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A shart overview is given on recently developed techniques for reconstructing the
gquantum state of light from data measured by means of balanced homodyne detection.
In particular, a reconstruction schemne for the density operator in Fock representation
is described which works also in case of inefficient detectors.

1. Introduction

The usual way of gaining information on a quantunt system is fo measure an appro-
priate observable, Clearly. such a procedure shows up ouly one facet of the micro-object.
To get more information, one has to measure a second observable, preferably noncom-
muting with the first one. and so on. However, this will become a cumbersome task’
since, in general, one needs a completely different experimental setup for every new type
of measurenients. Moreover. (he guestion arises as to whether the information gathered
in this way is complete. On the olher hand. it is well known that the [ull quantum
mechanical information on a system is contained in the wave function or, more gen-
erally, the density operator. Hence it appears desirable to determine the latter [rom
experiments, 20 to say to measure the quantum state. In what follows, we will give a
short overview on somie recent achievernents in this field.

2. Reconstruction of the wave function

The problem of reconstructing Schrodinger’s wave Tunction {rom measured data,
narmely the probability distributions for hoth position and momentum, was addressed
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Fig, 1. We plot the reg-dependent part Jmnlaa) of the patiern function Fioan(26,8Q) =
expi{ilm — i} fnlee ) for different values of m.on {full line} aned compare it. with the corre-
sponding product of the Schradinger wave functions O ire ) and Y (ra) for the Tock stales
|t} and [n) (broken line,

already in the early days of quanium mechanies, In his Camous handbook article [1]
Pauli, however, devoted only a footnote to this issue. raising ouly the guestion as to
whether the wave function is determined unambiguously in this way. Actually, until
now no satisfactory scheme to solve this reconstruction problem Las been developed.
Achievements were made, however. in the field of optical or electron microsco py (2, 3], In
fact, the mathematical task is here the same as in quantum theory: The field distribution
plays the role of Schrédinger’s wave function, and what can be measured is the intensity
in hoth the image and the focal plane. Since the field distribution in the latter is nothing
but the Fourier transform of the distribution in the image plane, the two intensity
distributions correspond precizely to the quantum mechanical position and momentum
distributions. We will not go into details of the recoustruction problent which, in fact,
amonnts ta retrieve the phase of the optical field (or Sehrodinger’s wave function), We
want only to point out the mathematical difficulties one encounters.

The procedure will be ro expand the wave function @(2) with respect to a suitable
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Fig. 2. We present an example for the reconstruction scheme based on Lgs (8) and (9). Fig.
Za shows the true photon-number distribution for a squeezed state with squeezing parameter
5= 20 and displacement parameter o = 3, while Fig. Zb displays the distribution reconstructed
from computer experiments using 260 quadrature phases with 100 simulared measurements for
cach phase. The errors indicated were obtained from 10 simulated runs.

orthogonal basis wu, (&)

e 2= Z Enthd G (1)
L1

In gquantum optics, it appears natural to choose the w,’s as the energy eigenstates of the
harmonie oscillator, i.e. Fock states in & representation [4]. Expressing the probability
distributions for » and p, assimed to be given, through the unknown coefficients ¢,
in Eeq. (1), we arrive af an infinite system of equations thal are quadratic in ¢, and ¢
and, hence, cannot be solved in a simple way. An approximalive scheme can be based
on truncation [4]: Assuming that the coefficients ¢, vanish approximately for n > m
(fixed), one gets just one equation for |e,, 2. Since an overall phasge of the wave function
has no physical relevance, this gives us o, Then we can select two equations which,
after insertion of ¢,,, become linear in ¢,—1 and ¢, _ ;. They are readily solved to yield
Cip-1. In the next step, we can select four equations which. after insertion of ¢,,_1, give
US €G-z and om_s. Proceeding similarly further, we find all coefficients e,. The scheme
in question is, however, unsatisfactory, since we starl from a rather small coeflicient ¢,

whose error will propagate. L
Noticing that the dquations we have to solve are, in [act, linear in the density matrix

elements gy, = coch we 'might say, the dileinmais that we have not enough equations
to determine the g,,,'s. Actually, they are not independent since we are dealing with
a wave function, i.€. a pure stale.

Hence we can expect that the reconstruction problem becomes, in fact, much simpler,
from the mathematical point of view, when we study statistical mixtures which amounts
to determine the denstry matrixelements. However, this can be done only at the expense
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of measuring a large number of observables, In quantum optics we are in the fortunate
position thal a practicable measuring seheme is actually available for such a purpose.
It is balanced homodyne detection [5]. in which the field under study is mixed, with
the help of a 50:50 beam splitter. with a strong local oscillator (laser beam). The
outgoing heams are directed to separate detectors. and the measured signal is given
by the difference of the two photocurrents. Of special importance is the fact that by
changing the phase of the local oscillator ©, one can measure a whole et of observables
+@ which are quadrature components of the electric feld strength. They are related to
the basic quadratures v and p corresponding to position and momentunm iy the form

re = cos Gu + sin @p (2}
and the corresponding distribution function can be found by appropriately integrating
over the Wigner funetion (e )

4

walre) = / Hire cos@ — psin®. rg sin © + pcos O)dp . (3)

Fhis relation. known as Radon transformation, is. in facl. a straight-forward general-
1zation of the well known representations of the position and momentum distributions
as marginals ol the Wigner fnetion.

3. Optical homodyne tomography

The reconstruction of the Wigner function lrom the distributions {3) is formally
identical to what is done in medical tomography. and hence has been called optical
homodyne tomography [6]. Actually. in a ploneering work, Vogel and Risken [7] solved
this problem more generally, namely. they derived a veconstruction formula for the
so-called s-parametrized quasiprobability funetions introduced by Cahill and Glauber
(8] '

A

1 ' & o S LSS el
Wir,p;s) = W/ u’f/ u"(")/ dirge®s I HEUe=teosO—puu m[ﬂu.'(.](;z:@}. {1)
% — i f mmim

From convergency requirements the parameter s has to be restricted to s < 0. The
value 5 = 0 corresponds to the Wigner function. With the help of the filtered back
projection algorithm claborated in 'medical toniography. Raymer's group [6] succeeded
in recoustructing the Wigner function for some relevant cases.

[t should be emphasized that the Wigner function actually comprises the full quarn-
tum mechanical information on the svstem. By means of a sitnple Fourier transforma-
tion one obtains the density operator in & representation from which it I# eagy to pass,
in particular, to the Fock representation. The density operator being at hand, one can
reacily caleulate the distribution function for any observable, even when it is defined
only as a POM (probability operator measure) such as the quantum phase of light [6].
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4, Divect determination of the density matrix

As a matter of fact. the procedure mentioned before is rather involved, and, more-
over, the basic step. the reconstruction of the Wigner function (inverse Radon trans-
formation] needs filtering which, together with diserete sampling with respect to O,
rentoves any high-frequency components being eventually present in the true Wigner
function. Irony the mathematical point of view, the zituation is more favourable for
s < 0. since then the integral (1) contains a convergeney producing Ganssian. In this
context one should remember that the density operator. in Fock representation. can be
obtained by dilferentiation frou: the € funetion corresponding lo s = —1. Henee the
following strategy recommends itselfs Start from the closed-form expression for the @
Function given by Bl l) for « = —1 and perforin {he appropriate differentiations on it
before carrying out the infegration over the measared distribution functions we (g ).

The first to adopt this procednre were [V Aviano et al. [9] who started {rom the well
known relarion

A

O = bimlnl) 732 — (t“lc"ljﬁg(ﬂ. """ }} ! . (5)

o T a=a=l

where o = 27 2 {# 4 1p). However, they obtained rather involved formulas for the matrix
elemments g,,,. The formalism becomes, in fact, more reansparent when il iz based on
hano’s foriula [10]

l. ! | t}.-;—i—)\

3 B Al ] !
G = 3\ T apigen s Wlyms (4200, (6)
where f
#9T
B i) / Qajo dd. o= Jge'd, (7)
S
Then one arvives at the following result {11]
i i
Oy = / e / i f"(?f -+ A T @)u-‘@{.r@} - IFS)
Ry T

Here. the “pattern [unction™ F is given by

i ar =
2ol n! i s : ...
i Ly = 2 e e A F e X e e e
LAt dg. Q) = ¢ e T ,E_[-, BUEADZ T 2 £ A+ 1)le
YT ,._,..,\D _ : k. 1 %S
G2 A T ot T A0 o A O Li-a @ f . (9)
where .

A S R \ 1yl = o1 ,
byt M = (=1 (2" l(n—r/) (10}

and (2] denotes the parabolic ovlinder funetion. The pattern function has the asymp-
totie behaviour

Flr4 Ainiee. 0) = const e 0 o 50y (1)
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1.6., it goes to Zero as an mverse power of z@. This feature is of practical relevance,
since it provides an effective cut-off for the measured distributions. Il is interesting
{o note that the pattern functions resemble closely the corresponding product of the
Schrédinger wave functions vy, (re) and i, (re) lor the Fock states [n) and |m). as can
be seen from Fig. 1.

Sinulating a large number of measurenients. the plioton distribution for a squeezed
state has heen reconstructed with the help of the basic relation (8). As hecomes obvious
from Fig. 2. the scheme works very well.

5. Inefficient detectors

It is well known that inefficient detectors deteriorate the measurements. When
reconslructing the Wigner function in the toanographic scheme, the effect of nonunit
detection efficiency 7 is correctly accounted for [12] by stating that what is actually re-
constructed is not the true Wigner funetion W (x. p) but the s-parametrized guasiprob-
ability distribution -;;_lﬂ-'[z_%at-:2;!_%;}: (n — L/y). The latter is actually a smoothed
version of the Wigner function. as becomes obvious from the general relationship be-
tween s-parametrized quasiprobability functions (3]

Ty e
Wie.prs) = n7ht— sy [ d’ / dp' v (2. p'it)

wexpl =t = o) Mz~ &) # (0 ~p)} - (12)
This formmla allows one to determine. in particular. any distribution with s < 0 from
the Wigner function by convolution with a simple Gaussian. We can utilize Tq.(12)
to pass from the above mentioned quasiprobability distribution reconstructed with the
help of inefficient detectors to the ¢ funet ion. We thus arrive at the result

Qe,p) = Wie pr—1)
= u{?fr)'_~ / (ff [ e b (I‘.’l'(._‘.}
= L —
% OXP {—(‘E-r,l — e A +iE(za — r;;‘!.r‘ cos @ — -r}%-p §1n E))}
x|elwg (o) (13)

which is, in fact, the extension of the Vogel-Risken formula (4) for s = —1 to the case
of inefficient detectors. Now one can proceed as before, namely determine from the @)
function, using Kano's formula (6). the density operator in Fock representation.

One learns from Eq.(13) that there is a critical lower limit to the detector efficiency
7. It has to be larger than 1/2. since otherwise an inverse Gaussian producing diver-
gency, will occur in the integrand. When this condition is fulfilled, the reconstruction
scherne has heen shown by simulations to work pretty well, however, much higher ac-
curacy is needed, compared to the ideal case 1) = 1. which means that the number of
reasutements has to be drastically enhanced [13]. This is the price one has to pay
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for effectively inverting the convoluiion originating from nonunir detection efficiency.
What one learns from this iz that the noise introduced by inefficient detectors does not
give rise Lo an irvetrievable loss of information. the finer details of the guantum state
are only suppressed, but not desiroyed.
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