodular groups, since Dµ is proportional
to the identity, the set of admissible vectors is the whole representation space Hµ, while
for nonunimodular groups the admissible vectors form a dense subset of Hµ. As regards
operators, an operator A is admissible if and only if the partial traces TrHµ

[Dµ ⊗ 11Mµ
A] are

not diverging. For example, if |ψµ〉 ∈ Hµ is an admissible vector and Oµ is any operator
acting on Mµ, then the operator Aµ = |ψµ〉〈ψµ| ⊗ Oµ is admissible, and its group average is
〈Aµ〉G = 〈ψµ|Dµ|ψµ〉11µ ⊗ Oµ.

2.3. Maximum likelihood measurements

In order to find the best estimate for the signal states (1) according to the maximum likelihood
criterion in the minimax approach, we consider now a covariant measurement, described by a
POVM M(g) as in equation (2). The normalization condition (3) can be rewritten as

∫

G
dLg M(g) = 〈ξ 〉G = 11. (9)

Using equation (8) for evaluating the group average 〈ξ 〉G, this condition becomes

TrHµ

[
Dµ ⊗ 11Mµ

ξ
]

= 11Mµ
. (10)

According to the maximum likelihood approach, we need to find the covariant
measurement that maximizes the probability density that the estimated transformation
coincides with the true one, i.e. L = p(g|g) = Tr

[
M(g)UgρU

†
g

]
= Tr[ξρ]. For a pure

input state ρ = |ψ〉〈ψ |, the maximization of the likelihood over all possible operators ξ ! 0
satisfying the constraints (10) follows in a simple way by a repeated use of Schwartz inequality.
In fact, the input state |ψ〉 can be written in the decomposition (4) as

|ψ〉 =
⊕

µ∈S

cµ|%µ〉〉, (11)
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where each |%µ〉〉 ∈ Hµ ⊗ Mµ is a bipartite state. From Schwartz inequality, we have

L "
∑

µ,ν

|c∗
µcν〈〈%µ|ξ |%ν〉〉| "

(
∑

µ

|cµ|
√

〈〈%µ|ξ |%µ〉〉
)2

. (12)

At this point, we assume that each bipartite state |%µ〉〉 is in the domain of the operator
D

−1/2
µ ⊗ 11Mµ

. This assumption is not restrictive, since the domain of a self-adjoint operator is
dense in the Hilbert space. In this way, it is possible to write |%µ〉〉 = D

1/2
µ D

−1/2
µ ⊗ 11Mµ

|%µ〉〉
and to exploit the Schmidt decomposition of the (non-normalized) vector D

−1/2
µ ⊗ 11Mµ

|%µ〉〉.
In other words, we can write

|%µ〉〉 =
rµ∑

m=1

√
λ

µ
m

√
Dµ ⊗ 11Mµ

∣∣ψ̃µ
m

〉∣∣φ̃µ
m

〉
, (13)

where rµ is the Schmidt rank, λ
µ
m ! 0 are Schmidt coefficients such that

∑rµ

m=1 λ
µ
m =

〈〈%µ|D−1
µ ⊗ 11Mµ

|%µ〉〉, and
∣∣ψ̃µ

m

〉
,
∣∣φ̃µ

m

〉
, are the elements of two orthonormal bases for Hµ and

Mµ, respectively. The form (13) is very convenient for optimization, in fact we can use again
Schwartz inequality and obtain

〈〈%µ|ξ |%µ〉〉 "
(

∑

m

√
λ

µ
m

〈
ψ̃

µ
m

∣∣〈φ̃µ
m

∣∣√Dµ ⊗ 11Mµ
ξ
√

Dµ ⊗ 11Mµ

∣∣ψ̃µ
m

〉∣∣φ̃µ
m

〉
)2

(14)

Finally, we have
〈
ψ̃µ

m

∣∣〈φ̃µ
m

∣∣√Dµ ⊗ 11Mµ
ξ
√

Dµ ⊗ 11Mµ

∣∣ψ̃µ
m

〉∣∣φ̃µ
m

〉
"

〈
φ̃µ

m

∣∣TrHµ

[
Dµ ⊗ 11Mµ

ξ
]∣∣φ̃µ

m

〉
= 1, (15)

the last equality following from the normalization constraint (10). Therefore, the previous
chain of inequalities proves the upper bound

L "




∑

µ∈S

|cµ|
rµ∑

m=1

√
λ

µ
m




2

= Lopt, (16)

that holds for any covariant POVM. On the other hand, it is immediate to check that the bound
is achieved by the covariant POVM given by ξ = |η〉〈η| with

|η〉 =
⊕

µ∈S

ei arg(cµ)

rµ∑

m=1

D−1/2
µ ⊗ 11Mµ

∣∣ψ̃µ
m

〉∣∣φ̃µ
m

〉
, (17)

arg(z) denoting the argument of a complex number, i.e. z = |z| ei arg(z). The normalization of
such a POVM follows from equation (10), and one has

∫
dLg UgξU

†
g =

⊕

µ

11Hµ
⊗

rµ∑

m=1

∣∣φ̃µ
m

〉 〈
φ̃µ

m

∣∣, (18)

namely, the POVM is complete in the subspace spanned by the orbit of |ψ〉, and can be trivially
completed to the whole Hilbert space without affecting the probability distribution. Note that,
if the group G is unimodular, namely Dµ = 11Hµ

/dµ for some positive constant dµ, then we
correctly retrieve the results of [15] about maximum-likelihood measurements.

The case of {Ug} being a direct sum of inequivalent irreps. The expression for the optimal
covariant POVM can be further simplified in the case when all the multiplicity spaces Mµ

are one dimensional, i.e. when the representation {Ug} is a direct sum of inequivalent irreps.
In this case, we can decompose the input state as |ψ〉 =

⊕
µ cµ|ψµ〉 (as in equation (11), but
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without the need of introducing bipartite states), and now the decomposition (13) becomes
trivial, namely

|ψµ〉 =
√
λµ

√
Dµ|ψ̃µ〉, (19)

where λµ = 〈ψµ|D−1
µ |ψµ〉 and

|ψ̃µ〉 = D
−1/2
µ |ψµ〉

∥∥D
−1/2
µ |ψµ〉

∥∥ . (20)

Therefore, equation (17) for the optimal POVM becomes

|η〉 =
⊕

µ∈S

ei arg(cµ)
D−1

µ |ψµ〉
√

〈ψµ|D−1
µ |ψµ〉

=
⊕

µ∈S

D−1
µ |ψ〉

√
〈ψ |D−1

µ |ψ〉
, (21)

and the corresponding optimal likelihood is given by

Lopt = |〈η|ψ〉|2 =




∑

µ∈S

√
〈ψ |D−1

µ |ψ〉




2

. (22)

2.4. Remarks

Remark 1: Square-root measurements. A possible strategy to estimate an unknown quantum
state, randomly drawn from a given family, is given by the so-called square-root measurements
(SRM), firstly introduced by Hausladen and Wootters [22]. In the case of pure states with
a group symmetry as in equation (1), there is an important connection between SRM and
maximum-likelihood measurements. For example, if the group G is a discrete group of phase
shifts, it has been proved in [25–27], that SRM minimize the probability of error in estimating
the unknown state, and, equivalently, they maximize the likelihood, i.e. the probability of
correct estimation. More generally, the optimality of the SRM in the maximum likelihood
approach has been proved in [15] for a large class of groups, including all finite groups, all
compact groups, and unimodular noncompact groups, such as the Weyl–Heisenberg group of
displacements. However, as we will see in the following, the case of nonunimodular groups
represents an exception to the fact that SRM are optimal for the maximum likelihood criterion
in the presence of a physical symmetry. In fact, the SRM for the estimation of a group
transformation acting on a fixed state ρ is given by the POVM Msq(g) = F−1/2UgρU

†
gF

−1/2,
where

F =
∫

G
dLg UgρU †

g (23)

(the POVM Msq(g) is obviously normalized with respect to the left-invariant measure dLg).
The comparison with the maximum-likelihood measurements of the previous section is
particularly simple in the case of group representations {Ug} that are direct sum of inequivalent
irreps. In fact, for a pure state ρ = |ψ〉〈ψ | with |ψ〉 =

⊕
µ cµ|ψµ〉, the integral (23) is easily

calculated by using equation (8), namely F =
⊕

µ |cµ|2〈ψµ|Dµ|ψµ〉11Hµ
. Note here that the

square-root measurement can be defined only if |ψµ〉 is in the domain of D
1/2
µ . Therefore, the

square-root measurement is given by the covariant POVM Msq(g) = Ug|ηsq〉〈ηsq |U †
g , where

|ηsq〉 =
⊕

µ

ei arg(cµ) |ψµ〉
√

〈ψµ|Dµ|ψµ〉
. (24)
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This covariant POVM is different from the optimal one given in (21), and does not achieve the
optimal value (22) for the likelihood. When |ψµ〉 is in the domain of both D

1/2
µ and D

−1/2
µ ,

we can compare the values of the likelihood as follows. One has

Lsq =
(

∑

µ

|cµ|
√

〈ψµ|Dµ|ψµ〉

)2

"
(

∑

µ

|cµ|
√

〈ψµ|D−1
µ |ψµ〉

)2

= Lopt, (25)

where we used the inequality 〈ψµ|D−1
µ |ψµ〉〈ψµ|Dµ|ψµ〉 ! 1, from the Schwartz inequality

applied to the vectors D
1/2
µ |ψµ〉 and D

−1/2
µ |ψµ〉.

Remark 2: The true value and the most likely one. In the maximum likelihood approach,
one optimizes the choice of the POVM in order to maximize the probability density that the
estimated value of the parameters coincides with the true one. Intuitively, one could expect
that the probability distribution p(ĝ|g) = Tr

[
M(ĝ)UgρU

†
g

]
for the optimal POVM achieves

its maximum at the value ĝ = g. Again, this is true for unimodular groups, but fails to hold
for nonunimodular groups.

Proposition 2. Let the group G be unimodular. If the covariant POVM M(ĝ) maximizes the
likelihood for a given input state ρ, then the probability distribution p(ĝ|g) of the estimate ĝ

on the state UgρU
†
g achieves its maximum for ĝ = g.

Proof. Suppose that the most likely value does not coincide with the true one. Then we can
rigidly shift the whole probability distribution with a post-processing operation that brings the
most likely value to the true one. In fact, if the maximum of p(ĝ|g) occurs at ĝ = gh, we can
always replace M(ĝ) with a new covariant POVM M ′(ĝ) = Uĝξ

′U
†
ĝ , where

ξ ′ = UhξU
†
h. (26)

The normalization of the new POVM follows from the fact that for unimodular groups
the DMC operators are trivially proportional to the identity, and therefore the operator ξ ′

satisfy the normalization constraints (10) as well. Moreover, the probability distribution
p′(ĝ|g) associated with M ′(ĝ) enjoys the property p′(ĝ|g) = p(ĝh|g), whence it achieves the
maximum in ĝ = g. In this way, the likelihood of M ′(ĝ) would be higher than the likelihood
of the POVM M(ĝ). But this cannot happen since M(ĝ) is the optimal maximum-likelihood
POVM. Therefore, p(ĝ|g) must be maximum in ĝ = g. #

For nonunimodular groups the previous argument does not apply, since the POVM given
by (26) is no longer normalized. In fact, the operator ξ ′ does not satisfy the normalization
constraints (10), since the DMC operators do not commute with the unitaries Uh. In other
words, we are not allowed to bring the most likely value to coincide with the true one by
rigidly shifting the whole probability distribution. As we will see in the explicit example of
the estimation of real squeezing and displacement, this situation can indeed happen. In order
to reduce the discrepancy between the true value and the most likely one, a suitable choice
of the input states is needed. For example, in the simple case of {Ug} being a direct sum
of inequivalent irreps, if the projection of the input state onto the irreducible subspaces are
eigenvectors of the DMC operators, then the most likely value coincides with the true one. In
fact, for any input state |ψ〉 =

⊕
µ cµ|ψµ〉, using Schwarz inequality, we have

popt(ĝ|g) =

∣∣∣∣∣∣

∑

µ

|cµ|
〈ψµ|Ug−1ĝD

−1
µ |ψµ〉

√
〈ψµ|D−1

µ |ψµ〉

∣∣∣∣∣∣

2

"
(

∑

µ

|cµ|

√
〈ψµ|D−2

µ |ψµ〉
〈ψµ|D−1

µ |ψµ〉

)2

, (27)

and if each |ψµ〉 is eigenvector of Dµ, then the last expression is equal to p(g|g), then the true
value is the most likely one.
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3. Optimal estimation of real squeezing and displacement

3.1. Translation and dilation

In the following we will apply the general framework of section 2 to the case of joint estimation
of real squeezing and displacement of a single-mode radiation field with bosonic operators a
and a† with [a, a†] = 1. Given the wavefunction of a pure state |ψ〉 in the X-representation
ψ(x) = 〈x|ψ〉, where |x〉 denotes the Dirac-normalized eigenstate of the quadrature operator
X = (a +a†)/2, the affine transformation on the real line given by x → erx +x ′ is represented
by the unitary transformation

ψ(x) → e−r/2ψ(e−r (x − x ′)), x ′, r ∈ R. (28)

This transformation corresponds to the action of the unitary operator Ux ′,r = D(x ′)S(r) on
the ket |ψ〉, where

D(x) = exp[x(a† − a)], S(r) = exp
[ r

2
(a†2 − a2)

]
, (29)

represent the displacement and the squeezing operator with real argument, respectively. In
other words, the operators

{Ux,r = D(x)S(r)|x, r ∈ R}, (30)

provide a unitary representation of the affine group in the Hilbert space of wavefunctions. The
affine group is nonunimodular, and in the above parametrization the left- and right-invariant
measures are given by dLg = e−rdr dx, and dRg = dr dx, respectively.

3.2. The maximum likelihood POVM

In order to exploit the general results of section 2, we need to know the Clebsch–Gordan
decomposition of the representation {Ux,r}, the irreducible subspaces, and the DMC operators.
All these information are given in the following, while the proof is presented in the appendix.

The Clebsch–Gordan series of the representation {Ux,r} consists of two irreps that we
indicate with the symbols + and −. Accordingly, the Hilbert space splits into two irreducible
subspaces, i.e.

H = H+ ⊕ H−. (31)

Comparing this decomposition with the general case (4), we see that the subspaces H+

and H− are the representation spaces, while the multiplicity spaces M+ and M− are
trivially one dimensional. The representation spaces H+ and H− can be easily characterized
in terms of the quadrature Y = a−a†

2i
. In fact, writing the wavefunctions in the Y-

representation as ψ(y) = 〈y|ψ〉, where |y〉 are the Dirac-normalized eigenvectors of Y,
we have H+ = {|ψ〉|ψ(y) = 0 ∀y < 0} and H− = {|ψ〉|ψ(y) = 0 ∀y > 0}. Therefore,
the projection operators onto H+ and H− can be written, respectively, as 11+ = θ(Y ) and
11− = θ(−Y ), where θ(x) is the customary step-function [θ(x) = 1 for x ! 0, θ(x) = 0 for
x < 0]. Moreover, the DMC operators are

D± = π
θ(±Y )

|Y |
. (32)

With these tools we are now able to provide the optimal covariant measurement for the
joint estimation of real squeezing and displacement on a given state of the radiation
field. Let us denote by |ψ〉 the input state that undergoes to unknown squeezing and
displacement transformations. Decomposing the input state on the subspaces H+ and H−
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Figure 1. Optimal probability distribution for the joint estimation of the squeezing parameter and
real displacement for the vacuum state.

as |ψ〉 = c+|ψ+〉 + c−|ψ−〉, we can exploit equation (21) and write explicitly the optimal
POVM as M(x, r) = Ux,r |η〉〈η|U †

x,r , where

|η〉 = |Y |θ(Y )|ψ〉√
π〈ψ ||Y |θ(Y )|ψ〉

+
|Y |θ(−Y )|ψ〉√

π〈ψ ||Y |θ(−Y )|ψ〉
. (33)

The optimal likelihood is then

Lopt = 1
π

(
√

〈ψ ||Y |θ(Y )|ψ〉 +
√

〈ψ ||Y |θ(−Y )|ψ〉)2, (34)

according to the general expression of equation (22). As already mentioned, the expression
of the likelihood provides some insight about the states that are most sensitive in detecting
an unknown combination of real squeezing and displacement. Essentially, one can improve
the likelihood by increasing the expectation value of |Y |, the modulus of the quadrature Y. In
addition, the use of wavefunctions that in the Y-representation are non-zero both in the positive
half-line and in the negative half-line allows us to exploit the interference of the components
|ψ+〉 and |ψ−〉 to enhance the value of the likelihood.

3.3. Real squeezing and displacement on a coherent state

Using equation (33) for the optimal POVM, we can obtain the probability distribution of the
estimated squeezing and displacement parameter for a given input state. In particular, for a
coherent input state |α〉 the sensitivity of the measurement can be significantly improved by
increasing the imaginary part of α, this corresponding to taking coherent states with a high
expectation value of |Y |. The probability distribution for the joint estimation of squeezing and
displacement on the vacuum state and on a coherent state with α = 10i has been reported in
figures 1 and 2, respectively. Comparing the two figures, a remarkable improvement in the
precision of the measurement can be observed as an enhancement of the likelihood, along with
a narrowing of the probability distribution. Moreover, we can observe that for the vacuum
state the maximum of the probability density is not achieved by the true value (which is given
by to x = r = 0). The discrepancy between the most likely value and the true one, due
to the fact that the affine group is nonunimodular, essentially disappears by increasing the
expectation value of |Y |. As we can see from figure 2, for α = 10i the probability distribution
is approximately a Gaussian centred around the true value x = r = 0.

Now it is interesting to focus on the asymptotic behaviour of the probability distribution
for a coherent state |ia〉 with a ∈ R going to infinity. In the asymptotic regime, the probability
distribution

pa(x, r) dx dr e−r = |〈η|Ux,r |ia〉|2 dx dr e−r , (35)
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Figure 2. Optimal probability distribution for the joint estimation of the squeezing parameter and
real displacement for a coherent state with amplitude α = 10i.

given by optimal vector |η〉 in equation (33), can be further simplified. In fact, the wavefunction
of the coherent state can be written as

〈y|ia〉 =
(

2
π

)1/4

e−(y−a)2
, (36)

and for a - 1 it is essentially confined in the positive part of the y-axis. Hence, in expression
(33) we can asymptotically neglect the component in the subspace H− and drop the modulus
from |Y |. In this way, the probability distribution (35) can be approximated as

pa(x, r) dx dr e−r ≈ 1
π

|〈ia|Ux,rY |ia〉|2

〈ia|Y |ia〉
dx dr e−r . (37)

Neglecting the higher order terms, we thus obtain the Gaussian distribution

pa(x, r) dx dr e−r = a

π
e−a2r2

e−x2
dx dr. (38)

Note that, asymptotically the most likely values of the unknown parameters x and r are the
true ones x = r = 0, and, in addition, also the mean values of x and r coincide with the true
one, namely the estimation is unbiased.

From the asymptotic expression (38) can see that the uncertainty in the estimation of the
squeezing parameter r goes to zero with the number of photons n̄ = a2, namely the rms error
is -r = 1/

√
2n̄, while the uncertainty in the estimation of the displacement x remains fixed,

with the value -x = 1/
√

2. It is interesting to compare the precision achieved by the joint
estimation with the precision that could be achieved if the parameters x and r were measured
separately. First, it is known that the optimal estimation of real displacement is given by the
observable X = (a + a†)/2, and the corresponding uncertainty in a coherent state is given by
-xopt = 1/2. The optimal estimation of real squeezing has been recently derived in [29], and
we report here the asymptotic distribution for an excited coherent state

p(r) =
√

2|α|2
π

e−2|α|2r2
. (39)

Accordingly, the rms error for the optimal estimation of squeezing in a coherent state is
-ropt = 1/(2

√
n̄). It is remarkable to note the relation
{
-x =

√
2-xopt

-r =
√

2-ropt (40)
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between the uncertainties in the joint measurement and the ones in the separate measurements
of squeezing and displacement. In particular, the product of the uncertainties in the joint
estimation is twice the product of uncertainties in the optimal separate measurements

-x-r = 2-xopt-ropt. (41)

Surprisingly, this is exactly the same relation as the one occurring in the optimal joint
measurement of two conjugated quadratures X and Y that can be achieved by heterodyne
detection [30].

3.4. Joint estimation for a displaced squeezed state

In the previous section we analysed the optimal estimation of squeezing and displacement for
an excited coherent state. In that case, while the error in the estimation of r goes to zero with
the number of photons, the error in estimating x remains fixed. However, it is possible to
choose the input state in such a way that both variances vanish in the asymptotic limit. To this
purpose, we consider here displaced squeezed states |ia, z〉 = D(ia)S(z)|0〉 with a, z ∈ R.
Such states have the wavefunction

〈y|ia, z〉 =
(

2 e2z

π

)1/4

e−(y−a)2 e2z

, (42)

namely a Gaussian centred around the mean value a, with standard deviation σ = 1/(
√

2 ez).
Clearly, if the conditions a - 1 and a - σ are simultaneously satisfied, such a
Gaussian lies almost completely in the positive half-line. Therefore, in the asymptotic limit
a → +∞, a - e−z, the optimal probability distribution can be approximated as

pa,z(x, r) ≈ 1
π

|〈ia, z|Ux,rY |ia, z〉|2

〈ia, z|Y |ia, z〉
, (43)

as in the case of coherent states. By calculating the expectation values and keeping the leading
order terms, we then obtain the asymptotic distribution

pa,z(x, r) dx dr e−r = a

π
e−(a ezr)2

e−(x e−z)2
dx dr. (44)

Again, in the asymptotic limit the most likely values in the probability distribution coincide
with the true ones, and, moreover, the estimation is unbiased.

The rms error in the estimation of squeezing and displacement are now given by
-r = 1/(

√
2a ez) and -x = 1/(

√
2 e−z), respectively. In order to have both errors vanishing,

one needs simultaneously a ez - 1 and e−z - 1. For example, we can have an isotropic
distribution -r = -x with the choice a = e−2z. In the isotropic case, we notice that
only a small fraction of order

√
n̄ of the total number of photons n̄ = a2 + sinh2 z comes

from squeezing. Since one has -x = -r = 1/(
√

2 e−z) ≈ 1/(
√

2n̄1/4), the convergence
to the asymptotic regime is quite slow: the uncertainty goes to zero with order 1/n̄1/4. As
an example in the asymptotic regime, in figure 3 we plot the exact probability distribution
for n̄ = 4000.

Also for displaced squeezed states one can compare the accuracy of the joint estimation
with that of independent measurements of squeezing and displacement. For squeezed states
of the form (42) the uncertainty in the measurement of the observable X is -xopt = 1/(2 e−z).
On the other hand, the optimal estimation of squeezing is obtained asymptotically by the
observable ln(|Y |/a), and its uncertainty is -ropt = 1/(2a ez) (according to the results of
[29]). Again, a factor

√
2 relates the standard deviations of the marginals in the joint estimation

with those of the optimal separate measurements. Again, we find the relation (41) between
the product of uncertainties.
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Figure 3. Optimal probability distribution for the joint estimation on a displaced squeezed states
with total number of photons n̄ = 4000 (with signal photons n̄ −

√
n̄, and squeezing photons

√
n̄).

We then see that the estimation of real squeezing and displacement on input states of the
form (42) corresponds in the asymptotic regime to the joint measurement of the observables X
and (ln |Y |/a), whose commutator is [X, ln(|Y |/a)] = i/(2Y ) . We thus have the Heisenberg–
Robertson inequality

-X- ln(|Y |/a) !
∣∣∣∣

〈
1

4Y

〉∣∣∣∣ , (45)

where 〈 〉 denotes the expectation value. From this point of view, the displaced squeezed states
(42) are characterized asymptotically as minimum uncertainty states, since they saturate the
inequality, and the product of uncertainties in the maximum likelihood estimation is exactly
twice the Heisenberg limit. To the best of our knowledge, the present case is the first example of
joint measurement of two harmonic-oscillator noncommuting observables whose commutator
is not a c-number.

3.5. Joint estimation of squeezing, displacement and reflection

The results presented in the previous sections can be easily extended to include the estimation
of the reflection on the real line that is realized by the parity operator P = (−1)a

†a . In this
case we are interested in estimating the three parameters in the transformation

|ψ〉 −→ P εD(x)S(r)|ψ〉, (46)

where ε can assume the values 0 or 1. The representation {P εD(x)S(r)} is now irreducible in
H, and the associated DMC operator is D = π/|Y |. For a given input state |ψ〉, the optimal
POVM can be written as M(ε, x, r) = P εD(x)S(r)|η〉〈η|S(r)†D(x)†P ε , where

|η〉 = |Y ||ψ〉√
π〈ψ ||Y ||ψ〉

, (47)

according to equation (21). Clearly, also in this case it is possible to enhance the sensitivity
of detection by increasing the average value of the modulus |Y |, using coherent states or
displaced squeezed states.

3.6. Perfect detection of squeezing and displacement: a two-mode set-up

A fundamental mechanism leading to the optimal estimation of group transformations is the
use of equivalent representations of the group, via the technique of entanglement between
representation and multiplicity spaces [15, 16]. Such a strategy strongly improves the quality
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of estimation for unimodular groups [12, 14, 15], and in the case of compact groups is a way to
obtain the best estimation of a unitary transformation [16]. Equivalent representations of the
affine group can be obtained by entangling the radiation with a second reference mode, which
is not affected by the unknown squeezing and displacement. This corresponds to considering
the two-mode Hilbert space H ⊗ H and the representation {Ux,r ⊗ 11} of the affine group,
namely the reference mode plays the role of an infinite dimensional multiplicity space. In this
case, the optimal estimation can be obtained with the POVM specified by the general formula
(17). A remarkable feature of the two-mode set-up is that it is possible to have an orthogonal
POVM for the estimation, namely there exists an ordinary observable on the extended Hilbert
space, associated with the joint measurement of squeezing and displacement. In fact, by
defining the bipartite vectors

|0±〉〉 = 1√
π

∫ +∞

−∞
dy

√
|y||y〉| ± y〉, (48)

we can construct the orthogonal POVM

M(x, r) = Ux,r ⊗ 11

(
∑

s=±
|0s〉〉〈〈0s |

)

U †
x,r ⊗ 11. (49)

The normalization follows straightforwardly from equation (9). Moreover, we have the
orthogonality relation

〈〈0s |Ux,r ⊗ 11|0s ′ 〉〉 = 1
π

∫ +∞

−∞
dy|y|〈y|Ux,r |sy/s ′〉

= 1
π

∫ +∞

−∞
dy|y|e−r/2 e−2ixy e−r

δ(y − y e−r )δs,s ′ = δ(x)δ(r)δs,s ′ , (50)

where we used equation (A.1) of the appendix and the identity δ(y − y e−r ) = 1
|y|δ(r). The

vectors in equation (48) are not normalizable. However, similarly to the case of the heterodyne
operator, where physical states can arbitrarily well approximate the unnormalizable eigenstates
[28], here one can consider, e.g. states of the form

|0(λ)±〉〉 = Nλλ
a†a+b†b|0±〉〉, (51)

where 0 < λ < 1, Nλ is a normalization constant, and b†b is the photon number operator for
the auxiliary mode b. The states |0(λ)±〉〉 approach the optimal vectors (48) as λ → 1, with a
correspondent increasing to infinity of the average energy of the radiation field.

4. Conclusions

In this paper we presented the joint estimation of real squeezing and displacement of the
radiation field from the general point of view of group parameter estimation. The combination
of squeezing and displacement provides a representation of the affine group ‘ax + b’, which
is the paradigmatic example of a nonunimodular group. To deal with the concrete example
of squeezing and displacement, we derived in the maximum likelihood approach the optimal
estimation of a group transformation in the case of nonunimodular groups, providing explicitly
the optimal POVM for a given input state. In this analysis, some remarkable features
of estimation showed up. Firstly, while for unimodular groups the maximum likelihood
measurements coincide with the usual square-root measurements, for nonunimodular groups
the SRM are no longer optimal, namely they do not maximize the probability density of
detecting the correct value. Moreover, for nonunimodular groups one can optimize the
estimation strategy in the maximum likelihood approach, but even for the optimal POVM
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the true value is not the one which is most likely to be detected. To reduce the discrepancy
between the true value and the most likely one a suitable choice of the input states is required.
Both these features are in general unavoidable, and their origin tracks back to the presence
of a positive unbounded operator—the Duflo–Moore–Carey operator—in the orthogonality
relations for nonunimodular groups. In the problem of joint estimating real squeezing and
displacement, all the above effects occur. In particular, for coherent input states and displaced
squeezed states we observed how an increase in the expectation value of |Y | gives rise to an
improvement in the quality of estimation, along with a reduction of the discrepancy between
the true value and the most likely one. In the mentioned cases the probability distributions
for joint estimation become asymptotically Gaussian, and the rms errors -x and -r can be
easily calculated. Remarkably, the product of uncertainties in the joint estimation is exactly
twice the product of uncertainties for the optimal separate measurements of squeezing and
displacement, in the same way as in the joint measurement of two conjugated quadratures.
Finally, the use of entanglement with an additional mode of the radiation field allows one to
perform a von Neumann measurement for the joint estimation of squeezing and displacement,
in terms of an ordinary observable with continuous spectrum. The ideal input states for
detecting an unknown affine transformation can then be approximated by normalizable
states.
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Appendix A.

Here we derive the group theoretical structure of the representation {Ux,r = D(x)S(r)} of the
affine group, by explicitly calculating the expression for the group average of an operator A

over the left-invariant measure dLg = dx dr e−r .

Proposition 3. The Clebsch–Gordan series of {Ux,r} contains two irreducible irreps, + and
−. Accordingly, the Hilbert space can be decomposed as H = H+ ⊕ H−, and the projections
onto the irreducible subspaces are 11+ = θ(Y ) and 11− = θ(−Y ), respectively. The DMC
operators are given by D+ = πθ(Y )/|Y | and D− = πθ(−Y )/|Y |.

Proof. Using twice the resolution of the identity in terms of the eigenstates |y〉 of the quadrature
operator Y, and the relation

Ux,r |y〉 = D(x)S(r)|y〉 = D(x) e−r/2|e−ry〉 = e−r/2 e−2ixy e−r |e−ry〉, (A.1)

we can calculate the group average as follows:

〈A〉 =
∫ ∞

−∞
dr e−r

∫ ∞

−∞
dxUx,rAU †

x,r

=
∫ ∞

−∞
dr e−r

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dy ′〈y|A|y ′〉 e−2ix(y−y ′) e−r

e−r |e−ry〉〈e−ry ′|

= π

∫ ∞

−∞
dr

∫ ∞

−∞
dy〈y|A|y〉 e−r |e−ry〉〈e−ry|
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= π

∫ ∞

−∞
dy

∫ sgn(y)∞

0
dr̃

1
y

〈y|A|y〉|r̃〉〈r̃|

= π

∫ ∞

0
dr̃|r̃〉〈r̃|Tr[Aθ(Y )/Y ] − π

∫ 0

−∞
dr̃|r̃〉〈r̃|Tr[Aθ(−Y )/Y ]

= θ(Y )Tr[Aπθ(Y )/|Y |] + θ(−Y )Tr[Aπθ(−Y )/|Y |]. (A.2)

The thesis follows by comparing the last equation with the general formula (8) for the group
average. #
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