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Abstract. We consider the problem of broadcasting quantum information
encoded in the average value of the field from N to M > N copies of mixed
states of radiation modes. We derive the broadcasting map that preserves the
complex amplitude, while optimally reducing the noise in conjugate quadratures.
We find that from two input copies broadcasting is feasible, with the possibility
of simultaneous purification (superbroadcasting). We prove similar results for
purification (M ! N) and for phase-conjugate broadcasting.
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1. Introduction

Quantum cloning is impossible [1]. This means that one cannot produce a number of independent
physical systems prepared in identical states out of a smaller amount of systems prepared in the
same state. Since the formulation of the no-cloning theorem, the search for quantum devices that
can perform cloning with the highest possible fidelity gave rise to a whole branch in the literature.
Optimal cloners have been found, for qubits [2–4], for general finite-dimensional systems [5],
for restricted sets of input states [6, 7], and for infinite-dimensional systems such as harmonic
oscillators—the so-called continuous variable cloners [8]. However, for the case of mixed states,
a different type of cloning transformation can be considered—the so-called broadcasting—in
which the output copies are in a globally correlated state whose local ‘reduced’states are identical
to the input states. This possibility has been considered in [9], where it has been shown that
broadcasting a single copy from a non-commuting set of density matrices is always impossible.
Later, such a result has been considered in the literature as the generalization of the no-cloning
theorem to mixed states. However, more recently, for qubits an effect called superbroadcasting
[10] has been discovered, which consists of the possibility of broadcasting the state while even
increasing the purity of the local state, for at least N " 4 input copies, and for sufficiently short
input Bloch vector (and even for N = 3 input copies for phase-covariant broadcasting instead
of universal covariance [11]).

In the present paper, we analyse the broadcasting of continuous variable mixed states by
a signal-preserving map. More precisely, this means that we consider a set of states obtained
by displacing a fixed mixed state by a complex amplitude in the harmonic oscillator phase
space, while the broadcasting map is covariant with respect to the (Weyl–Heisenberg) group of
complex displacements. We will focus mainly on displaced thermal states (which are equivalent
to coherent states that have suffered Gaussian noise); however, all results of the present paper
hold in terms of noise of conjugated quadratures for the set of states obtained by displacing any
fixed state.

As we will see, superbroadcasting is possible for continuous variable mixed states, namely
one can produce a larger number of copies, which are purified locally on each use, and with
the same signal of the input. For displaced thermal states, for example, superbroadcasting can
be achieved for at least N = 2 input copies, with thermal photon number nin " 1/3, whereas,
for sufficiently large nin at the input, one can broadcast to an unbounded number M of output
copies. For purification (i.e. M ! N), quite surprisingly the purification rate is nout/nin = N−1,
independent of M. The particular case of 2 to 1 for noisy coherent states has been reported in
[12]. We will also prove similar results for broadcasting of phase-conjugated copies of the input.

The paper is organized as follows. In section 2 we introduce the problem of covariant
broadcasting, deriving the general form of a covariant channel (trace-preserving completely
positive (CP) map), and introduce a special channel that broadcasts from N to M > N
copies. In section 3, we prove that such a channel is optimal for broadcasting any noisy displaced
state. In section 4, we consider the same problem for purification (i.e. M < N). In section 5, we
derive superbroadcasting for the output copies with a conjugate phase with respect to the originals.
In section 6, we show the optimality by a simpler derivation, namely by exploiting the bounds
from the theory of linear amplification (which is then based on supplementary assumptions). In
section 7, we show a simple experimental scheme to achieve optimal broadcasting/purification.
Section 8 closes the paper with a summary of results and some concluding remarks.
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2. Covariant broadcasting for the Weyl–Heisenberg group

We consider the problem of broadcasting N input copies of displaced (generally) mixed states
of harmonic oscillators (with boson annihilation operators denoted by a0, a1, . . . , aN−1) to M
output copies (with boson annihilation operators b0, b1, . . . , bM−1). In order to preserve the
signal, the broadcasting map B must be covariant, i.e. in formula

B(D(α)
⊗N"D(α)†⊗N) = D(α)

⊗MB(")D(α)†⊗M, (1)

where Dc(α) = exp(αc† − α∗c) denotes the displacement operator, and " represents an arbitrary
N-partite state. It is useful to consider the Choi–Jamiołkowski bijective correspondence of CP
maps B from Hin to Hout and positive operators RB acting on Hout ⊗ Hin, which is given by the
following expressions

RB = B ⊗ I(|#〉〈#|), B(ρ) = Trin[(Iout ⊗ ρτ)RB], (2)

where |#〉 =
∑∞

n=0 |ψn〉|ψn〉 is a maximally entangled vector ofH⊗2
in andXτ denotes transposition

of X in the basis |ψn〉. In terms of the operator RB the covariance property (1) can be written as

[RB, D(α)
⊗M ⊗ D(α∗)

⊗N] = 0, ∀ α ∈ C. (3)

In order to deal with this constraint, we introduce the multisplitter operators Ua and Ub that
perform the unitary transformations

UaakU
†
a = 1√

N

N−1∑

l=0

e
2πikl

N al, UbbkU
†
b = 1√

M

M−1∑

l=0

e
2πikl
M bl. (4)

Notice that such transformations perform a Fourier transform over all input and output modes.
Moreover, we will make use of the squeezing transformation Sa0b0 defined as follows

[Sa0b0, an] = [Sa0b0, bn] = 0, n > 0, Sa0b0a
†
0S

†
a0b0

= µa†
0 − νb0,

Sa0b0b0S
†
a0b0

= µb0 − νa†
0,

(5)

with µ =
√

M/(M − N) and ν =
√

N/(M − N). The squeezing transformation here acts just
as an hyperbolic transformation for just modes a0 and b0, by leaving all other modes unaffected.
In terms of such operators, condition (3) becomes

[S†
a0b0

(U†
b

⊗ U†
a )RB(Ub ⊗ Ua)Sa0b0, Db0(

√
M − Nα)] = 0. (6)

Hence, upon introducing an operator B on modes b1, . . . , bM−1, a0, . . . , aN−1, the operator RB
can be written in the form

RB = (Ub ⊗ Ua)Sa0b0(Ib0
⊗ B)S†

a0b0
(U†

b
⊗ U†

a ). (7)

Notice that RB " 0 is equivalent to B " 0. The further condition that B is trace-preserving in
terms of RB becomes Trb[RB] = Ia, b and a collectively denoting all output and input modes,
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respectively. From the trace and completeness relations for the set of displacement operators,
namely

∫
d2α D(α)AD†(α) = Tr[A]I and A =

∫
d2α Tr[D†(α)A]D(α), (see, e.g., [13]), the

condition Trb[RB] = Ia is verified if
(

M−1∏

i=0

∫
d2βi

) (
M−1⊗

i=0

Dbi
(βi)

)

Sa0b0(Ib0
⊗ B)S†

a0b0

(
M−1⊗

i=0

D†
bi
(βi)

)

= I. (8)

From the relation Db0(β0)Sa0b0 = Sa0b0Db0(µβ0)D
†
a0

(νβ0), one obtains the condition

Trb/b0,a0[B] = ν2Ia/a0, (9)

where a/ai denotes all the input modes apart from ai, and similarly for b/bi.
We will now consider the map corresponding to

B = ν2|0〉〈0|b/b0
⊗ |0〉〈0|a0

⊗ Ia/a0 . (10)

Applying the corresponding map B to a generic N-partite state " we get

B(") = Tra[(Ib ⊗ "τ)(Ub ⊗ Ua)Sa0b0(Ib0
⊗ B)S†

a0b0
(U†

b
⊗ U†

a )], (11)

which is equivalent to

B(") = Tra[(Ib ⊗ U†
a"τUa)(Ub ⊗ Ia)Sa0b0(Ib0

⊗ B)S†
a0b0

(U†
b

⊗ Ia)]. (12)

Using the expression in equation (10) we obtain

B(") = Ub

{
Tra0[(Ib0

⊗ ξτ
a0

)Sa0b0(Ib0
⊗ |0〉〈0|a0)S

†
a0b0

] ⊗ |0〉〈0|b/b0

}
U†

b , (13)

where ξτ = Tra/a0[U
†
a"τUa]. Notice that

ξ =
∫

d2γ

π
D(γ)τTr[(Da0(γ)† ⊗ Ia/a0)U

†
a"τUa] =

∫
d2γ

π
D(γ)τTr[U∗

a (Da0(γ)∗ ⊗ Ia/a0)U
τ
a"],

(14)

and taking the complex conjugate of equation (4) we have

ξ =
∫

d2γ

π
D(γ)τTr[D(γ∗/

√
N)

⊗N"]

=
∫

d2γ

π
D(γ)τTr[(Da0(γ)∗ ⊗ Ia/a0)U

†
a"Ua] = Tra/a0[U

†
a"Ua]. (15)

Now, we can easily evaluate Sa0b0(Ib0
⊗ |0〉〈0|a0)S

†
a0b0

, by expanding the vacuum state as

|0〉〈0|a0 =
∫

d2γ

π
e− |γ|2

2 Da0(γ), (16)
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obtaining

Sa0b0(Ib0
⊗ |0〉〈0|a0)S

†
a0b0

=
∫

ν2d2γ

π
e− |γ|2

2 Db0(νγ∗) ⊗ Da0(µγ). (17)

Hence, equation (13) can be rewritten as

B(") =
∫

d2γ

π
Ub(Db0(γ

∗) ⊗ |0〉〈0|b/b0)U
†
be− |γ|2

2ν2 Tr[Da0(µγ/ν)ξτ]. (18)

As an example, we will now consider N displaced thermal states

ρα
.= 1

n̄ + 1
D(α)

(
n̄

n̄ + 1

)a†a

D(α)†, (19)

from which we want to obtain M states, the purest possible. Thanks to the covariance property, it
is sufficient to focus attention on the output of ρ⊗N

0 . For a tensor product of thermal input states
" = ρ⊗N

0 , exploiting the fact that U†
a (

∑N−1
j=0 a†

jaj)Ua =
∑N−1

j=0 a†
jaj, we have

ξ = ξτ = ρ0, (20)

and recalling the following expression for the thermal states

1
n̄ + 1

(
n̄

n̄ + 1

)a†a

=
∫

d2β

π
e− |β|2

2 (2n̄+1)D(β), (21)

we obtain

B
(
ρ

⊗N
0

)
=

∫
d2γ

π
Ub(Db0(−γ∗) ⊗ |0〉〈0|b/b0)U

†
be− |γ|2

2ν2 [µ2(2n̄+1)+1]

=
∫

d2γ

πn̄′ Ub(|γ〉〈γ|b0
⊗ |0〉〈0|b/b0)U

†
be− |γ|2

n̄′

=
∫

d2γ

πn̄′

∣∣∣γ/
√

M
〉〈

γ/
√

M
∣∣∣
⊗M

e− |γ|2
2n̄′ =

∫
Md2γ

πn̄′ |γ〉〈γ|⊗Me− M|γ|2
n̄′ , (22)

where

2n̄′ + 1 = 1
ν2

[
µ2(2n̄ + 1) + 1

]
= 2Mn̄ + 2M − N

N
. (23)

The above state is permutation-invariant and separable, with thermal local state at each mode
with average thermal photon number

n̄′′ = n̄′

M
= Mn̄ + M − N

MN
. (24)
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More generally, for any state ", the choice (10) gives M identical clones whose state can be
written as

ρ′ =
∫

d2α

π
e− |α|2

2 ( 1
N − 2

M +1){Tr["D†(α/N)
⊗N]}D(α). (25)

Since for any mode c one has

,x2
c + ,y2

c = 1
2 + 〈c†c〉 − |〈c〉|2, (26)

it is easy to verify that the superbroadcasting condition (output total noise in conjugate quadratures
smaller than the input one), is equivalent to require smaller photon number at the output than at
the input, namely

n̄ " Mn̄ + M − N

MN
⇔ n̄ " M − N

M(N − 1)
. (27)

This can be true for any N > 1 and to any M ! ∞, since

lim
M→∞

M − N

M(N − 1)
= 1

N − 1
> 0. (28)

3. Proof of optimality for the channel in equation (11)

Actually, the solution given in equation (24) is optimal. To prove this, in the following we will
show that the expectation of the total number of photons Tr[

∑M−1
l=0 b†

l blB(ρ⊗N
0 )] of the M clones

of ρ cannot be smaller than Mn̄′′. Since the multisplitter preserves the total number of photons
we have to consider the trace

W
.= Tr

[(
M−1∑

l=0

b†
l bl ⊗ (U†

aρτ⊗N
0 Ua)

)

Sa0b0(Ib0
⊗ B)S†

a0b0

]

. (29)

We can write W = W0 +
∑M−1

l=1 Wl, with

W0
.= Tr

[
S†

a0b0

(
(b†

0b0 ⊗ Ib/b0) ⊗ (U†
aρτ⊗N

0 Ua)
)
Sa0b0(Ib0

⊗ B)
]
,

Wl
.= Tr

[
S†

a0b0

(
(Ib/bl

⊗ b†
l bl) ⊗ (U†

aρτ⊗N
0 Ua)

)
Sa0b0(Ib0

⊗ B)
]
, (30)

for 1 ! l ! M − 1. Now, since Wl " 0, W " W0. Moreover, using the identity c†c =
−∂αα∗e|α|2/2Dc(α)|α=α∗=0, one obtains

Trb0[S
†
a0b0

(b†
0b0 ⊗ σ)Sa0b0]

= −∂αα∗

∫
d2γ

π
Trb0[Db0(µα − νγ∗) ⊗ Da0(µγ − να∗)]Tr[D(γ)†σ]e

|α|2
2

∣∣∣∣
α=α∗=0

= − 1
ν2

∂αα∗e− |α|2
ν2 e

α∗
ν a

†
0e− α

ν a0Tr
[
e

µα∗
ν a

†
0e− µα

ν a0σ
]∣∣∣∣

α=α∗=0

= a†
0a0 + µ2Tr[a†

0a0σ] + 1
ν4

,

(31)
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then, from equation (9) and positivity of B, one has

W0 = Tr[(Ib/b0
⊗ a†

0a0 ⊗ Ia/a0){Ib/b0
⊗ (Uaρ

⊗N
0 U†

a )
τ}B]

ν4

+
µ2Tr[(Ib/b0

⊗ Ia0
⊗ Tra0[a

†
0a0(Uaρ

⊗N
0 U†

a )
τ])B] + ν2

ν4

" µ2n̄ + 1
ν2

= N

M
n̄ +

M − N

N
= Mn̄′′. (32)

In fact, one can easily check that the choice of B in equation (10) saturates the bound (32).
Also the more general solution given in equation (25) is optimal, in the sense that it represents

the state of M identical clones with minimal photon number, which is given by

Tr[b†bρ′] = Tr[a†aρ0]
N

+
1
N

− 1
M

. (33)

Notice that for n̄ = 0, one has N coherent states at the input, and n̄′′ = (M − N)/MN, namely
one recovers the optimal cloning for coherent states of [14].

From equation (26), one can see that our optimization maximally reduces the total noise in
conjugate quadratures. Alternatively, one might minimize the output entropy, which would be
informationally more satisfactory. This case, however, turns out to be a nontrivial task, and is
beyond the scope of this paper.

4. Purification

For M < N, one can look for the optimal ‘purification’ map with M output systems. The result
can be obtained as in section 2, provided that we replace the operator Sa0b0 in equation (5) with

[Ta0b0, an] = [Ta0b0, bn] = 0, n > 0, Ta0b0a0T
†
a0b0

= µa0 − νb†
0, Ta0b0b

†
0T

†
a0b0

= µb†
0 − νa0,

(34)

where now µ =
√

N/(N − M) and ν =
√

M/(N − M), and the constraint in equation (6) with

[T †
a0b0

(U†
b

⊗ U†
a )RB(Ub ⊗ Ua)Ta0b0, Da0(

√
N − Mα)] = 0, (35)

for all α. Consequently, RB has the form

RB = (Ub ⊗ Ua)Ta0b0(Ia0
⊗ B)T †

a0b0
(U†

b
⊗ U†

a ), (36)

and trace preservation is equivalent to

Trb[B] = µ2Ia/a0 . (37)

Now, we consider the map with

B = µ2|0〉〈0|b ⊗ Ia/a0 . (38)
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The corresponding output for given input state " is given by

B(") =
∫

d2γ

π
Ub(Db0(γ) ⊗ |0〉〈0|b/b0)U

†
be− |γ|2

2µ2 Tr[Da0(−νγ∗/µ)ξτ], (39)

where ξ = Tra/a0[Ua"U†
a ]. For " = ρ⊗N

0 , we have ξ = ρ0 and

B(ρ
⊗N
0 ) =

∫
d2γ

π
e− |γ|2

2µ2 [ν2(2n̄+1)+1]
Ub(Db0(γ) ⊗ |0〉〈0|b/b0)U

†
b . (40)

The integral gives a thermal state for the mode b0 with average photon number n̄′ such that
2n̄′ + 1 = [ν2(2n̄ + 1) + 1]/µ2 = 2(M/N)n̄ + 1, namely n̄′ = (M/N)n̄. Finally, one has

B(ρ
⊗N
0 ) =

∫
Md2γ

n̄′π
e− M|γ|2

n̄′ |γ〉〈γ|⊗M. (41)

Hence, the single-site reduced state is a thermal state with a number of thermal photons

n̄′′ = n̄

N
, (42)

which is rescaled with respect to the input by a factor N, independently of the number of
output copies. The same analysis as in section 3 shows that this is the minimum output number
compatible with complete positivity of the map B, and then is optimal.

For a generic input state " the local output state is given by

ρ′ =
∫

d2α

π
e− |α|2

2 (1− 1
N ){Tr["D†(α/N)

⊗N]}D(α). (43)

Notice that both equations (23) and (42) give n̄′′ = n̄
N

also for M = N, and this result can be
proved as follows. The difference from the previous proof resides in the fact that the squeezing
operator Sa0b0 is ill defined in this case. However, once we unitarily transform D(α)⊗N ⊗ D(α)∗⊗N

to Db0(
√

Nα) ⊗ Ib/b0
⊗ D(

√
Nα)∗

a0
⊗ Ia/a0 , the squeezing operator on modes a0 and b0 is not

needed, and it is sufficient to remark that the representation Db0(
√

Nα) ⊗ Da0(
√

Nα)∗ is abelian,
and its joint eigenvectors can be written as

|D(β)〉〉 .=
∞∑

m,n=0

〈m|D(β)|n〉|m〉b0 |n〉b0 . (44)

Consequently, the covariance condition for the map B is given by

RB = (Ub ⊗ Ua)

∫
d2γ

π
|D(γ)〉〉〈〈D(γ)|a0b0

⊗ ,a/a0,b/b0(γ)(U†
b

⊗ U†
a ), (45)

with the trace-preserving constraint expressed by
∫

d2γ

π
Trb/b0[,a/a0,b/b0(γ)] = Ia/a0 . (46)
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We consider the following form for ,a/a0,b/b0(γ)

,a/a0,b/b0(γ) = πδ2(γ)Ia/a0
⊗ |0〉〈0|b/b0, (47)

which gives

RB = (Ub ⊗ Ua)|I〉〉〈〈I|a0b0
⊗ |0〉〈0|b/b0

⊗ Ia/a0(Ub ⊗ Ua)
†, (48)

and then we can prove optimality by the same technique used in the other cases. The output of
" is given by

B(") = Ub(ξ
τ
b0

⊗ |0〉〈0|b/b0)U
†
b , (49)

where ξ = Tra/a0[U
†
a"Ua], and for thermal states " = ρ⊗N

0 we have ξ = ρ0 and

B(ρ
⊗N
0 ) =

∫
Nd2γ

πn̄
e− N|γ|2

n̄ |γ〉〈γ|⊗N, (50)

which is separable, and its local states are thermal states with

n̄′′ = n̄

N
. (51)

5. Phase-conjugating broadcasting

We now consider the problem of broadcasting with simultaneous phase-conjugate output. This
means that we look for the optimal transformation where the average of the output field of each
copy is the complex conjugate with respect to the value of the input one. The covariance property
of such a map is the following

C(D(α)
⊗N"D(α)†⊗N) = D(α)∗⊗MC(")D(α)T ⊗M, (52)

for all α, and in terms of RC this corresponds to

[D(α)∗⊗(M+N), RC] = 0. (53)

We will use the same multisplitters defined in equation (4), and introduce the following beam-
splitter

[Ua0b0, an] = [Ua0b0, bn] = 0, n > 0, Ua0b0b0U
†
a0b0

= ηb0 + θa0,

Ua0b0a0U
†
a0b0

= −θb0 + ηa0, (54)

with η =
√

M
M+N

and θ =
√

N
M+N

. The covariance relation in equation (53) can be written

[U†
a0b0

(U†
b

⊗ U†
a )RC(Ub ⊗ Ua)Ua0b0, Db0(

√
M + Nα)∗] = 0. (55)
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Analogously to the previous sections, the covariance condition translates in the following form
for RC:

RC = UbUaUa0b0(Ib0
⊗ C)U†

a0b0
U†

bU
†
a , (56)

whereC is an operator on modesb1, . . . , bM−1, a0, . . . , aN−1, and the trace-preserving condition
requires that

(
M−1∏

i=0

∫
d2βi

) (
M−1⊗

i=1

Dbi
(βi)

)

Ua0b0(Ib0
⊗ C)U†

a0b0

(
M−1⊗

i=1

D†
bi
(βi)

)

= I, (57)

which finally gives

Trb/b0,a0[C] = θ2Ia/a0 . (58)

We now consider the map corresponding to

C = θ2|0〉〈0|b/b0
⊗ |0〉〈0|a0

⊗ Ia/a0 . (59)

Applying such a map to a generic N-partite state " we get

C(") = UbTra[(Ib ⊗ U†
a"τUa)Ua0b0(Ib0

⊗ C)U†
a0b0

]U†
b

= Ub(Tra0[(Ib0
⊗ ξτ)Ua0b0(Ib0

⊗ |0〉〈0|a0)U
†
a0b0

]|0〉〈0|b/b0)U
†
b , (60)

where ξτ = Tra/a0[U
†
a"τUa]. Moreover, one has

Ua0b0(Ib0
⊗ |0〉〈0|a0)U

†
a0b0

=
∫

θ2d2γ

π
|ηγ〉〈ηγ|b0

⊗ |θγ〉〈θγ|a0, (61)

and equation (60) gives

C(") = Ub

(
H(ξ) ⊗ |0〉〈0|b/b0

)
U†

b , (62)

where ξ = Tra/a0[Ua"U†
a ], and

H(ρ) =
∫

d2γ

π
|(η/θ)γ〉〈γ∗|ξ|γ∗〉〈(η/θ)γ|. (63)

For " = ρ ⊗ N
0 , we have simply ξ = ρ0, and this implies that a simple scheme to achieve this map

is the following. Firstly, the N input states interact through an N-splitter, then the system labelled
0 carrying all the information about the coherent signal is measured by heterodyne detection,
and for any outcome γ a coherent state with amplitude

√
(M/N)γ∗ is generated. Finally, the

prepared state is sent through an M-splitter along with M − 1 modes in the vacuum state.
The output state C(ρ⊗N

0 ) is now given by

C(ρ
⊗N
0 ) = 1

n̄ + 1

∫
d2γ

π
e− |γ|2

n̄+1 Ub(|
√

M/Nγ〉〈
√

M/Nγ| ⊗ |0〉〈0|b/b0)U
†
b , (64)
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which is equal to

C(ρ
⊗N
0 ) = N

n̄ + 1

∫
d2γ

π
e− N|γ|2

n̄+1 |γ〉〈γ|, (65)

and its single-site reduced state is simply a thermal state with

n̄′′ = n̄ + 1
N

. (66)

Notice that this is independent of the number of output copies and is the same average number as
the one for superbroadcasting in the limit M → ∞. More generally, the local output for generic
input state " is

ρ′ =
∫

d2α

π
e− |α|2

2 (1+ 1
N ){Tr["D†(α/N)

⊗N]}D(α). (67)

The proof of optimality is analogous to the proof for the superbroadcasting map. It is
sufficient to replace Ua0b0 with Sa0b0 in equations (29) and (30).

6. A proof of the optimality in terms of linear amplifiers

We are interested in a transformation that provides M (generally correlated) modes
b0, b1, . . . , bM−1 from N uncorrelated modes a0, a1, . . . , aN−1, such that the unknown complex
amplitude is preserved and the output has minimal phase-insensitive noise. In formula, we have
input uncorrelated modes

〈ai〉 = α, ,x2
ai

+ ,y2
ai

= γi " 1
2 , (68)

for all i = 0, 1, . . . , N − 1, where Heisenberg uncertainty relation is taken into account. The
output modes should satisfy

〈bi〉 = α, ,x2
bi

+ ,x2
bi

= 2 " 1
2 , (69)

and we look for the minimal 2. The minimal 2 can be obtained by applying a fundamental
theorem for phase-insensitive linear amplifiers [15]: the sum of the uncertainties of conjugated
quadratures of a phase-insensitive amplified mode with (power) gain G is bounded as follows.

,X2
B + ,Y 2

B " G(,X2
A + ,Y 2

A) +
G − 1

2
, (70)

where A and B denote the input and the amplified mode, respectively. Our transformation can
be seen as a phase-insensitive amplification from the mode A = 1√

N

∑N−1
i=0 ai to the mode

B = 1√
M

∑M−1
i=0 bi with gain G = M/N, and hence equation (70) should hold. Notice that

generally for any mode c one has

,x2
c + ,y2

c = 1
2 + 〈c†c〉 − |〈c〉|2. (71)
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Hence, the bound can be rewritten as

〈B†B〉 − |〈B〉|2 " G(〈A†A〉 + 1 − |〈A〉|2) − 1. (72)

In the present case, since modes ai are uncorrelated, one has

〈A†A〉 = 1
N

N−1∑

i,j=0

〈a†
i aj〉 = 1

N




N−1∑

i=0

〈a†
i ai〉 +

∑

i,=j

〈a†
i aj〉



 = (γ + |α|2 − 1
2) + (N − 1)|α|2

= γ + N|α|2 − 1
2 , (73)

where γ = 1
N

∑N−1
i=0 γi, and so the bound equation (71) is written as

〈B†B〉 " G(γ + 1
2) − 1 + M|α|2. (74)

On the other hand, one has

〈B†B〉 = 1
M

M−1∑

i,j=0

〈b†
i bj〉 ! 1

M

M−1∑

i,j=0

√
〈b†

i bi〉〈b†
jbj〉 = M(2 + |α|2 − 1

2). (75)

Equations (74) and (75) together give the bound for the minimal noise 2

2 − 1
2 " 1

N
(γ − 1

2) +
1
N

− 1
M

. (76)

The example in the previous sections corresponds to γ = n̄ + 1
2 and 2 = n̄′′ + 1

2 . A similar
derivation gives a bound for purification, where N > M. In such a case G < 1, and equation
(70) is replaced with

,X2
B + ,Y 2

B " G(,X2
A + ,Y 2

A) +
1 − G

2
, (77)

and one obtains the bound

2 − 1
2 " 1

N
(γ − 1

2). (78)

We would like to stress that the derivation of all bounds in the present section relies on the
theorem of the added noise in linear amplifiers, namely only linear transformations of modes
are considered. Hence, in principle, these bounds might be violated by more exotic and nonlinear
transformations. Therefore, the derivation of equation (32) is stronger, since it has general validity.

By a similar derivation, using the bound for phase-conjugated amplifiers ,X2
B + ,Y 2

B "
G(,X2

A + ,Y 2
A) + G−1

2 , one can obtain the bound for phase-conjugation broadcasting

2 − 1
2 " 1

N

(
γ + 1

2

)
. (79)
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Figure 1. Experimental scheme to achieve optimal superbroadcasting from 2 to
3 copies. This setup involves just a beam splitter, a phase-insensitive amplifier
and a tritter, which in turn can be implemented by two suitably balanced beam
splitters. The phase-insensitive amplifier can be implemented by a beam splitter
and heterodyne-assisted feed-forward. The output copies carrying the same signal
as the input ones are locally more pure, the noise being shifted to classical
correlations between them.

7. Experimental implementation

The optimal broadcasting can be easily implemented by means of an inverse N-splitter which
concentrates the signal in one mode and discards the other N − 1 modes. The mode is then
amplified by a phase-insensitive amplifier with power gain G = M/N. Finally, the amplified
mode is distributed by mixing it in an M-splitter with M − 1 vacuum modes. Each mode is
then found in the state of equation (25). In the concentration stage, the N modes with amplitude
〈ai〉 = α and noise ,x2

i + ,y2
i = γi are reduced to a single mode with amplitude

√
Nα and noise

γ . The amplification stage gives a mode with amplitude
√

Mα and noise γ ′ = γ M
N

+ M
2N

− 1
2 .

Finally, the distribution stage gives M modes, with amplitude α and noise 2 = 1
M

(
γ ′ + M−1

2

)

each. In figure 1, we sketch the scheme for 2 to 3 superbroadcasting.
In [16], it was shown experimentally that phase-insensitive amplification can be obtained

by a setup consisting of a beam-splitter, a heterodyne detector and a conditional displacement.
In the following, we give an algebraic derivation of this result. Consider a mode in a state
ρ =

∫ d2γ

π
f(γ)D(γ) coupled to another mode in the vacuum through a beam-splitter with

transmissivity τ. The output is given by the bipartite state σ

σ =
∫

d2β d2γ

π2
e− |τβ−

√
1−τ2γ|2
2 f(τγ +

√
1 − τ2β)D(γ) ⊗ D(β), (80)
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where we performed the change of variables β → τβ +
√

1 − τ2γ , γ → τγ −
√

1 − τ2β. Now,
the reflected mode is measured by heterodyne detection, and conditionally on the measurement
outcome α, a displacement D(kα) is performed on the transmitted mode, whose state is then
given by

ρ′ =
∫

d2α d2β d2γ

π3
e− |τβ−

√
1−τ2γ|2
2 f(τγ +

√
1 − τ2β)D(kα)D(γ)D(kα)†〈0|D(α)†D(β)D(α)|0〉

=
∫

d2α d2β d2γ

π3
e− |τβ−

√
1−τ2γ|2
2 f(τγ +

√
1 − τ2β)eα(kγ∗−β∗)−c.c.D(γ)e− |β|2

2

=
∫

d2β d2γ

π2
δ(2)(kγ − β)e− |τβ−

√
1−τ2γ|2
2 f(τγ +

√
1 − τ2β)e− |β|2

2

=
∫

d2γ

π
f(γ(τ + k

√
1 − τ2))e− |γ|2

2 [k2+(kτ−
√

1−τ2)2]D(γ). (81)

On the other hand, the action of a phase-insensitive amplifier on ρ can be easily calculated and
produces the partial output state

ρ′′ =
∫

d2γ

π
e− |γ|2ν2

2 f(µγ)D(γ). (82)

The following conditions

µ = τ + k
√

1 − τ2, ν2 = k2 + (kτ −
√

1 − τ2)2, µ2 − ν2 = 1, (83)

which are equivalent to

k = ν, τ = 1
µ

, (84)

imply that ρ′ = ρ′′. Hence, by tuning the beam splitter transmissivity and the parameter of the
conditional displacement k, one can then simulate the amplifier by a linear device assisted by
heterodyne and feed-forward.

The optimal phase-conjugated broadcasting can be obtained by replacing the linear amplifier
with a heterodyne measurement and preparation of a coherent state with conjugate phase and
amplified intensity. For achieving the optimal purification, one simply uses an inverse N-splitter
which concentrates the signal in one mode and discards the other N − 1 modes. Then by
N-splitting with N − 1 vacuum modes, one obtained N purified signals (although classically
correlated).

8. Conclusion

In conclusion, we proved that broadcasting of M copies of a mixed radiation state starting from
N < M copies is possible, even with lowering the total noise in conjugate quadratures. Since
the noise cannot be removed without violating the quantum data processing theorem, the price
to pay for having higher purity at the output is that the output copies are correlated. Essentially
noise is moved from local states to their correlations, and our superbroadcasting channel does
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this optimally. We obtained similar results also for purification (i.e. M ! N), along with the case
of simultaneous broadcasting and phase-conjugation, with the output copies carrying a signal
which is complex-conjugated of the input one. Despite the role that correlations play in this
effect, no entanglement is present in the output (as long as the single input copy has a positive
P-function), as it can be seen by the analytical expression of the output states. Moreover, a
practical and very simple scheme for experimental achievement of the maps has been shown,
involving mainly passive media and only one parametric amplifier. The superbroadcasting
effect has a relevance form the fundamental point of view, opening new perspectives in the
understanding of correlations and their interplay with noise, but may be also promising from a
practical point of view, for communication tasks in the presence of noise.
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