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Abstract. The state of a physical system is the mathematical object that provides
a complete information on the system. The knowledge of the state is equivalent to
know the result of any possible measurement on the system. This chapter reviews
quantum state estimation for a generic quantum system by quantum tomography
i.e. from the measurement of a suitable set of observables, a quorum, on repeated
preparations of the system. Topics include characterization of quora, determina-
tion of the expectation value of any operator (including the nondiagonal projectors
needed to construct a matrix representation of the density operator), evaluation of
pattern functions, effect of instrumental noise, and example of tomographic proce-
dure for harmonic systems and spins.

2.1 Introduction

The state of a physical system is any mathematical object that provides a
complete information on the system. The knowledge of the state is equivalent
to know the result of any possible measurement on the system. In Classical
Mechanics the state of a system, say a particle, is specified by the set of
canonical coordinates and, at least in principle, it is always possible to devise
a procedure made of multiple measurements which fully recovers the state.
In Quantum Mechanics, on the contrary, this is not possible, due to the
fundamental limitations related to the Heisenberg uncertainty principle [1,2]
and the no-cloning theorem [3]. In fact, on one hand one cannot perform an
arbitrary sequence of measurements on a single system without inducing on
it a back-action of some sort. On the other hand, it is not possible to create
a perfect copy of the system without already knowing its state in advance.
Thus, there is no way out, not even in principle, to infer the quantum state
of a single system without having some prior knowledge on it [4]. For a
quantum mechanical system it is possible to estimate the unknown state of
a system when many identical copies are available in the same state, so that
a different measurement can be performed on each copy. A procedure of this
kind is called quantum tomography. The problem of finding a procedure to
determine the state of a system from multiple copies was first addressed in
1957 by Fano [5], who called quorum a set of observables sufficient for a
complete determination of the density matrix. However, since for a particle
it is difficult to devise concretely measurable observables other than position,
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momentum and energy, the fundamental problem of measuring the quantum
state has remained at the level of mere speculation up to almost ten years ago,
when the issue finally entered the realm of experiments with the pioneering
experiments by Raymer’s group [6] in the domain of quantum optics. In
quantum optics, in fact, using a balanced homodyne detector one has the
unique opportunity of measuring all possible linear combinations of position
and momentum of a harmonic oscillator representing a single mode of the
electromagnetic field.

The first technique to estimate the elements of the density operator from
homodyne measurements — so called homodyne tomography — originated
from the observation by Vogel and Risken [7] that the collection of probabil-
ity distributions achieved by homodyne detection is just the Radon transform
of the Wigner functionW . Therefore, as in classical imaging, by Radon trans-
form inversion one can obtain W , and then from W the matrix elements of
the density operator. This first method, however, was affected by uncontrol-
lable approximations, since arbitrary smoothing parameters are needed for
the inverse Radon transform. In [8] the first exact technique was given for
measuring experimentally the matrix elements of the density operator in the
photon-number representation, by simply averaging functions of homodyne
data. After that, the method was further simplified [9], and the feasibility for
non-unit quantum efficiency of detectors—above some bounds—was estab-
lished.

The exact homodyne method has been implemented experimentally to
measure the photon statistics of a semiconductor laser [10], and the density
matrix of a squeezed vacuum [11]. The success of optical homodyne tomogra-
phy has then stimulated the development of state-reconstruction procedures
for atomic beams [12], the experimental determination of the vibrational state
of a molecule [13], of an ensemble of helium atoms [14], and of a single ion in
a Paul trap [15].

Using quantum tomography the state is perfectly recovered in the limit of
infinite number of measurements, while in the practical finite-measurements
case, one can always estimate the statistical error that affects the reconstruc-
tion. For infinite dimensions the propagation of statistical errors of the density
matrix elements make them useless for estimating the ensemble average of
unbounded operators, and a method for estimating the ensemble average of
arbitrary observable of the field without using the density matrix elements
has been derived [16]. Further insights on the general method of state re-
construction has led to generalize homodyne tomography to any number of
modes [17], and then to extend the tomographic method from the harmonic
oscillator to an arbitrary quantum system using group theory [18–21]. A gen-
eral data analysis method has been designed in order to unbias the estima-
tion procedure from any known instrumental noise [20]. Moreover, algorithms
have been engineered to improve the statistical errors on a given sample of
experimental data—the so-called adaptive tomography [22]—and then max-
likelihood strategies [23] have been used that improved dramatically statis-
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tical errors, however, at the expense of some bias in the infinite dimensional
case, and of exponential complexity versus N for the joint tomography of N
quantum systems. Quantum tomographic methods to perform fundamental
tests of quantum mechanics have been proposed, as the measure of the non-
classicality of radiation field of [24], and the test of the state reduction rule
using light from parametric downconversion of [25].

The latest technical developments [26] derive the general tomographic
method from spanning sets of operators, the previous group theoretical ap-
proaches [18–21] being just a particular case of this general method, where the
group representation is just a device to find suitable operator “orthogonal-
ity” and “completeness” relations in the linear algebra of operators. Finally,
very recently, a method for tomographic estimation of the unknown quan-
tum operation of a quantum device has been derived [27], which uses a single
fixed input entangled state, which plays the role of all possible input states
in quantum parallel on the tested device, making finally the method a true
“quantum radiography” of the functioning of a device.

This chapter is structured to give a self-contained and unified derivation
of the methods of quantum tomography. In Sect. 2 we introduce the general-
ized Wigner functions [28, 29] while in Sect. 3 we provide the basic elements
of detection theory in quantum optics: photodetection, homodyne detection,
and heterodyne detection. As we will see, heterodyne detection also provides
a method for estimating the ensemble average of polynomials in the field
operators, however, it is unsuitable for the density matrix elements in the
photon-number representation. The effect of non unit quantum efficiency is
taken into account for all such detection schemes. In Sect. 4 we give a brief
history of quantum tomography, starting with the first proposal of Vogel and
Risken [7] as the extension to the domain of quantum optics of the conven-
tional tomographic imaging. As already mentioned, this method indirectly
recovers the state of the system through the reconstruction of the Wigner
function, and is affected by uncontrollable bias. The exact homodyne tomog-
raphy method of [8] (successively simplified in [9]) is here presented on the
basis of the general tomographic method of spanning sets of operators of [26].
As another application of the general method, the tomography of spin sys-
tems [30] is provided from the group theoretical method of [18–20]. In this
section we also include further developments to improve the method, such
as the deconvolution techniques of [20] to correct the effects of experimental
noise by data processing, and the adaptive tomography [22] to reduce the
statistical fluctuations of tomographic estimators. The generalization of [17]
of homodyne tomography to many modes of radiation is reviewed in Sect. 5,
where it is shown how tomography of a multimode field can be performed by
using only a single local oscillator with a tunable field mode. Some results of
Monte Carlo simulations from [17] are also shown for the state that describes
light from parametric downconversion. Section 6 is devoted to reconstruction
techniques [23] based on the maximum likelihood principle, which are suited
to the estimation of a finite number of parameters, as proposed in [31], or
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to the state determination in the presence of very low number of experimen-
tal data [23]. Unfortunately, the algorithm of this method has exponential
complexity versus the number of quantum systems for a joint tomography of
many systems.

2.2 Wigner Functions

Since Wigner’s pioneering work [28], generalized phase-space techniques have
proved very useful in various branches of physics [33]. As a method to express
the density operator in terms of c-number functions, the Wigner functions
often lead to considerable simplification of the quantum equations of motion,
as for example, for transforming master equations in operator form into more
amenable Fokker-Planck differential equations (see, for example, [34]). Using
the Wigner function one can express quantum-mechanical expectation val-
ues in form of averages over the complex plane (the classical phase-space),
the Wigner function playing the role of a c-number quasi-probability distri-
bution, which generally can also have negative values. More precisely, the
original Wigner function allows to easily evaluate expectations of symmet-
rically ordered products of the field operators, corresponding to the Weyl’s
quantization procedure [35]. However, with a slight change of the original
definition, one defines generalized s-ordered Wigner function Ws(α, α∗), as
follows [29]

Ws(α, α∗) =
∫

C

d2λ

π2 e
αλ∗−α∗λ+ s

2 |λ|2Tr[D(λ)ρ] , (2.1)

where α∗ denotes the complex conjugate of α, the integral is performed on
the complex plane with measure d2λ = dReλ dImλ, ρ represents the density
operator, and

D(α) ≡ exp(αa† − α∗a) (2.2)

denotes the displacement operator, where a and a† ([a, a†] = 1) are the
annihilation and creation operators of the field mode of interest. The Wigner
function in (2.1) allows one to evaluate s-ordered expectation values of the
field operators through the following relation

Tr[:(a†)nam:s ρ] =
∫

C

d2αWs(α, α∗)α∗nαm . (2.3)

The particular cases s = −1, 0, 1 correspond to anti-normal, symmetrical, and
normal ordering, respectively. In these cases the generalized Wigner function
Ws(α, α∗) are usually denoted by the following symbols and names

1
πQ(α, α∗) for s = −1 “Q function”
W (α, α∗) for s = 0 (usual Wigner function)
P (α, α∗) for s = 1 “P function”

(2.4)
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For the normal (s = 1) and anti-normal (s = −1) orderings, the following
simple relations with the density matrix are well known

Q(α, α∗) ≡ 〈α|ρ|α〉 , (2.5)

ρ =
∫

C

d2αP (α, α∗) |α〉〈α| , (2.6)

where |α〉 denotes the customary coherent state |α〉 = D(α)|0〉, |0〉 being
the vacuum state of the field. Among the three particular representations
(2.4), the Q function is positively definite and infinitely differentiable (it
actually represents the probability distribution for ideal joint measurements
of position and momentum of the harmonic oscillator: see Sect. 2.3.3). On
the other hand, the P function is known to be possibly highly singular, and
the only pure states for which it is positive are the coherent states [36].
Finally, the usual Wigner function has the remarkable property of providing
the probability distribution of the quadratures of the field in the form of a
marginal distribution, namely

∫ ∞

−∞
d ImαW (αeiϕ, α∗e−iϕ) = ϕ〈Reα|ρ|Reα〉ϕ , (2.7)

where |x〉ϕ denotes the (unnormalizable) eigenstate of the field quadrature

Xϕ =
a†eiϕ + ae−iϕ

2
(2.8)

with real eigenvalue x. Notice that any couple of quadratures Xϕ, Xϕ+π/2
is canonically conjugate, namely [Xϕ, Xϕ+π/2] = i/2, and it is equivalent to
position and momentum of a harmonic oscillator. Usually, negative values of
the Wigner function are viewed as signature of a non-classical state, the most
eloquent example being the Schrödinger-cat state [37], whose Wigner function
is characterized by rapid oscillations around the origin of the complex plane.
From (2.1) one can notice that all s-ordered Wigner functions are related to
each other through Gaussian convolution

Ws(α, α∗) =
∫

C

d2βWs′(β, β∗)
2

π(s′ − s) exp
(
− 2
s′ − s |α− β|

2
)

(2.9)

= exp
(
s′ − s

2
∂2

∂α∂α∗

)
Ws′(α, α∗) , (s′ > s) . (2.10)

Equation (2.9) shows the positivity of the generalized Wigner function for s <
−1, as a consequence of the positivity of the Q function. The maximum value
of s keeping the generalized Wigner functions as positive can be considered
as an indication of the classical nature of the physical state [38].

An equivalent expression for Ws(α, α∗) can be derived as follows [32].
Equation (2.1) can be rewritten as
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Ws(α, α∗) = Tr[ρD(α)ŴsD†(α)] , (2.11)

where

Ŵs =
∫

C

d2λ

π2 e
s
2 |λ|2 D(λ) . (2.12)

Through the customary Baker-Campbell-Hausdorff (BCH) formula

expA expB = exp
(
A+B +

1
2
[A,B]

)
, (2.13)

which holds when [A, [A,B]] = [B, [A,B]] = 0, one writes the displacement
in normal order, and integrating on arg(λ) and |λ| one obtains

Ŵs =
2

π(1− s)

∞∑
n=0

1
n!

(
2

s− 1

)n
a†nan =

2
π(1− s)

(
s+ 1
s− 1

)a†a

, (2.14)

where we used the normal-ordered forms

:(a†a)n: = (a†)nan = a†a(a†a− 1) . . . (a†a− n+ 1) , (2.15)

and the identity

:e−xa
†a: =

∞∑
l=0

(−x)l
l!

(a†)lal = (1− x)a†a. (2.16)

The density matrix can be recovered from the generalized Wigner func-
tions and, in particular, for s = 0 one has the inverse of the Glauber formula

ρ = 2
∫

C

d2αW (α, α∗)D(2α)(−)a
†a , (2.17)

whereas for s = 1 one recovers (2.6) that defines the P function.

2.3 Elements of Detection Theory

Here we evaluate the probability distribution of the photocurrent of photode-
tectors, balanced homodyne detectors, and heterodyne detectors. We show
that under suitable limits the respective photocurrents provide the measure-
ment of the photon number distribution, of the quadrature, and of the com-
plex amplitude of a single mode of the electromagnetic field. When the effect
of non-unit quantum efficiency is taken into account an additional noise af-
fects the measurement, giving a Bernoulli convolution for photo-detection,
and a Gaussian convolution for homodyne and heterodyne detection. Exten-
sive use of the results in this section will be made in the context of quantum
homodyne tomography.
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2.3.1 Photodetection

Light is revealed by exploiting its interaction with atoms/molecules or elec-
trons in a solid, and, essentially, each photon ionizes a single atom or promotes
an electron to a conduction band, and the resulting charge is then amplified
to produce a measurable pulse. In practice, however, available photodetec-
tors are not ideally counting all photons, and their performance is limited by
a non-unit quantum efficiency ζ. In fact, only a fraction ζ of the incoming
photons lead to an electric signal, and ultimately to a count: some photons
are either reflected from the surface of the detector, or are absorbed without
being transformed into electric pulses.

Let us consider a light beam entering a photodetector of quantum effi-
ciency ζ, i.e. a detector that transforms just a fraction ζ of the incoming light
pulse into electric signal. If the detector is small with respect to the coher-
ence length of radiation and its window is open for a time interval T , then
the Poissonian process of counting gives a probability p(m;T ) of revealing m
photons that writes [39]

p(m;T ) = Tr
[
ρ:

[ζI(T )T ]m

m!
exp[−ζI(T )T ]:

]
, (2.18)

where ρ is the quantum state of light, : : denotes the normal ordering of field
operators, and I(T ) is the beam intensity

I(T ) =
2ε0c
T

∫ T

0
E(−)(r, t) ·E(+)(r, t)dt , (2.19)

given in terms of the positive (negative) frequency part of the electric field
operator E(+)(r, t) (E(−)(r, t)). The quantity p(t) = ζTr [ρI(T )] equals the
probability of a single count during the time interval (t, t + dt). Let us now
focus our attention to the case of the radiation field excited in a stationary
state of a single mode at frequency ω. Equation (2.18) can be rewritten as

pη(m) = Tr
[
ρ :

(ηa†a)m

m!
exp(−ηa†a):

]
, (2.20)

where the parameter η = ζc�ω/V denotes the overall quantum efficiency of
the photodetector. Using (2.15) and (2.16) one obtains

pη(m) =
∞∑
n=m

ρnn

(
n
m

)
ηm(1− η)n−m , (2.21)

where ρnn ≡ 〈n|ρ|n〉 = pη=1(n). Hence, for unit quantum efficiency a pho-
todetector measures the photon number distribution of the state, whereas for
non unit quantum efficiency the output distribution of counts is given by a
Bernoulli convolution of the ideal distribution.
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The effects of non unit quantum efficiency on the statistics of a photode-
tector, i.e. (2.21) for the output distribution, can be also described by means
of a simple model in which the realistic photodetector is replaced with an
ideal photodetector preceded by a beam splitter of transmissivity τ ≡ η. The
reflected mode is absorbed, whereas the transmitted mode is photo-detected
with unit quantum efficiency. In order to obtain the probability of measuring
m clicks, notice that, apart from trivial phase changes, a beam splitter of
transmissivity τ affects the unitary transformation of fields

(
c
d

)
≡ U†

τ

(
a
b

)
Uτ =

( √
τ −

√
1− τ√

1− τ
√
τ

)(
a
b

)
, (2.22)

where all field modes are considered at the same frequency. Hence, the output
mode c hitting the detector is given by the linear combination

c =
√
τa−

√
1− τb , (2.23)

and the probability of counts reads

pτ (m) = Tr
[
Uτρ⊗ |0〉〈0|U†

τ |m〉〈m| ⊗ 1
]

=
∞∑
n=m

ρnn

(
n
m

)
(1− τ)n−mτm . (2.24)

Equation (2.24) reproduces the probability distribution of (2.21) with τ = η.
We conclude that a photo-detector of quantum efficiency η is equivalent to a
perfect photo-detector preceded by a beam splitter of transmissivity η which
accounts for the overall losses of the detection process.

2.3.2 Balanced Homodyne Detection

The balanced homodyne detector provides the measurement of the quadra-
ture of the field Xϕ in (2.8). It was proposed by Yuen and Chan [40], and
subsequently demonstrated by Abbas, Chan and Yee [41].

The scheme of a balanced homodyne detector is depicted in Fig. 2.1. The
signal mode a interferes with a strong laser beam mode b in a balanced 50/50
beam splitter. The mode b is so-called local oscillator (LO) mode of the de-
tector. It operates at the same frequency of a, and is excited by the laser in a
strong coherent state |z〉. Since in all experiments that use homodyne detec-
tors the signal and the LO beams are generated by a common source, we as-
sume that they have a fixed phase relation. In this case the LO phase provides
a reference for the quadrature measurement, namely we identify the phase of
the LO with the phase difference between the two modes. As we will see, by
tuning ϕ = arg z we can measure the quadrature Xϕ at different phases.

After the beam splitter the two modes are detected by two identical pho-
todetectors (usually linear avalanche photodiodes), and finally the difference
of photocurrents at zero frequency is electronically processed and rescaled by
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Fig. 2.1. Scheme of the balanced homodyne detector.

2|z|. According to (2.22), the modes at the output of the 50/50 beam splitter
(τ = 1/2) write

c =
a− b√

2
, d =

a+ b√
2
, (2.25)

hence the difference of photocurrents is given by the following operator

I =
d†d− c†c

2|z| =
a†b+ b†a

2|z| . (2.26)

Let us now proceed to evaluate the probability distribution of the output
photocurrent I for a generic state ρ of the signal mode a. In the following
treatment we will follow [42,43].

Let us consider the moments generating function of the photocurrent I

χ(λ) = Tr
[
ρ⊗ |z〉〈z| eiλI

]
, (2.27)

which provides the probability distribution of I as the Fourier transform

P (I) =
∫ +∞

−∞

dλ

2π
e−iλIχ(λ) . (2.28)

Using the BCH formula [44,45] for the SU(2) group, namely

exp
(
ξab† − ξ∗a†b

)
=eζb

†a(1 + |ζ|2
) 1

2 (b†b−a†a)
e−ζ

∗a†b, ζ=
ξ

|ξ| tan |ξ| , (2.29)

one can write the exponential in (2.27) in normal-ordered form with respect
to mode b as follows

χ(λ) =

〈
ei tan(

λ
2|z| )b†a

[
cos

(
λ

2|z|

)]a†a−b†b
ei tan(

λ
2|z| )a†b

〉

ab

. (2.30)
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Since mode b is in a coherent state |z〉 the partial trace over b can be evaluated
as follows

χ(λ) =

〈
ei tan(

λ
2|z| )z∗a

[
cos

(
λ

2|z|

)]a†a

ei tan(
λ

2|z| )za†
〉

a

×
〈
z

∣∣∣∣∣
[
cos

(
λ

2|z|

)]−b†b ∣∣∣∣∣z
〉
. (2.31)

Using now (2.13), one can rewrite (2.31) in normal order with respect to a,
namely

χ(λ)=
〈
eiz sin( λ

2|z| )a†
exp

[
−2 sin2

(
λ

4|z|

)
(a†a+ |z|2)

]
eiz

∗ sin( λ
2|z| )a

〉
a

, (2.32)

In the strong-LO limit z → ∞, only the lowest order terms in λ/|z| are
retained, a†a is neglected with respect to |z|2, and (2.32) simplifies as follows

lim
z→∞χ(λ) =

〈
ei

λ
2 e

iϕa†
exp

[
−λ

2

8

]
ei

λ
2 e

−iϕa

〉
a

= 〈exp[iλXϕ]〉a , (2.33)

where ϕ = argz. The generating function in (2.33) is then equivalent to the
POVM

Π(x) =
∫ +∞

−∞

dλ

2π
exp[iλ(Xϕ − x)] = δ(Xϕ − x) ≡ |x〉ϕϕ〈x| , (2.34)

namely the projector on the eigenstate of the quadrature Xϕ with eigen-
value x. In conclusion, the balanced homodyne detector achieves the ideal
measurement of the quadrature Xϕ in the strong LO limit. In this limit, the
probability distribution of the output photocurrent I approaches exactly the
probability distribution p(x, ϕ) = ϕ〈x|ρ|x〉ϕ of the quadrature Xϕ, and this
for any state ρ of the signal mode a.

It is easy to take into account non-unit quantum efficiency at detectors.
According to (2.23) one has the replacements

c =⇒ √
ηc−

√
1− ηu , u, v vacuum modes (2.35)

d =⇒ √
ηd−

√
1− ηv , (2.36)

and now the output current is rescaled by 2|z|η, namely

Iη 	
1

2|z|

{[
a+

√
1− η
2η

(u+ v)
]
b† + h.c

}
, (2.37)
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where only terms containing the strong LO mode b are retained. The POVM
is then obtained by replacing

Xϕ → Xϕ +
√

1− η
2η

(uϕ + vϕ) (2.38)

in (2.34), with wϕ = (w†eiϕ + we−iϕ)/2, w = u, v, and tracing the vacuum
modes u and v. One then obtains

Πη(x) =
∫ +∞

−∞

dλ

2π
eiλ(Xϕ−x)|〈0|eiλ

√
1−η
2η uϕ |0〉|2 =

∫ +∞

−∞

dλ

2π
eiλ(Xϕ−x)e−λ

2 1−η
8η

=
1√

2π∆2
η

∫ +∞

−∞
dx′ e

− 1
2∆2

η
(x−x′)2

|x′〉ϕϕ〈x′| , (2.39)

where ∆2
η = 1−η

4η . Thus the POVM, and in turn the probability distribution
of the output photocurrent, are just the Gaussian convolution of the ideal
ones with rms ∆η.

2.3.3 Heterodyne Detection

Heterodyne detection allows one to perform the joint measurement of two
conjugated quadratures of the field [46, 47]. The scheme of the heterodyne
detector is depicted in Fig. 2.2.

A strong local oscillator at frequency ω in a coherent state |α〉 hits a beam
splitter with transmissivity τ → 1, and with the coherent amplitude α such
that γ ≡ |α|

√
τ(1− τ) is kept constant. If the output photocurrent is sampled

at the intermediate frequency ωIF , just the field modes a and b at frequency
ω ± ωIF are selected by the detector. Modes a and b are usually referred to
as signal band and image band modes, respectively. In the strong LO limit,
upon tracing the LO mode, the output photocurrent I(ωIF ) rescaled by γ is
equivalent to the complex operator

Z =
I(ωIF )
γ

= a− b†, (2.40)

a(

b(

ω+ωIF)

ω−ωIF)

c(ω)

τ−>1

cos(ω IF )t

sin(ω IFt )

Re Z

Im Z

BS

Fig. 2.2. Scheme of the heterodyne detector.
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where the arbitrary phases of modes have been suitably chosen. The hetero-
dyne photocurrent Z is a normal operator, equivalent to a couple of commut-
ing selfadjoint operators

Z = ReZ + iImZ , [Z,Z†] = [ReZ, ImZ] = 0 . (2.41)

The POVM of the detector is then given by the orthogonal eigenvectors of
Z. It is convenient to introduce the notation of [48] for vectors in the tensor
product of Hilbert spaces H⊗H

|A〉〉 =
∑
nm

Anm|n〉 ⊗ |m〉 ≡ (A⊗ I)|I〉〉 ≡ (I ⊗Aτ )|I〉〉 , (2.42)

where Aτ denotes the transposed operator with respect to some pre-chosen
orthonormal basis. Equation (2.42) exploits the isomorphism between the
Hilbert space of the Hilbert-Schmidt operators A,B ∈ HS(H) with scalar
product 〈A,B〉 = Tr[A†B], and the Hilbert space of bipartite vectors
|A〉〉, |B〉〉 ∈ H ⊗H, where one has 〈〈A|B〉〉 ≡ 〈A,B〉.

Using the above notation it is easy to write the eigenvectors of Z with
eigenvalue z as 1√

π
|D(z)〉〉. In fact one has [49]

Z|D(z)〉〉 = (a− b†)(Da(z)⊗ Ib)|I〉〉 = (Da(z)⊗ Ib)(a− b† + z)
∞∑
n=0

|n〉 ⊗ |n〉

= z(Da(z)⊗ Ib)|I〉〉 = z|D(z)〉〉 . (2.43)

The orthogonality of such eigenvectors can be verified through the relation

〈〈D(z)|D(z′)〉〉 = Tr[D†(z)D(z′)] = πδ(2)(z − z′) , (2.44)

where δ(2)(α) denotes the Dirac delta function over the complex plane

δ(2)(α) =
∫

C

d2γ

π2 exp(γα∗ − γ∗α) . (2.45)

In conventional heterodyne detection the image band mode is in the vac-
uum state, and one is just interested in measuring the field mode a. In this
case we can evaluate the POVM upon tracing on mode b. One has

Π(z, z∗) =
1
π

Trb[|D(z)〉〉〈〈D(z)|Ia ⊗ |0〉〈0|]

=
1
π
D(z)|0〉〈0|D†(z) =

1
π
|z〉〈z| . (2.46)

Namely, one obtains the projectors on coherent states. The coherent-state
POVM provides the optimal joint measurement of conjugated quadratures
of the field [50]. In fact, heterodyne detection allows one to measure the Q-
function in (2.4). According to (2.3) then it provides the expectation value
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of anti-normal ordered field operator. For a state ρ the expectation value of
any quadrature Xϕ is obtained as

〈Xϕ〉 = Tr[ρXϕ] =
∫

C

d2α

π
Re(αe−iϕ)Q(α, α∗) . (2.47)

The price to pay for jointly measuring a pair of non commuting observables
is an additional noise. The rms fluctuation is evaluated as follows∫

C

d2α

π
[Re(αe−iϕ)]2Q(α, α∗)− 〈Xϕ〉2 = 〈∆X2

ϕ〉+
1
4
, (2.48)

where 〈∆X2
ϕ〉 is the intrinsic noise, and the additional term is usually referred

to as “the additional 3dB noise due to the joint measure” [51–53].
The effect of non-unit quantum efficiency can be taken into account in

analogous way as in Sect. 2.3.2 for homodyne detection. The heterodyne
photocurrent is rescaled by an additional factor η1/2, and vacuum modes u
and v are introduced, thus giving [54]

Zη = a− b† +
√

1− η
η

u−
√

1− η
η

v† . (2.49)

Upon tracing over modes u and v, one obtain the POVM

Πη(z, z∗) =
∫

C

d2γ

π2 u〈0|v〈0|e
γ(Z†

η−z∗)−γ∗(Zη−z)|0〉u|0〉v (2.50)

=
∫

C

d2γ

π2 e
γ(Z†−z∗)−γ∗(Z−z) e−

1−η
η |γ|2

=
η

π(1− η)e
− η

1−η |Z−z|2 =
∫

C

d2z′

π∆2
η

e
− |z′−z|2

∆2
η |D(z′)〉〉〈〈D(z′)| .

The probability distribution is then a Gaussian convolution on the complex
plane of the ideal probability with rms ∆2

η = (1− η)/η.
Analogously, the coherent-state POVM for conventional heterodyne de-

tection with vacuum image band mode is replaced with

Πη(z, z∗) =
∫

C

d2z′

π∆2
η

e
− |z′−z|2

∆2
η |z′〉〈z′| . (2.51)

From (2.9) we can equivalently say that the heterodyne detection probability
density is given by the generalized Wigner functionWs(α, α∗), with s = 1− 2

η .
Notice that for η < 1, the average of functions αnα∗m is related to the
expectation value of a different ordering of field operators. However, one has
the relevant identity [29,55]

:(a†)nam:s =
(n,m)∑
k=0

k!
(
n

k

)(
m

k

)(
t− s

2

)k
:(a†)n−kam−k:t , (2.52)
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where (n,m) = min(n,m), and then
∫

C

d2αW1− 2
η
(α, α∗)αmα∗n

=
(n,m)∑
k=0

k!
(
n

k

)(
m

k

)(
1− η
η

)k
〈am−k(a†)n−k〉 . (2.53)

Notice that the measure of the Q-function (or any smoothed version for η < 1)
does not allow one to recover the expectation value of any operator through
an average over heterodyne outcomes. In fact, one needs the admissibility
of anti-normal ordered expansion [56] and the convergence of the integral in
(2.53). In particular, the matrix elements of the density operator cannot be
recovered.

Finally, it is worth mentioning that the above results hold also for an
image-band mode with the same frequency of the signal. In this case a
measurement scheme based on multiport homodyne detection should be
used [47,55,57–63].

2.4 General Tomographic Method

In the first part of the section a brief history of tomography is presented.
Then, we give a sketch of the conventional medical tomography, and we show
its analogy with the optical homodyne tomography for the reconstruction of
the Wigner function proposed by Vogel and Risken [7]. However the limits
and the intrinsic unreliability of this method are explained.

The first exact method was given in [8], and successively refined in [9].
It allows the reconstruction of the density matrix ρ, bypassing the inversion
of the Wigner function. Analogously, it provides the expectation values of
arbitrary operators, directly as an average of “Kernel functions” evaluated
on the experimental data collected by homodyne detection.

The general tomographic method is presented in Sect. 2.4.4. The concept
of “quorum”, namely the complete set of observables whose measurement
provides the expectation value of any desired operator, is introduced. We
show that some “orthogonality” and “completeness” relations in the linear
algebra of operators are sufficient to individuate a quorum [26].

In Sect. 2.4.9 some developments of the basic tomographic method are
shown. First, the deconvolution of noise given by the imperfections of de-
tectors and/or experimental apparatus. Such noise can be eliminated under
the hypothesis that the pertaining CP-map is invertible [20]. Then, we show
that also the statistical random noise can be reduced through the adaptive
tomography technique [22].

The relevant topic of multimode tomography with a single oscillator is
given separate treatment in the following section.
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2.4.1 Brief Historical Excursus

The problem of quantum state determination through repeated measure-
ments on identically prepared systems was already stated in 1957 by Fano [5].
He was aware that more than two observables are needed for this purpose. It
was only with the proposal by Vogel and Risken [7] however, that quantum to-
mography was born. The first experiments, which already showed reconstruc-
tions of coherent and squeezed states were performed in Michael Raymer’s
group at the University of Oregon [6]. The main idea at the basis of the first
proposal is that it is possible to extend to the quantum domain the algorithms
that are conventionally used in medical imaging to recover two dimensional
distributions (say of mass) from unidimensional projections in different direc-
tions. However, the first tomographic method is unreliable for the measure-
ment of unknown quantum states, since some arbitrary smoothing parameters
have to be introduced. The exact unbiased tomographic procedure was pro-
posed in [8], and successively simplified in [9]. The exact homodyne method
has been implemented experimentally to measure the photon statistics of a
semiconductor laser [10], and the density matrix of a squeezed vacuum [11].
The success of optical homodyne tomography has then stimulated the de-
velopment of state-reconstruction procedures for atomic beams [12], the ex-
perimental determination of the vibrational state of a molecule [13], of an
ensemble of helium atoms [14], and of a single ion in a Paul trap [15].

More recently, quantum tomography has been generalized to the estima-
tion of an arbitrary observable of the field [16], with any number of modes [17],
and, finally, to arbitrary quantum systems via group theory [18,20,21]. Fur-
ther developments such as noise deconvolution [20] and adaptive tomogra-
phy [22] were found. The use of max-likelihood strategies [23] has made pos-
sible to reduce dramatically the number of experimental data (by a factor
103 ÷ 105!) with negligible bias for most practical cases of interest. Finally,
very recently, a method for tomographic estimation of the unknown quan-
tum operation of a quantum device has been presented [27], where a fixed
input entangled state is used. Similarly, one can also estimate the ensemble
average of all operators by measuring only one fixed “universal” observable
on an extended Hilbert space [64]. The latest development [26] deduces the
general tomographic method from the property of spanning sets of operators.
In fact, the group structure is not necessary to individuate a “quorum”, but
just some “orthogonality” and “completeness” relations in the linear alge-
bra of operators are sufficient to that purpose. The general method will be
presented in this context.

2.4.2 Conventional Tomographic Imaging

In conventional medical tomography, one collects data in the form of marginal
distributions of the mass function m(x, y). In the complex plane the marginal
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r(x, ϕ) is a projection of the complex function m(x, y) on the direction indi-
cated by the angle ϕ ∈ [0, π], namely

r(x, ϕ) =
∫ +∞

−∞

dy

π
m
(
(x+ iy)eiϕ, (x− iy)e−iϕ

)
. (2.54)

The collection of marginals for different ϕ is called “Radon transform”.
The tomography process essentially consists in the inversion of the Radon
transform (2.54), in order to recover the mass function m(x, y) from the
marginals r(x, ϕ).

Here we derive inversion of (2.54). Consider the identity

m(α, α∗) =
∫

C

d2β δ(2)(α− β) m(β, β∗) , (2.55)

where δ(2)(α) denotes the Dirac delta function of (2.45), and m(α, α∗) ≡
m(x, y), with α = x+ iy and α∗ = x− iy. Equation (2.45) rewrites

δ(2)(α) =
∫ +∞

0

dk

4
k

∫ 2π

0

dϕ

π2 e
−ikαϕ =

∫ +∞

−∞

dk

4
|k|

∫ π

0

dϕ

π2 e
−ikαϕ , (2.56)

with αϕ ≡ Re(α e−iϕ) = −αϕ+π. From (2.55) and (2.56) the inverse Radon
transform is obtained as follows

m(x, y) =
∫ π

0

dϕ

π

∫ +∞

−∞
dx′ r(x′, ϕ)

∫ +∞

−∞

dk

4
|k| eik(x′−αϕ) . (2.57)

Equation (2.57) is conventionally written as

m(x, y) =
∫ π

0

dϕ

π

∫ +∞

−∞
dx′ r(x′, ϕ) K(x′ − αϕ), (2.58)

where K(x) is given by

K(x) ≡
∫ +∞

−∞

dk

4
|k|eikx =

1
2
Re

∫ +∞

0
dk keikx = −1

2
P 1
x2 , (2.59)

with P denoting the Cauchy principal value. Integrating by parts (2.58) one
obtains the tomographic formula that is usually found in medical imaging,
i.e.

m(x, y) =
1
2π

∫ π

0
dϕ P

∫ +∞

−∞
dx′ 1

x′ − αϕ
∂

∂x′ r(x
′, ϕ) , (2.60)

which allows the reconstruction of the mass distribution m(x, y) from its
projections along different directions r(x, ϕ).
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2.4.3 Extension to the Quantum Domain

In the quantum imaging process one would like to reconstruct a quantum
state in the form of its Wigner function, by starting from its marginal proba-
bility distributions. As shown in Sect. 2.2, the Wigner function is a real nor-
malized function that is in one-to-one correspondence with the state density
operator ρ. As noticed in (2.7), the probability distributions of the quadra-
ture operators Xϕ = (a†eiϕ + ae−iϕ)/2 are the marginal probabilities of the
Wigner function for the state ρ. Thus, by applying the same procedure out-
lined in the previous subsection, Vogel and Risken [7] proposed a method
to recover the Wigner function via an inverse Radon transform from the
quadrature probability distributions p(x, ϕ), namely

W (x, y) =
∫ π

0

dϕ

π

∫ +∞

−∞
dx′ p(x′, ϕ)

∫ +∞

−∞

dk

4
|k| eik(x′−x cosϕ−y sinϕ) . (2.61)

Notice that in the original paper [7] conventional tomographic imaging is
never referred to. As shown in Sect. 2.3.2 the experimental data, distributed
according to the quadrature probability density, can be obtained by using the
homodyne detector which measures the quadrature of the field. The method
proposed by Vogel and Risken, namely the inversion of the Radon transform,
was the one which has been used in the first experiments [6].

However, this first method is unreliable for the reconstruction of unknown
quantum states, since there is an intrinsic unavoidable systematic error. In
fact the integral on k in (2.61) is unbounded. In order to use the inverse Radon
transform, one would need the analytical form of the marginal distribution of
the quadrature p(x, ϕ). This can be obtained by collecting the experimental
data into histograms and splining these histograms. This is not an unbiased
procedure since the degree of splining, the width of the histogram bins and the
number of different phases on which the experimental data should be collected
are arbitrary parameters and introduce systematic errors whose effects cannot
be easily controlled. For example, the effect of using high degrees of splining
is the wash–out of the quantum features of the state, and, vice-versa, the
effect of low degrees of splining is to create negative bias for the probabilities
in the reconstruction (see [8] for details).

A new approach to optical tomography was proposed in [8]. This ap-
proach, that will be referred to as ‘quantum homodyne tomography’, allows
one to recover the quantum state of the field ρ (and also the mean values
of arbitrary operators) directly from the data, abolishing all the sources of
systematic errors. Only statistical errors are present, and they can be reduced
arbitrarily by collecting more experimental data. The correct method will be
derived from the general tomographic theory in Sect. 2.4.5.

2.4.4 General Method of Quantum Tomography

In the following the general method of quantum tomography will be ex-
plained. First, we give the basics of Monte Carlo integral theory which are
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needed to implement the tomographic algorithms in actual experiments and
in numerical simulations. Then, we derive the formulas on which all schemes
of state reconstruction are based.

Basic Statistics

The aim of quantum tomography is to estimate, in arbitrary quantum sys-
tems, the mean value 〈O〉 of a system operator O using only the results of
the measurements on a set of observables {Qλ, λ ∈ Λ}, called “quorum”.
The procedure by which this can be obtained needs the so called “Kernel
function” Rλ[O](xλ) which is a function of the eigenvalues xλ of the quo-
rum operators. Integrating the Kernel with the probability pλ(xλ) of having
outcome xλ when measuring Qλ, the mean value of O is obtained as follows

〈O〉 =
∫
Λ

dλ

∫ +∞

−∞
dxλ pλ(xλ) Rλ[O](xλ) , (2.62)

where the first integral is performed on the values of λ that designate all quo-
rum observables, and the second on the eigenvalues of the quorum observable
Qλ determined by the λ variable of the outer integral. Both integrals in (2.62)
can suitably replaced by sums.

The algorithm to estimate 〈O〉 with (2.62) is the following. One chooses
a quorum operator Qλ by choosing λ with uniform probability in Λ and per-
forms a measurement, obtaining the result xi. By repeating the procedure N
times, one collects the set of experimental data {(λi, xi), with i = 1, · · · , N},
where λi identifies the quorum observable used for the ith measurement, and
xi its result. From the same set of data the mean value of any operator O can
be obtained. In fact, one evaluates the Kernel function for O and the quorum
Qλ, and then samples the double integral of (2.62) using the limit

〈O〉 = lim
N→∞

1
N

N∑
i=1

Rλi [O](xi) . (2.63)

Of course the finite sum,

FN =
1
N

N∑
i=1

Rλi [O](xi) , (2.64)

gives an approximation of 〈O〉. To estimate the error in the approximation
one applies the central limit theorem that we recall here.

Central limit theorem. Consider N statistically uncorrelated random
variables {zi, i = 1, · · · , N}, with mean values µ(zi), variances σ2(zi) and
bounded third order moments. If the variances σ2(zi) are all of the same
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order then the statistical variable “sum” y defined as

y =
N∑
i=1

zi (2.65)

has mean and variance

µ(y) =
N∑
i=1

µ(zi) , σ2(y) =
N∑
i=1

σ2(zi) . (2.66)

The distribution of y approaches asymptotically a Gaussian for N → ∞. In
practical cases, the distribution of y can be considered Gaussian already for
N as low as N ∼ 10.

For our needs the hypotheses are met if the Kernel function Rλi
[O](xi)

in (2.64) has limited moments up to the third order, since xi come from the
same probability density, and hence all zi = 1

NRλi [O](xi) have the same
mean µ(zi) = 1

N 〈O〉 and variance

σ2(zi) =
1
N2


 lim
M→∞

M∑
j=1

R2
λi

[O](xi)− 〈O〉2

 . (2.67)

Using the central limit theorem, we can conclude that the experimental av-
erage y ≡ FN in (2.64) is a statistical variable distributed as a Gaussian with
mean value µ(y) = 〈O〉 and variance

σ2(y) =
1
N


 lim
M→∞

1
M

M∑
j=1

R2
λi

[O](xj)− 〈O〉2

 . (2.68)

Then the tomographic estimation converges with statistical error that de-
creases as N−1/2.

Since the statistical variable FN converges to 〈O〉 and is distributed as
a Gaussian we can also evaluate the statistical error that affects the tomo-
graphic reconstruction. Upon dividing the experimental data into M statis-
tical blocks of equal dimension one evaluates the average in (2.64) for each
block. A set Fn (n = 1, 2, · · · ,M) is then obtained and it is Gaussian dis-
tributed with mean value

m =
1
M

M∑
n=1

Fn (2.69)

and variance

s2 =
1

M − 1

M∑
n=1

(Fn −m)2 . (2.70)
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Notice that the factor 1/(M −1) in the variance comes from the fact that we
are using the “experimental” estimated mean value m in place of the “real”
one µ. The variance of the mean m is given by

σ2(m) ≡ σ2

(
1
M

M∑
n=1

Fn

)
=

1
M2

M∑
n=1

σ2(Fn) =
1
M
s2 , (2.71)

and thus the error on the mean m estimated from the data is given by

ε =
s√
M

=

√√√√ M∑
n=1

(Fn −m)2

M(M − 1)
. (2.72)

The usual statistical interpretation applies: the “real” value µ = 〈O〉 is to be
found in the interval [m−ε,m+ε] with ∼ 68% probability, in [m−2ε,m+2ε]
with ∼ 95% probability, and in [m−3ε,m+3ε] with ∼ unit probability. In or-
der to test that the confidence intervals are estimated correctly, one can check
that the Fn distribution is actually Gaussian. This can be done by comparing
the histogram of the block data with a Gaussian, or by using the χ2 test.

Characterization of the Quorum

As we will see, different estimation techniques have been proposed tailored to
different systems, such as the radiation field [9,17], trapped ions and molecu-
lar vibrational states [65], spin systems [66], etc. As a matter of fact, all these
schemes can be embodied in the following approach.

The tomographic reconstruction of an operator O is possible when there
exists a resolution of the form

O =
∫
Λ

dλ Tr
[
OB†(λ)

]
C(λ) , (2.73)

where λ is a (possibly multidimensional) parameter living on a (discrete or
continuous) manifold Λ. The only hypothesis in (2.73) is the existence of the
trace. If, for example, O is a trace–class operator, then we do not need to
require B(λ) to be of Hilbert-Schmidt class, since it is sufficient to require
B(λ) bounded. The operators C(λ) are functions of the quorum of observables
measured for the reconstruction, whereas the operators B(λ) form the dual
basis of the set C(λ). The term

E [O](λ) = Tr
[
OB†(λ)

]
C(λ) (2.74)

represents the quantum estimator for the operator O. The expectation value
of O is given by the ensemble average

〈O〉 ≡ Tr [Oρ] =
∫
Λ

dλ Tr
[
OB†(λ)

]
Tr [C(λ)ρ] ≡

∫
Λ

dλ 〈E [O](λ)〉 , (2.75)
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where ρ is the density matrix of the quantum system under investigation.
Notice that the quantity Tr [C(λ)ρ] depends only on the quantum state, and
it is related to the probability distribution of the measurement outcomes,
whereas the term Tr

[
OB†(λ)

]
depends only on the quantity to be measured.

In particular, the tomography of the quantum state of a system corresponds
to writing (2.73) for the operators O = |k〉〈n|, {|n〉} being a given Hilbert
space basis. For a given system, the existence of a set of operators C(λ),
together with its dual basis B(λ) allows universal quantum estimation, i. e.
the reconstruction of any operator.

We now give two characterizations of the sets B(λ) and C(λ) that are
necessary and sufficient conditions for writing (2.73).

Condition 1: Bi-orthogonality
Let us consider a complete orthonormal basis of vectors |n〉 (n = 0, 1, · · · ).
Formula (2.73) is equivalent to the bi-orthogonality condition

∫
Λ

dλ 〈q|B†(λ)|p〉 〈m|C(λ)|l〉 = δmpδlq , (2.76)

where δij is the Kronecker delta. Equation (2.76) can be straightforwardly
generalized to a continuous basis.

Condition 2: Completeness
If the set of operators C(λ) is irreducible, namely if any operator can be
written as a linear combination of the C(λ) as

O =
∫
Λ

dλ a(λ) C(λ) , (2.77)

then (2.73) is also equivalent to the trace condition

Tr
[
B†(λ) C(µ)

]
= δ(λ, µ) , (2.78)

where δ(λ, µ) is a reproducing kernel for the set B(λ), namely a function or
a tempered distribution which satisfies

∫
Λ

dλ B(λ) δ(λ, µ) = B(µ) . (2.79)

An analogous identity holds for the set of C(λ)
∫
Λ

dλ C(λ) δ(λ, µ) = C(µ) . (2.80)

The proofs are straightforward. The irreducibility condition on the operators
C(λ) is essential for the equivalence of (2.73) and (2.78). A simple counterex-
ample is provided by the set of projectors P (x) = |x〉〈x| over the eigenstates
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of a selfadjoint operator X. In fact, (2.78) is satisfied by P (x). However, since
they do not form an irreducible set, it is not possible to express a generic op-
erator as O �=

∫
X dx 〈x|O|x〉 |x〉〈x|.

If either the set B(λ) or the set C(λ) satisfy the additional trace condition

Tr
[
B†(µ)B(λ)

]
= δ(λ, µ) , (2.81)

Tr
[
C†(µ)C(λ)

]
= δ(λ, µ) , (2.82)

then we have C(λ) = B(λ) (notice that neither B(λ) nor C(λ) need to be
unitary). In this case, (2.73) can be rewritten as

O =
∫
Λ

dλ Tr
[
OC†(λ)

]
C(λ) . (2.83)

A set of observables Qλ constitute a quorum when there are functions
fλ(Qλ) = C(λ) so that C(λ) form an irreducible set. The quantum estimator
for O in (2.74) then writes as a function of the quorum operators

E [O](λ) ≡ Eλ[O](Qλ) . (2.84)

Notice that if a set of observables Qλ constitutes a quorum, than the set of
projectors |q〉λλ〈q| over their eigenvectors provides a quorum too, with the
measure dλ in (2.73) including the measure dq. Notice also that, even once
the quorum has been fixed, the unbiased estimator for an operator O will not
in general be unique, since there can exist functions N (Qλ) that satisfies

∫
Λ

dλN (Qλ) = 0 , (2.85)

and that will be called ‘null estimators’. Two unbiased estimators that differ
by a null estimator yield the same results when estimating the operator mean
value. We will see in Sect. 2.4.9 how the null estimators can be used to reduce
the statistical noise.

In terms of a quorum of observables Qλ (2.75) rewrites

〈O〉 =
∫
Λ

dλ Tr
[
OB†(λ)

]
Tr [fλ(Qλ)ρ]

=
∫
Λ

dλ

∫
dqλ pλ(qλ) Tr

[
OB†(λ)

]
fλ(qλ) , (2.86)

where pλ(qλ) = λ〈q|ρ|q〉λ is the probability density of getting the outcome qλ
from the measurement of Qλ on the state ρ. Equation (2.86) is equivalent to
the expression (2.62), with the Kernel function

Rλ[O](qλ) = Tr
[
OB†(λ)

]
fλ(qλ) . (2.87)

Of course it is of interest to connect a quorum of observables to a res-
olution of the form (2.73), since only in this case can there be a feasible
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reconstruction scheme. If a resolution formula is written in terms of a set of
selfadjoint operators, the set itself constitutes the desired quorum. However,
in general a quorum of observables is functionally connected to the corre-
sponding resolution formula. If the operators C(λ) are unitary, then they
can always be considered as exponential of a set of selfadjoint operators, say
Qλ. The quantity Tr [C(λ)ρ] is thus connected with the moment generating
function of the set Qλ, and hence to the probability density pλ(qλ) of the
measurement outcomes, which play the role of the Radon transform in the
quantum tomography of the harmonic oscillator. In general, the operators
C(λ) can be any function (neither self-adjoint nor unitary) of observables
and, even more generally, they may be connected to POVMs rather than
observables.

The dual set B(λ) can be obtained from the set C(λ) by inverting (2.78).
For finite quorums, this resorts to a matrix inversion or, alternatively, to a
Gram-Schmidt orthogonalization procedure [26]. No such a general procedure
exists for a continuous spanning set. Many cases, however, satisfy conditions
(2.81) and (2.82), and thus we can write B(λ) = C†(λ).

2.4.5 Quantum Estimation for Harmonic System

The harmonic oscillator models several systems of interest in quantum me-
chanics, as the vibrational states of molecules, the motion of an ion in a Paul
trap, and a single mode radiation field. Different proposals have been sug-
gested in order to reconstruct the quantum state of a harmonic system. They
can be summarized using the framework of the previous subsection, which is
also useful for devising novel estimation techniques. Here, the basic resolution
formula involves the set of displacement operators D(α) = exp(αa† − α∗a),
which can be viewed as exponentials of the field-quadrature operators Xϕ =
(a†eiϕ + ae−iϕ)/2. We have shown in Sect. 2.3.2 that for a single-mode radi-
ation field Xϕ is measured through homodyne detection. For the vibrational
tomography of a molecule or a trapped ion Xϕ corresponds to a time-evolved
position or momentum. The set of displacement operators satisfies (2.78) and
(2.82), since

Tr[D(α)D†(β)] = πδ(2)(α− β) , (2.88)

whereas (2.83) reduces to the Glauber formula

O =
∫

C

d2α

π
Tr

[
OD†(α)

]
D(α) . (2.89)

Changing to polar variables α = (−i/2)keiϕ, (2.89) becomes

O =
∫ π

0

dϕ

π

∫ +∞

−∞

dk |k|
4

Tr[O eikXϕ ] e−ikXϕ , (2.90)
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which shows explicitly the dependence on the quorum Xϕ. Taking the en-
semble average of both members and evaluating the trace over the set of
eigenvectors of Xϕ, one obtains

〈O〉 =
∫ π

0

dϕ

π

∫ +∞

−∞
dx p(x, ϕ) R[O](x, ϕ) , (2.91)

where p(x;ϕ) = ϕ〈x|ρ|x〉ϕ is the probability distribution of quadratures out-
come. The Kernel function for the operator O is given by

R[O](x, ϕ) = Tr[OK(Xϕ − x)] , (2.92)

where K(x) is the same as in (2.59).
Equation (2.91) is the basis of quantum homodyne tomography. Notice

that the operator K(x) is unbounded, however any matrix element 〈ψ|ρ|φ〉
such that 〈ψ|K(Xϕ − x)|φ〉 is bounded can be estimated. According to
Sect. 2.4.4, the matrix element 〈ψ|ρ|φ〉 can be directly sampled from the
homodyne experimental values. In fact, for bounded 〈ψ|K(Xϕ − x)|φ〉, the
central limit theorem guarantees that

〈ψ|ρ|φ〉 =
∫ π

0

dϕ

π

∫ +∞

−∞
dx p(x, ϕ) 〈ψ|K(Xϕ − x)|φ〉

= lim
N→∞

1
N

N∑
n=0

〈ψ|K(xϕn − xn))|φ〉 , (2.93)

where xn is the homodyne outcome measured at phase ϕn and distributed
with probability p(x, ϕ). Systematic errors are eliminated by choosing ran-
domly each phase ϕn at which homodyne measurement is performed. As
shown in Sect. 2.4.4, for finite number of measurements N , the estimate
(2.93) of the integral is Gaussian distributed around the true value 〈ψ|ρ|φ〉,
with statistical error decreasing as N−1/2. Notice that the measurability of
the density operator matrix element depends only on the boundedness of the
matrix element of the Kernel function, and that no adjustable parameters
are needed in the procedure, which thus is unbiased.

The general procedure for noise deconvolution will be presented in
Sect. 2.4.9. However, we give here the main result for the density matrix
reconstruction. As shown in Sect. 2.3.2, the effect of the efficiency in homo-
dyne detectors is a Gaussian convolution of the ideal probability p(x, ϕ), as

pη(x, ϕ) =

√
2η

π(1− η)

∫ +∞

−∞
dx′ e−

2η
1−η (x−x′)2p(x′, ϕ) . (2.94)

The tomographic reconstruction procedure still holds upon replacing p(x, ϕ)
with pη(x, ϕ), so that

ρ =
∫ π

0

dϕ

π

∫ +∞

−∞
dx pη(x, ϕ) Kη(Xϕ − x), (2.95)
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where now the Kernel function is

Kη(x) =
1
2
Re

∫ +∞

0
k dk e

1−η
8η k

2+ikx . (2.96)

In fact, by taking the Fourier transform of both members of (2.94), one can
easily check that

ρ =
∫ π

0

dϕ

π

∫ +∞

−∞
dx pη(x, ϕ) Kη(Xϕ − x)

=
∫ π

0

dϕ

π

∫ +∞

−∞
dx p(x, ϕ) K(Xϕ − x) . (2.97)

Notice that the anti-Gaussian in (2.96) causes a much slower convergence
of the Monte Carlo integral (2.95): the statistical fluctuation will increase
exponentially for decreasing detector efficiency η. In order to achieve good
reconstructions with non-ideal detectors, then one has to collect a larger
number of data.

It is clear from (2.93) that the measurability of the density matrix depends
on the chosen representation and on the quantum efficiency of the detectors.
For example, for the reconstruction of the density matrix in the Fock basis
the Kernel functions are given by

Rη[|n〉〈n+ d|](x, ϕ) =
∫ +∞

−∞

dk |k|
4

e
1−η
8η k

2−ikx〈n+ d|eikXϕ |n〉 (2.98)

= eid(ϕ+ π
2 )

√
n!

(n+ d)!

∫ +∞

−∞
dk |k|e

1−2η
2η k2−i2kxkdLdn(k

2) ,

where Ldn(x) denotes the generalized Laguerre polynomials. Notice that the
Kernel function is bounded only for η > 1/2, while below this threshold
the method would give unbounded statistical errors. However, this bound is
well below the values that are reasonably achieved in the lab, where actual
homodyne detectors have efficiency ranging between 70% and 90% [11, 68].
The kernel functions for the matrix elements R[|n〉〈n + d|](x, ϕ) satisfy the
following relation [69,70,78]

R[|n〉〈n+ d|](x, ϕ) = eidϕ[4xun(x)vn+d(x) (2.99)
−2
√
n+ 1un+1(x)vn+d(x)− 2

√
n+ d+ 1un(x)vn+d+1(x)] , (2.100)

which can be effectively used to compute the kernel numerically. The func-
tions uj(x) and vj(x) in (2.100) are the normalizable and unnormalizable
eigenfunctions of the harmonic oscillator with eigenvalue j, respectively.
The noise from quantum efficiency can be unbiased via the inversion of
the Bernoulli convolution, which holds for η > 1/2 [71]. In Fig. 2.3 the x-
dependent part of the Kernel function is reported for different values of n, d
and the quantum efficiency η.
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Fig. 2.3. The x-dependent part of the Kernel function R[|n〉〈n + d|](x, ϕ) for
different values of n, d η < 1. Notice the very different ranges.

Table 2.1. Estimator Rη[O](x, ϕ) for some operators O (From [16]).

O Rη[O](x, ϕ)

a†nam ei(m−n)ϕ Hn+m(
√

2ηx)
√

(2η)n+m
(

n+m
n

)

a 2eiϕx

a2 e2iϕ(4x2 − 1/η)
a†a 2x2 − 1

2η

(a†a)2 8
3x

4 − 4−2η
η
x2 + 1−η

2η2

Ŵs = 2
π(1−s)

(
s+1
s−1

)a†a
∫ ∞

0
dt

2e−t

π(1 − s) − 1
η

cos

(

2

√
2t

(1 − s) − 1
η

x

)

|n〉〈n+ d| Rη[|n〉〈n+ d|](x, ϕ) in (2.98)

Notice that (2.89) cannot be used for unbounded operators. However, the
Kernel functions can be derived also for some unbounded operators, as shown
in [16]. In Table 2.1 we report the estimator Rη[O](x, ϕ) for some operators
O. The operator Ŵs gives the generalized Wigner function Ws(α, α∗) for
ordering parameter s through the relation in (2.11). From the expression
of Rη[Ŵs](x, ϕ) it follows that by homodyning with quantum efficiency η
one can measure the generalized Wigner function only for s < 1 − η−1: in
particular the usual Wigner function for s = 0 cannot be measured for any
quantum efficiency.

2.4.6 Some Generalizations

Using condition (2.78) one can see that the Glauber formula can be general-
ized to

O =
∫

C

d2α

π
Tr [OF1D(α)F2]F−1

2 D†(α)F−1
1 , (2.101)

where F1 and F2 are two generic invertible operators. By choosing F †
1 = F2 =
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S(ζ), where S(ζ) is the squeezing operator

S(ζ) = exp
[
1
2

(
ζ2a†2 − ζ∗2a2

)]
, ζ ∈ C , (2.102)

we obtain the tomographic resolution

〈O〉 =
∫ π

0

dϕ

π

∫ +∞

−∞
dx pζ(x, ϕ) Tr [OK(Xϕζ − x)] , (2.103)

in terms of the probability distribution of the generalized squeezed quadrature
operators

Xϕζ = S†(ζ)XϕS(ζ) =
1
2
[
(µeiϕ + νe−iϕ)a† + (µe−iϕ + ν∗eiϕ)a

]
, (2.104)

with µ = cosh |ζ| and ν = sinh |ζ| exp(2i arg[ζ]). Such an estimation technique
has been investigated in detail in [72].

A different estimation technique can be obtained by choosing in (2.101)
F1 = I, the identity operator, and F2 = (−)a

†a, the parity operator. In this
case one gets

O =
∫

C

d2α

π
Tr

[
OD†(α)(−)a

†a
]

(−)a
†aD(α) . (2.105)

Changing variable to α = 2β and using the relation

(−)a
†aD(2β) = D†(β)(−)a

†aD(β) (2.106)

it follows

〈O〉 = 4
∫

C

d2β

π
Tr

[
OD†(β)(−)a

†aD(β)
]

Tr
[
D(β)ρD†(β)(−)a

†a
]
. (2.107)

Hence, it is possible to estimate 〈O〉 by repeated measurement of the parity
operator on displaced versions of the state under investigation. An approxi-
mated implementation of this technique for a single mode radiation field has
been suggested in [73, 74] through the measurement of the photon number
probability on states displaced by a beam splitter. A similar scheme has been
used for the experimental determination of the motional quantum state of a
trapped atom [15]. In comparison with the approximated methods, (2.107)
allows to directly obtain the Kernel R[O](α) for any operator O for which
the trace exists. For instance, the reconstruction of the density matrix in the
Fock representation is obtained by averaging the Kernel

R[|n〉〈n+ d||](α) = 4〈n+ d|D†(α)(−)a
†aD(α)|n〉 (2.108)

= 4 (−)n+d
√

n!
(n+ d)!

(2α)d e−2|α|2 Ldn(4|α|2) ,

without the need of artificial cut-off in the Fock space [15].
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2.4.7 Quantum Estimation for Spin Systems

The so-called spin tomography [20, 30, 66, 67] allows one to reconstruct the
quantum state of a spin system from measurements of the spin in different
directions, i.e. the quorum is the set of operators S · n, where S is the spin
operator and n ≡ (cosϕ sinϑ, sinϕ sinϑ, cosϑ) is a unit vector. Various dif-
ferent quorums may be constructed by exploiting different sets of directions.

The easiest choice is to consider all possible directions. The procedure to
derive the tomographic formulas for this quorum is analogous to the one em-
ployed in Sect. 2.4.5 for homodyne tomography. The reconstruction formula
for spin tomography for the estimation of an arbitrary operator O writes

〈O〉 =
s∑

m=−s

∫
Ω

dn

4π
p(m,n) R[O](m,n) , (2.109)

where p(m,n) is the probability of obtaining the eigenvalue m when mea-
suring the spin along direction n, R[O](m,n) is the tomographic Kernel
for the operator O, and Ω is the unit sphere. In this case the operators
C(λ) of (2.73) are given by the set of projectors over the eigenstates |m,n〉
of the operators S · n. Notice that it is a set of irreducible operators in
the system Hilbert space H. In order to find the dual basis B, one must
consider the unitary operators obtained by exponentiating the quorum, i.e.
D(ψ,n) = exp(iψS · n), which satisfy the bi-orthogonality condition (2.76).
In fact, D(ψ,n) constitutes a unitary irreducible representation of the group
SU(2), and the bi-orthogonality condition is just the orthogonality relations
between the matrix elements of the group representation [75], i.e.

∫
R

dg Djr(g)D
†
tk(g) =

V

d
δjkδtr , (2.110)

whereD is a unitary irreducible representation of dimension d, dg is the group
Haar invariant measure, and V =

∫
R
dg. For SU(2), with the 2s + 1 dimen-

sion unitary irreducible representation D(ψ,n), Haar’s invariant measure is
sin2 ψ

2 sinϑ dϑ dϕ dψ, and V
d = 4π2

2s+1 . The bi-orthogonality condition writes

2s+ 1
4π2

∫
Ω

dn

∫ 2π

0
dψ sin2 ψ

2
〈j|eiψn·S |r〉〈t|e−iψn·S |k〉 = δjkδtr , (2.111)

and hence the spin tomography identity is given by

O =
2s+ 1
4π2

∫
Ω

dn

∫ 2π

0
dψ sin2 ψ

2
Tr

[
OD†(ψ,n)

]
D(ψ,n) . (2.112)

Notice the analogy between (2.112) and Glauber’s formula (2.89). In fact,
both homodyne and spin tomography can be derived in the domain of Group
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Tomography [20], where the underlying group structure is given by the Weyl-
Heisenberg group and the SU(2) group, respectively. Formula (2.109) is ob-
tained from (2.112) through the expectation value calculated on the eigen-
states of S·n. Thus, the explicit form of the tomographic Kernel is obtained as

R[O](m,n) =
2s+ 1
π

∫ 2π

0
dψ sin2 ψ

2
Tr

[
O e−iψS·n] eiψm . (2.113)

As already noticed, there are other possible quorums for spin tomography.
For example, for spin s = 1

2 systems, a self-dual basis for the operator space
is given by the identity and the Pauli matrices. In fact, from the property
σασα′ = δαα′I (α, α′ = x, y, z), both the bi-orthogonality relation (2.76)
and the trace condition (2.78) follow. In this case the reconstruction formula
writes

〈O〉 =
1
2
Tr [O] +

1
2

∑
α=x,y,z

∑
m=± 1

2

mp(m,nα) Tr [Oσα] . (2.114)

In the case of generic s spin system, Weigert has also shown [66] that by
choosing (2s+1)2 arbitrary directions for n, it is possible to obtain (in almost
all cases) a quorum of projectors |s,nj〉〈s,nj | (j = 1, · · · , (2s + 1)2), where
|s,nj〉 is the eigenstate pertaining to the maximum eigenvalue s of S · nj .

2.4.8 Quantum Estimation for a Free Particle

The state of a moving packet can be inferred from position measurement at
different times [76]. Assuming a particle with unit mass and using normalized
unit �/2 = 1, the free Hamiltonian is given by the square of momentum
operator HF = p2. In terms of the eigenvectors |x〉 of the position operator
and of the selfadjoint operator

R(x, τ) = e−ip
2τ |x〉〈x| eip2τ , (2.115)

the probability density of the position of the free particle at time τ is obtained
as p(x, τ) = Tr[ρ R(x, τ)]. The operators R(x, τ) provide a self-dual basis,
and an arbitrary particle state can be written as

ρ =
∫

R

∫
R

dx dτ p(x, τ) R(x, τ) . (2.116)

2.4.9 Noise Deconvolution and Adaptive Tomography

In the following we will briefly review 1) the noise deconvolution scheme
[20, 77], that allows one to eliminate the experimental noise that arises from
imperfect detection and lossy devices; 2) the adaptive tomography tech-
nique [22] that allows one to tune the unbiased tomographic Kernels to the
experimental data one obtains, in order to reduce the statistical noise.
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Noise Deconvolution

Essentially it is possible to eliminate detection noise when it is possible to
invert the noise map. A noise process is described by a trace preserving
completely positive map Γ acting on the Hilbert space of operators. The
noise can be deconvolved at the data analysis if

– the inverse of Γ exists, namely Γ−1 : L(H) → L(H), with Γ−1 [Γ [O]] =
O, for ∀O ∈ L(H).

– the estimator Eλ[O](Qλ) = Tr
[
O B†(λ)

]
C(λ) is in the domain of Γ−1

– the map Γ−1 [Eλ[O](Qλ)] is a function of Qλ.

If the above conditions are met, we can recover the “ideal” expectation value
〈O〉 that we would get without noise. This is achieved by replacing Eλ[O](Qλ)
with Γ−1[Eλ[O](Qλ)], and evaluating the ensemble average with the state
Γ τ (ρ), namely the state affected by the noise (Γ τ represents the dual map,
that provides the evolution in the Schroedinger picture). Hence, one has

〈O〉 =
∫
Λ

dλTr[Γ−1[Eλ[O](Qλ)]Γ τ (ρ)] . (2.117)

Consider for example the noise arising from non-unity quantum efficiency
η of homodyne detectors. Recall that the ideal probability density is replaced
by a Gaussian convolution with rms ∆2

η = (1 − η)/(4η). Then, the map Γη
acts on the quorum as follows

Γη[eikXϕ ] =
∫ +∞

−∞
dx eikx Γη[|x〉〈x|] (2.118)

=
∫ +∞

−∞
dx

∫ +∞

−∞
dx′ eikx e−

(x−x′)2
2∆2 [|x′〉〈x′|] = e−

1
2∆

2k2 eikXϕ .

Of course one has

Γ−1
η [eikXϕ ] = e

1
2∆

2k2 eikXϕ . (2.119)

In terms of the Fourier transform of the Kernel function

R̃[O](y, ϕ) =
∫ +∞

−∞

dx

2π
eixyR[O](x, ϕ) , (2.120)

one has

R̃η[O](y, ϕ) = e
1
2∆

2y2R̃[O](y, ϕ) . (2.121)

We have implicitly applied the above result in Sect. 2.4.5, where the effect of
non-unity quantum efficiency for reconstructing the density matrix elements
was discussed. The use of the modified Kernel function in (2.96) and the
origin of the bound η > 1/2 are indeed due to the invertibility domain of Γη.
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Another simple example of noise deconvolution can be given for a spin
1/2 system. Consider the map that describes the “depolarizing channel”

Γp[O] = (1− p)O +
p

2
Tr[O] I , 0 ≤ p ≤ 1 . (2.122)

This map can be inverted for p �= 1 as follows

Γ−1
p [O] =

1
1− p

(
O − p

2
Tr[O] I

)
. (2.123)

Then (2.114) can be replaced with

〈O〉 =
1
2
Tr [O] +

1
2(1− p)

∑
m=± 1

2

∑
α=x,y,z

mpp(m,nα) Tr [Oσα] , (2.124)

where now pp(m,nα) represents the probability of outcome m when measur-
ing σα on the noisy state Γp[ρ].

Adaptive Tomography

The idea of adaptive tomography is that the tomographic null estimators of
(2.85) can be used to reduce the statistical noise arising from the fact that
in a real experiment the data sample is always finite. The addition of a null
estimator in the ideal case of infinite statistics does not change the measured
quantities, since its mean value is zero. In the realistic case of finite statistics,
the mean values are statistical variables. As shown in Sect. 2.4.4, by dividing
data into statistical blocks and evaluating the tomographic averages, one
finds mean values that are Gaussian distributed. Thus, one can look for a
procedure to reduce the variance of such distribution. In fact, consider the
class of equivalent estimators for O

E ′
λ[O](Qλ) = Eλ[O](Qλ) +

M∑
i=1

νiNi(Qλ) . (2.125)

Each estimator in the class E ′ is identified by the coefficient vector ν. The
variance of the tomographic averages can be evaluated as

∆2E ′[O] = ∆2E [O] + 2
M∑
i=1

νiNiE [O] +
M∑
i,j=1

νiνjNiNj , (2.126)

where F ≡
〈∫
Λ
dλ F (Qλ)

〉
, and

∆2E [O] = E2[O]− E [O]
2
. (2.127)
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Minimizing ∆2E ′[O] with respect to the coefficients νi, one obtains the
equation

M∑
j=1

νjNiNj = −E [O]Ni , (2.128)

which can be solved starting from the estimated mean values, with the vector
ν as unknown. Notice that the obtained vector ν will depend on the experi-
mental data, and has to be calculated with the above procedure for any new
set of data.

In summary, the adaptive tomographic algorithm consists in the following
steps:

– Find the null estimators Ni(Qλ) (i = 1, · · · ,M) for the quorum which is
being used in the experiment.

– Execute the experiment and collect the input data.
– Calculate, using the obtained data, the mean values NiNj and E [O]Ni,

and solve the linear system (2.128), to obtain ν.
– Use the vector ν obtained in the previous step to build the ‘optimized

estimator’ E ′[O](Qλ) = E [O](Qλ)+
∑
i νiNi(Qλ). Using the data collected

in the first step, the mean value 〈O〉 is now evaluated as

〈O〉 =
∫
Λ

dλ 〈E ′
λ[O](Qλ)〉 , (2.129)

where the optimized estimator has been used.
– For each new set of data the whole procedure must be repeated, as ν is

dependent on the data.

Notice that also the mean values are changed in the adaptive tomographic
process: null estimators do not change mean values only in the limiting case
of infinite statistics. In fact, the mean values are changed in such a way as
to reduce the dispersion of the data. Examples of simulations of the adaptive
technique that efficiently reduce statistical noise of homodyne tomographic
reconstructions can be found in [22]. In homodyne tomography null estima-
tors are obtained as linear combinations of the following functions

Nk,n(Xϕ) = Xkϕ e
±i(k+2+2n)ϕ , k, n ≥ 0 . (2.130)

One can easily check that such functions have zero average over ϕ, indepen-
dently on ρ. Hence, for every operator O one actually has an equivalence
class of infinitely many unbiased estimators, which differ by a linear combi-
nation of functions Nk,n(Xϕ). It is then possible to minimize the rms error in
the equivalence class by the least-squares method, obtaining in this way an
optimal estimator that is adapted to the particular set of experimental data.
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2.5 Multimode Homodyne Tomography

The generalization of homodyne tomography from a single-mode to a mul-
timode field is straightforward, the estimator of simple operator tensors
O = O1 ⊗ O2 ⊗ . . . ⊗ On being just the product of the estimators of each
single-mode operator O1, O1, . . . , On. By linearity, one then obtains also the
estimator for arbitrary multimode operators. Such a simple generalization,
however, requires a separate homodyne detector for each mode, which is un-
feasible when the modes of the field are not spatio-temporally separated.
This is the case, for example of pulsed fields, for which a general multimode
tomographic method is especially needed, also due to the problem of mode
matching between the local oscillator and the detected fields (determined
by their relative spatio-temporal overlap) [83], which produces a dramatic
reduction of the overall quantum efficiency.

In this section we review the general method of [17] for homodyning ob-
servables of a multimode electromagnetic field using a single local oscillator
(LO), providing the rule to evaluate the estimator of an arbitrary multimode
operator. The expectation value of the operator can then be obtained by
averaging the estimator over the homodyne outcomes that are collected us-
ing a single LO whose mode randomly scans all possible linear combinations
of incident modes. We will then specifically consider some observables for a
two-mode field in a state corresponding to a twin-beam produced by para-
metric downconversion, and prove the reliability of the method on the basis
of computer simulations.

Finally, we report some experimental results [84] obtained in the Prem
Kumar’s lab at Northwestern University. Such experiment actually represents
the first measurement of the joint photon-number probability distribution of
the twin-beam state.

2.5.1 The General Method

The Hilbert-Schmidt operator expansion in (2.89) can be generalized to any
number of modes as follows

O =
∫

C

d2z0
π

∫
C

d2z1
π

. . .

∫
C

d2zM
π

Tr

{
O exp

[
M∑
l=0

(
−zla†

l + z∗
l al

)]}

× exp

[
M∑
l=0

(
zla

†
l − z∗

l al

)]
, (2.131)

where al and a†
l , with l = 0, . . . ,M and [al, a

†
l′ ] = δll′ , are the annihilation

and creation operators of M + 1 independent modes, and O now denotes an
operator over all modes. Using the following hyper-spherical parameterization
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for zl ∈ C

z0 =
i

2
k u0(θ)eiψ0 .=

i

2
k eiψ0 cos θ1 , (2.132)

z1 =
i

2
k u1(θ)eiψ1 .=

i

2
k eiψ1 sin θ1 cos θ2 ,

z2 =
i

2
k u2(θ)eiψ2 .=

i

2
k eiψ2 sin θ1 sin θ2 cos θ3 ,

. . .

zM−1 =
i

2
k uM−1(θ)eiψM−1 .=

i

2
k eiψM−1 sin θ1 sin θ2 . . . sin θM−1 cos θM ,

zM =
i

2
k uM (θ)eiψM

.=
i

2
k eiψM sin θ1 sin θ2 . . . sin θM−1 sin θM ,

where k ∈ [0,∞); ψl ∈ [0, 2π] for l = 0, 1, . . . ,M ; and θl ∈ [0, π/2] for
l = 1, 2, . . . ,M , (2.131) can be rewritten as follows:

O =
∫
dµ[ψ]

∫
dµ[θ]

∫ +∞

0
dk

(
k

2

)2M+1 1
M !

× Tr[O e−ikX(θ,ψ)] eikX(θ,ψ) . (2.133)

Here we have used the notation
∫
dµ[ψ] .=

M∏
l=0

∫ 2π

0

dψl
2π

, (2.134)

∫
dµ[θ] .= 2M M !

M∏
l=1

∫ π/2

0
dθl sin2(M−l)+1 θl cos θl , (2.135)

X(θ,ψ) =
1
2
[
A†(θ,ψ) +A(θ,ψ)

]
, (2.136)

A(θ,ψ) =
M∑
l=0

e−iψlul(θ)al . (2.137)

From the parameterization in (2.133), one has
∑M
l=0 u

2
l (θ) = 1, and hence

[A(θ,ψ), A†(θ,ψ)] = 1, namely A(θ,ψ) and A†(θ,ψ) themselves are anni-
hilation and creation operators of a bosonic mode. By scanning all values of
θl ∈ [0, π/2] and ψl ∈ [0, 2π], all possible linear combinations of modes al are
obtained.

For the quadrature operator X(θ,ψ) in (2.136), one has the following
identity for the moments generating function

〈eikX(θ,ψ)〉 = exp
(

1− η
8η

k2
)∫ +∞

−∞
dx eikx pη(x;θ,ψ) , (2.138)

where pη(x;θ,ψ) denotes the homodyne probability distribution of the
quadrature X(θ,ψ) with quantum efficiency η. Generally, η can depend on
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the mode itself, i.e., it is a function η = η(θ,ψ) of the selected mode. In the
following, for simplicity, we assume η to be mode independent, however. By
taking the ensemble average on each side of (2.133) and using (2.138) one has

〈O〉 =
∫
dµ[ψ]

∫
dµ[θ]

∫ +∞

−∞
dx pη(x;θ,ψ)Rη[O](x;θ,ψ) , (2.139)

where the estimator Rη[O](x;θ,ψ) has the following expression

Rη[O](x;θ,ψ) =
κM+1

M !

∫ +∞

0
dt e−(1− κ

2 )t+2i
√
κt x tM

× Tr[O e−2i
√
κtX(θ,ψ)], (2.140)

with κ = 2η/(2η − 1). Equations (2.139) and (2.140) allow one to obtain
the expectation value 〈O〉 for any unknown state of the radiation field by
averaging over the homodyne outcomes of the quadrature X(θ,ψ) for θ and
ψ randomly distributed according to dµ[ψ] and dµ[θ]. Such outcomes can be
obtained by using a single LO that is prepared in the multimode coherent
state ⊗Ml=0|γl〉 with γl = eiψlul(θ)K/2 and K � 1. In fact, in this case the
rescaled zero-frequency photocurrent at the output of a balanced homodyne
detector is given by

I =
1
K

M∑
l=0

(γ∗
l al + γla

†
l ) , (2.141)

which corresponds to the operator X(θ,ψ). In the limit of a strong LO (K →
∞), all moments of the current I correspond to the moments of X(θ,ψ), and
the exact measurement of X(θ,ψ) is then realized. Notice that for modes al
with different frequencies, in the d.c. photocurrent in (2.141) each LO with
amplitude γl selects the mode al at the same frequency (and polarization).
For less-than-unity quantum efficiency, (2.138) holds.

Equation (2.140) can be applied to some observables of interest. In par-
ticular, one can estimate the matrix element 〈{nl}|R|{ml}〉 of the multimode
density operator R. This will be obtained by averaging the estimator

Rη[|{ml}〉〈{nl}|](x;θ,ψ) = e−i
∑M

l=0(nl−ml)ψl
κM+1

M !

×
M∏
l=0

{
[−i
√
κul(θ)]µl−νl

√
νl!
µl!

}

×
∫ +∞

0
dt e−t+2i

√
κt x tM+

∑M
l=0(µl−νl)/2

M∏
l=0

Lµl−νl
νl

[κu2
l (θ)t] , (2.142)



42 Giacomo Mauro D’Ariano et al.

where µl = max(ml, nl), νl = min(ml, nl), and Lαn(z) denotes the generalized
Laguerre polynomial. For diagonal matrix elements, (2.142) simplifies to

Rη[|{nl}〉〈{nl}|](x;θ,ψ) =

κM+1

M !

∫ +∞

0
dt e−t+2i

√
κt x tM

M∏
l=0

Lnl
[κu2

l (θ)t] (2.143)

with Ln(z) denoting the customary Laguerre polynomial in z. Using the
following identity [79]

Lα0+α1+...+αM+M
n (x0 + x1 + . . .+ xM )

=
∑

i0+i1+...+iM=n

Lα0
i0

(x0)Lα1
i1

(x1) . . . LαM
iM

(xM ) , (2.144)

from (2.143) one can easily derive the estimator of the probability distribution
of the total number of photons N =

∑M
l=0 a

†
l al

Rη[|n〉〈n|](x;θ,ψ) =
κM+1

M !

∫ +∞

0
dt e−t+2i

√
κt x tMLMn [κt] , (2.145)

where |n〉 denotes the eigenvector of N with eigenvalue n. Notice that the
estimator in (2.143) does not depend on the phases ψl; only the knowledge
of the angles θl is needed. For the estimator in (2.145), even the angles θl can
be unknown.

Now we specialize to the case of only two modes a and b (i.e., M=1 and θ
is a scalar θ). The joint photon-number probability distribution is obtained
by averaging

Rη[|n,m〉〈n,m|](x; θ, ψ0, ψ1) =

κ2
∫ +∞

0
dt e−t+2i

√
κt x t Ln(κt cos2 θ)Lm(κt sin2 θ) . (2.146)

The estimator (2.145) of the probability distribution of the total number of
photons can be written as

Rη[|n〉〈n|](x; θ, ψ0, ψ1) = κ2
∫ +∞

0
dt e−t+2i

√
κt x t L1

n[κt] . (2.147)

For the total number of photons one can also derive the estimator of the
moment generating function, using the generating function for the Laguerre
polynomials [79]. One obtains

Rη[za
†a+b†b](x; θ, ψ0, ψ1) =

1
(z + 1−z

κ )2
Φ

(
2,

1
2
;− 1− z
z + 1−z

κ

x2
)
. (2.148)



2 Quantum Tomographic Methods 43

For the first two moments one obtains the simple expressions

Rη[a†a+ b†b](x; θ, ψ0, ψ1) = 4x2 +
2
κ
− 2 , (2.149)

Rη[(a†a+ b†b)2](x; θ, ψ0, ψ1) = 8x4 +
(

24
γ
− 20

)
x2 +

6
γ2 −

10
γ

+ 4 .

It is worth noting that analogous estimators of the photon-number difference
between the two modes are singular and one needs a cutoff procedure, similar
to the one used in [85] for recovering the correlation between the modes by
means of the customary two-mode tomography. In fact, in order to extract
information pertaining to a single mode only one needs a delta-function at
θ = 0 for mode a, or θ = π/2 for mode b, and, in this case, one could better
use the standard one-mode tomography by setting the LO to the proper mode
of interest.

Finally, we note that for two-mode tomography the estimators can be
averaged by the integral

〈O〉 =
∫ 2π

0

dψ0

2π

∫ 2π

0

dψ1

2π

∫ 1

−1

d(cos 2θ)
2

∫ +∞

−∞
dx pη(x; θ, ψ0, ψ1)

× Rη[O](x; θ, ψ0, ψ1) (2.150)

over the random parameters cos(2θ), ψ0, and ψ1. For example, in the case of
two radiation modes having the same frequency but orthogonal polarizations,
θ represents a random rotation of the polarizations, whereas ψ0 and ψ1 denote
the relative phases between the LO and the two modes, respectively.

2.5.2 Numerical Results for Two-Mode Fields

In this section we report some Monte-Carlo simulations from [17] to judge the
experimental working conditions for performing the single-LO tomography
on two-mode fields. We focus our attention on the twin-beam state, usually
generated by spontaneous parametric downconversion, namely

|Ψ〉 = S(χ)|0〉a|0〉b =
√

1− |ξ|2
∞∑
n=0

ξn |n〉a|n〉b , (2.151)

where S(χ) = exp(χa†b† − χ∗ab) and ξ = ei argχ tanh|χ|. The parameter ξ
is related to the average number of photons per beam n̄ = |ξ|2/(1 − |ξ|2).
For the simulations we need to derive the homodyne probability distribution
p(x; θ, ψ0, ψ1) which is given by

p(x; θ, ψ0, ψ1) = Tr[U† |x〉aa〈x| ⊗ 1b U |Ψ〉〈Ψ |] (2.152)
= a〈0|b〈0|S†(χ)U† [|x〉aa〈x| ⊗ 1b]U S(χ) |0〉a|0〉b ,

where |x〉a is the eigenvector of the quadrature x = 1
2 (a† +a) with eigenvalue

x and U is the unitary operator achieving the mode transformation
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U†
(
a

b

)
U =

(
e−iψ0 cos θ e−iψ1 sin θ
−eiψ1 sin θ eiψ0 cos θ

)(
a

b

)
. (2.153)

In the case of two radiation modes having the same frequency but orthogo-
nal polarizations—the case of Type II phase-matched parametric amplifier—
(2.152) gives the theoretical probability of outcome x for the homodyne mea-
surement at a polarization angle θ with respect to the polarization of the a
mode, and with ψ0 and ψ1 denoting the relative phases between the LO and
the two modes, respectively. The probability in (2.152) is given by [17]

p(x; θ, ψ0, ψ1)
1√

2π∆2(θ, ψ0, ψ1)
exp

(
− x2

2∆2(θ, ψ0, ψ1)

)
, (2.154)

where the variance ∆2(θ, ψ0, ψ1) reads

∆2(θ, ψ0, ψ1) =
1 + |ξ|2 + 2|ξ| sin 2θ cos(ψ0 + ψ1 − arg ξ)

4(1− |ξ|2) . (2.155)

Taking into account the Gaussian convolution that results from less-than-
unity quantum efficiency, the variance just increases as

∆2(θ, ψ0, ψ1) → ∆2
η(θ, ψ0, ψ1) = ∆2(θ, ψ0, ψ1) +

1− η
4η

. (2.156)

Notice that the probability distribution in (2.154) corresponds to a squeezed
vacuum for θ = π

4 and ψ0 + ψ1 − arg ξ = 0 or π.
We study the tomographic measurement of the joint photon-number prob-

ability distribution and the probability distribution for the total number of
photons with use of the estimators in (2.146) and (2.147), respectively. The
estimators have been numerically evaluated by applying the Gauss method
for calculating the integral in (2.142), which results in a fast and sufficiently
precise algorithm with use of just 150 evaluation points.

In Fig. 2.4 a Monte-Carlo simulation of the joint photon-number proba-
bility distribution is reported. The simulated values compare very well with
the theoretical ones. In [17] a careful analysis of the statistical errors has been
done for various twin-beam states by constructing histograms of deviations
of the results from different simulated experiments from the theoretical ones.
In comparison to the customary two-LO tomography of [85], where for η = 1
the statistical errors saturate for increasingly large n and m, here we have
statistical errors that are slowly increasing versus n and m. This is due to
the fact that the range of the estimators in (2.146) increases versus n and m.
Overall we find that for any given quantum efficiency the statistical errors
are generally slightly larger than those obtained with the two-LO method.
The convenience of using a single LO then comes with its own price tag.

By using the estimator in (2.147) the probability distribution for the total
number of photons N of the twin beams has been also constructed (Fig. 2.5).
Notice the dramatic increase of error bars versus N and for smaller η.
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Fig. 2.4. Two-mode photon-number probability p(n,m) of the twin-beam state in
(2.151) for average number of photons per beam n = 5 obtained by a Monte-Carlo
simulation with the estimator in (2.146) and random parameters cos 2θ, ψ0, and
ψ1. On the left: quantum efficiency η = 1 and 106 data samples were used in the
reconstruction. On the right: η = 0.9, and 5 × 106 data samples (From [17]).

Fig. 2.5. Probability distribution for the total number of photons of the twin
beams in (2.151) for average number of photons per beam n = 2 obtained using the
estimator in (2.147). Samples of 107 data with quantum efficiency η = 0.9 (on the
left), and of 2 × 107 data with η = 0.8 (on the right). The theoretical probability
(thick solid line) is superimposed onto the result of the Monte-Carlo experiment;
the latter is shown by the thin solid line. Notice the dramatic increase of errors (in
gray shade) versus N and for smaller η (From [17]).

The first experimental results of a measurement of the joint photon-
number probability distribution for a two-mode quantum state created by
a nondegenerate optical parametric amplifier has been presented in [84]. In
this experiment, however, the twin beams are detected separately by two
balanced-homodyne detectors. Some experimental results are reported in
Fig. 2.6. As expected for parametric fluorescence, the experiment has shown a
measured joint photon-number probability distribution that exhibited up to
1.9 dB of quantum correlation between the two modes, with thermal marginal
distributions.
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Fig. 2.6. Left: Measured joint photon-number probability distribution for the twin-
beam state with average number of photons per beam n̄ = 1.5 and 400000 samples.
Right: marginal distribution for the signal beam for the same data. The theoretical
distribution is also shown. Very similar results are obtained for the idler beam
(From [84]).

2.6 Maximum-Likelihood Method
in Quantum Estimation

Quantum estimation of states, observables and parameters is, from very ba-
sic principles, matter of statistical inference from a population sampling, and
the most comprehensive quantum estimation procedure is quantum tomog-
raphy. As we have shown in Sect. 3, the expectation value of an operator is
obtained by averaging an estimator over the experimental data of a “quo-
rum” of observables. The method is very general and efficient, however, in
the averaging procedure, we have fluctuations which result in relatively large
statistical errors.

Another relevant strategy, the maximum-likelihood (ML) method, can be
used in quantum estimation. The ML strategy [86,87] is an entirely different
approach to quantum state measurement compared to the standard quantum-
tomographic techniques. The ML procedure consists in finding the quantum
state, or the value of the parameters, that are most likely to generate the
observed data. This idea can be quantified and implemented using the concept
of the likelihood functional.

A detailed account of ML methods in quantum estimation will be given
in the chapter by Z. Hradil et al in this book. Here we will review the appli-
cations of ML proposed in [23] and [31] to the quantum state reconstruction,
with examples for both radiation and spin systems, and, finally, considering
the ML estimation for the relevant class of Gaussian states in quantum optics.

As regards state estimation, the ML method estimates the quantum state
as a whole. Such a procedure incorporates a priori knowledge about rela-
tions between elements of the density matrix. This guarantees positivity and
normalization of matrix, with the result of a substantial reduction of statis-
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tical errors. Regarding the estimation of specific parameters, we notice that
in many cases the resulting estimators are efficient, unbiased and consistent,
thus providing a statistically reliable determination.

As we will show, by using the ML method only small samples of data
are required for a precise determination. However, ML may not always be
the optimal solution of the tomographic problem. Besides being biased due
to the Hilbert space truncation—even though the bias can be very small if,
from other methods, we know where to truncate—it cannot be generalized
to the estimation of any ensemble average, but just of a set of parameters
from which the density matrix depends. In addition, for increasing number
of parameters the method has exponential complexity.

2.6.1 Maximum Likelihood Principle

Here we briefly review the theory of the maximum-likelihood (ML) estimation
of a single parameter. The generalization to several parameters, as for exam-
ple the elements of the density matrix, is straightforward. The only point that
should be carefully analyzed is the parameterization of the multidimensional
quantity to be estimated. In the next section the specific case of the density
matrix will be discussed.

Let p(x|λ) the probability density of a random variable x, conditioned to
the value of the parameter λ. The form of p is known, but the true value of λ
is unknown, and will be estimated from the result of a measurement of x. Let
x1, x2, ..., xN be a random sample of size N . The joint probability density of
the independent random variable x1, x2, ..., xN (the global probability of the
sample) is given by

L(x1, x2, ..., xN |λ) = ΠNk=1p(xk|λ) , (2.157)

and is called the likelihood function of the given data sample (hereafter we
will suppress the dependence of L on the data). The maximum-likelihood es-
timator (MLE) of the parameter λ is defined as the quantity λml ≡ λml({xk})
that maximizes L(λ) for variations of λ, namely λml is given by the solution
of the equations

∂L(λ)
∂λ

= 0 ;
∂2L(λ)
∂λ2 < 0 . (2.158)

The first equation is equivalent to ∂L/∂λ = 0 where

L(λ) = logL(λ) =
N∑
k=1

log p(xk|λ) (2.159)

is the so-called log-likelihood function.
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In order to obtain a measure for the confidence interval in the determi-
nation of λml we consider the variance

σ2
λ =

∫ [∏
k

dxk p(xk|λ)
]

[λml({xk})− λ]2 . (2.160)

In terms of the Fisher information

F =
∫
dx

[
∂p(x|λ)
∂λ

]2 1
p(x|λ) , (2.161)

it is easy to prove that

σ2
λ ≥

1
NF

, (2.162)

where N is the number of measurements. The inequality in (2.162) is known
as the Cramér-Rao bound [88] on the precision of the ML estimation. Notice
that this bound holds for any functional form of the probability distribution
p(x|λ), provided that the Fisher information exists ∀λ and ∂λp(x|λ) exists
∀x. When an experiment has “good statistics” (i.e. for a large enough data
sample) the Cramér-Rao bound is saturated.

2.6.2 ML Quantum State Estimation

In this section we review the method of the maximum likelihood estimation
of the quantum state of [23], focusing attention to the cases of homodyne and
spin tomography.

We consider an experiment consisting of N measurements performed on
identically prepared copies of a given quantum system. Each measurement is
described by a positive operator-valued measure (POVM). The outcome of
the ith measurement corresponds to the realization of a specific element of
the POVM used in the corresponding run, and we denote this element by Πi.
The likelihood is here a functional of the density matrix L(ρ) and is given by
the product

L(ρ) =
N∏
i=1

Tr(ρΠi) , (2.163)

which represents the probability of the observed data. The unknown element
of the above expression, which we want to infer from data, is the density
matrix describing the measured ensemble. The estimation strategy of the ML
technique is to maximize the likelihood functional over the set of the density
matrices. Several properties of the likelihood functional are easily found, if we
restrict ourselves to finite dimensional Hilbert spaces. In this case, it can be
easily proved that L(ρ) is a concave function defined on a convex and closed
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set of density matrices. Therefore, its maximum is achieved either on a single
isolated point, or on a convex subset of density matrices. In the latter case,
the experimental data are insufficient to provide a unique estimate for the
density matrix using the ML strategy. On the other hand, the existence of a
single maximum allows us to assign unambiguously the ML estimate for the
density matrix.

The ML estimation of the quantum state, despite its elegant general for-
mulation, results in a highly nontrivial constrained optimization problem,
even if we resort to purely numerical means. The main difficulty lies in the
appropriate parameterization of the set of all density matrices. The param-
eter space should be of the minimum dimension in order to preserve the
maximum of the likelihood function as a single isolated point. Additionally,
the expression of quantum expectation values in terms of this parameteriza-
tion should enable fast evaluation of the likelihood function, as this step is
performed many times in the course of numerical maximization.

For such purpose one introduces [23] a parameterization of the set of
density matrices which provides an efficient algorithm for maximization of
the likelihood function. We represent the density matrix in the form

ρ = T †T , (2.164)

which automatically guarantees that ρ is positive and Hermitian. The re-
maining condition of unit trace Trρ = 1 will be taken into account using
the method of Lagrange multipliers. In order to achieve the minimal param-
eterization, we assume that T is a complex lower triangular matrix, with
real elements on the diagonal. This form of T is motivated by the Cholesky
decomposition known in numerical analysis [89] for arbitrary non negative
Hermitian matrix. For an M -dimensional Hilbert space, the number of real
parameters in the matrix T is M + 2M(M − 1)/2 = M2, which equals the
number of independent real parameters for a Hermitian matrix. This confirms
that such parameterization is minimal, up to the unit trace condition.

In numerical calculations, it is convenient to replace the likelihood func-
tional by its natural logarithm, which of course does not change the location
of the maximum. Thus the log-likelihood function subjected to numerical
maximization is given by

L(T ) =
N∑
i=1

ln Tr(T †TΠi)− λTr(T †T ) , (2.165)

where λ is a Lagrange multiplier accounting for normalization of ρ. Writing
ρ in terms of its eigenvectors |ψµ〉 as ρ =

∑
µ y

2
µ|ψµ〉〈ψµ|, with real yµ, the

maximum likelihood condition ∂L/∂yν = 0 reads

λyν =
N∑
i=1

[yν〈ψν |Πi|ψν〉/Tr(ρΠi)] , (2.166)
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which, after multiplication by yν and summation over ν, yields λ = N . The
Lagrange multiplier then equals the total number of measurements N .

This formulation of the maximization problem allows one to apply stan-
dard numerical procedures for searching the maximum over the M2 real pa-
rameters of the matrix T . The examples presented below use the downhill
simplex method [90].

The first example is the ML estimation of a single-mode radiation field.
The experimental apparatus used in this technique is the homodyne detector.
According to Sect. 2.3.3 the homodyne measurement is described by the
positive operator-valued measure

H(x;ϕ) =

√
2η

π(1− η) exp
[
− 2η

1− η (Xϕ − x)2
]
, (2.167)

where η is the detector efficiency, and Xϕ = (a† eiϕ+a e−iϕ)/2 is the quadra-
ture operator at phase ϕ.

After N measurements, we obtain a set of pairs (xi;ϕi), where i =
1, . . . , N . The log-likelihood functional is given by (2.165) withΠi≡H(xi;ϕi).
Of course, for a light mode it is necessary to truncate the Hilbert space to
a finite dimensional basis. We shall assume that the highest Fock state has
M − 1 photons, i.e. that the dimension of the truncated Hilbert space is
M . For the expectation Tr[T †TH(x;ϕ)] it is necessary to use an expression
which is explicitly positive, in order to protect the algorithm against occur-
rence of small negative numerical arguments of the logarithm function. A
simple derivation yields

Tr[T †TH(x;ϕ)] =
√
η

M−1∑
k=0

k∑
j=0

∣∣∣∣∣
k−j∑
n=0

〈k|T |n+ j〉Bn+j,n〈n|
√
ηx〉einϕ

∣∣∣∣∣
2

, (2.168)

where

Bn+j,n =
[(
n+ j
n

)
ηn(1− η)j

]1/2

, (2.169)

and

〈n|x〉 =
(

2
π

)1/4 1√
2nn!

Hn(
√

2x) exp(−x2) (2.170)

are the eigenstates of the harmonic oscillator in the position representation—
Hn(x) being the nth Hermite polynomial.

The ML technique can be applied to reconstruct the density matrix in
the Fock basis from Monte Carlo simulated homodyne statistics. Figure 2.7
depicts the matrix elements of the density operator as obtained for a co-
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Fig. 2.7. Reconstruction of the density matrix of a single-mode radiation field by
the ML method. The plot shows the matrix elements of a coherent state (left) with
〈a†a〉 = 1 photon, and for a squeezed vacuum (right) with 〈a†a〉 = 0.5 photon.
A sample of 50000 simulated homodyne data for quantum efficiency η = 80% has
been used (From [23]).

herent state and a squeezed vacuum, respectively. Remarkably, only 50000
homodyne data have been used for quantum efficiency η = 80%. We recall
that in quantum homodyne tomography the statistical errors are known to
grow rapidly with decreasing efficiency η of the detector [78,91]. In contrast,
the elements of the density matrix reconstructed using the ML approach re-
main bounded, as the whole matrix must satisfy positivity and normalization
constraints. This results in much smaller statistical errors. As a comparison
one could see that the same precision of the reconstructions in Fig. 2.7 could
be achieved using 107–108 data samples with conventional quantum tomog-
raphy. On the other hand, in order to find numerically the ML estimate we
need to set a priori the cut-off parameter for the photon number, and its
value is limited by increasing computation time.

Another relevant example is the reconstruction of the quantum state of
two-mode field using single-LO homodyning. Here, the full joint density ma-
trix can be measured by scanning the quadratures of all possible linear com-
binations of modes. For two modes the measured quadrature operator is
given by

X(θ, ψ0, ψ1) =
1
2
(ae−iψ0 cos θ + be−iψ1 sin θ + h.c.) , (2.171)

where (θ, ψ0, ψ1) ∈ S2 × [0, 2π], S2 being the Poincaré sphere and one phase
ranging between 0 and 2π. In each run these parameters are chosen randomly.
The POVM describing the measurement is given by the right-hand side of
(2.167), with Xϕ replaced by X(θ, ψ0, ψ1). An experiment for the two or-
thogonal states |Ψ1〉 = (|00〉+ |11〉)/

√
2 and |Ψ2〉 = (|01〉+ |10〉)/

√
2 has been

simulated, in order to reconstruct the density matrix in the two-mode Fock
basis using the ML technique. The results are reported in Fig. 2.8.

The ML procedure can also be applied for reconstructing the density
matrix of spin systems. For example, let us consider N repeated preparations
of a pair of spin-1/2 particles. The particles are shared by two parties. In



52 Giacomo Mauro D’Ariano et al.

00
01
10
02
11
20

nm

00
01
10
02
11
20

ls

0.1

0.3

0.5

ρnm,ls

00
01
10
02
11
20

nm

00
01
10
02
11
20

nm

00
01
10
02
11
20

ls

0.1

0.3

ρnm,ls

00
01
10
02
11
20

nm

Fig. 2.8. ML reconstruction of the density matrix of a two-mode radiation field.
On the left the matrix elements obtained for the state |Ψ1〉 = (|00〉 + |11〉)/√2; on
the right for |Ψ2〉 = (|01〉+ |10〉)/√2. For |Ψ1〉 we used 100000 simulated homodyne
data and η = 80%; for |Ψ2〉 we used 20000 data and η = 90% (From [23]).

each run, the parties select randomly and independently from each other
a direction along which they perform a spin measurement. The obtained
result is described by the joint projection operator (spin coherent states [92])
Fi = |ΩAi , ΩBi 〉〈ΩAi , ΩBi |, where ΩAi and ΩBi are the vectors on the Bloch
sphere corresponding to the outcomes of the ith run, and the indices A and
B refer to the two particles. As in the previous examples, it is convenient
to use an expression for the quantum expectation value Tr(T †TFi) which is
explicitly positive. The suitable form is

Tr(T †TFi) =
∑
µ

|〈µ|T |ΩAi , ΩBi 〉|2 , (2.172)

where |µ〉 is an orthonormal basis in the Hilbert space of the two particles.
Summarizing, the ML technique can be used to estimate the density ma-

trix of a quantum system. With respect to conventional quantum tomography
this method has the great advantage of needing much smaller experimental
samples, making experiments with low data rates feasible, however with a
truncation of the Hilbert space dimension. We have shown that the method is
general and the algorithm has solid methodological background, its reliability
being confirmed in a number of Monte Carlo simulations. However, for in-
creasing dimension of Hilbert spaces the method has exponential complexity.

2.6.3 Gaussian-State Estimation

In this section we review the ML determination method of [31] for the pa-
rameters of Gaussian states. Such states represent the wide class of coherent,
squeezed and thermal states, all of them being characterized by a Gaussian
Wigner function. Apart from an irrelevant phase, we consider Wigner func-
tions of the form

W (x, y) =
2∆2

π
exp

{
−2∆2 [e−2r(x− Reµ)2 + e2r(y − Imµ)2

]}
, (2.173)
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and the ML technique with homodyne detection is applied to estimate the
four real parameters ∆, r,Reµ and Imµ. The four parameters provide the
number of thermal, squeezing and coherent-signal photons in the quantum
state as follows

nth =
1
2

(
1
∆2 − 1

)
,

nsq = sinh2 r ,

ncoh = |µ|2 . (2.174)

The density matrix ρ corresponding to the Wigner function in (2.173) writes

ρ = D(µ)S(r)
1

nth + 1

(
nth

nth + 1

)a†a

S†(r)D†(µ) , (2.175)

where S(r) = exp[r(a2 − a†2)/2] and D(µ) = exp(µa† − µ∗a) denote the
squeezing and displacement operators, respectively.

The theoretical homodyne probability distribution at phase ϕ with re-
spect to the local oscillator can be evaluated using (2.7), and is given by the
Gaussian

p(x, ϕ) =

√
2∆2

π(e2r cos2 ϕ+ e−2r sin2 ϕ)

× exp
{
− 2∆2

e2r cos2 ϕ+ e−2r sin2 ϕ

[
x− Re(µ e−iϕ)

]2}
. (2.176)

The log-likelihood function (2.159) for a set of N homodyne outcomes xi at
random phase ϕi then writes as follows

L =
N∑
i=1

1
2

log
2∆2

π(e2r cos2 ϕi + e−2r sin2 ϕi)

− 2∆2

e2r cos2 ϕi + e−2r sin2 ϕi

[
xi − Re(µ e−iϕi)

]2
. (2.177)

The ML estimators ∆ml, rml,Reµml and Imµml are found upon maximizing
(2.177) versus ∆, r,Reµ and Imµ.

In order to evaluate globally the state reconstruction, one considers the
normalized overlap O between the theoretical and the estimated state

O =
Tr[ρ ρml]√

Tr[ρ2] Tr[ρ2ml]
. (2.178)

Notice that O = 1 iff ρ = ρml. Through Monte-Carlo simulations, one al-
ways finds a value around unity, typically with statistical fluctuations over
the third digit, for number of data samples N = 50000, quantum efficiency
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Fig. 2.9. Photon-number probability of a squeezed-thermal state (thermal pho-
tons nth = 0.1, squeezing photons nsq = 3). Compare the reconstructed probabil-
ities by means of the maximum likelihood method and homodyne detection (gray
histogram) with the theoretical values (black histogram). Number of data samples
N = 50000, quantum efficiency η = 80%. The statistical error affects the third
decimal digit, and it is not visible on the scale of the plot (From [31]).

at homodyne detectors η = 80%, and state parameters with the following
ranges: nth < 3, ncoh < 5, and nsq < 3. Also with such a small number of
data samples, the quality of the state reconstruction is so good that other
physical quantities that are theoretically evaluated from the experimental
values of ∆ml, rml,Reµml and Imµml are inferred very precisely. For exam-
ple, in [31] the photon number probability of a squeezed thermal state has
been evaluated, which is given by the integral

〈n|ρ|n〉 =
∫ 2π

0

dφ

2π
[C(φ, nth, r)− 1]n

C(φ, nth, r)n+1 , (2.179)

with C(φ, nth, r) = (nth + 1
2 )(e−2r sin2 φ + e2r cos2 φ) + 1

2 . The comparison
of the theoretical and the experimental results for a state with nth = 0.1
and nsq = 3 is reported in Fig. 2.9. The statistical error of the reconstructed
number probability affects the third decimal digit, and is not visible on the
scale of the plot.

The estimation of parameters of Gaussian Wigner functions through the
ML method allows one to estimate the parameters in quadratic Hamiltonians
of the generic form

H = αa+ α∗a† + ϕa†a+
1
2
ξa2 +

1
2
ξ∗a†2 . (2.180)

In fact, the unitary evolution operator U = e−iHt preserves the Gaussian
form of an input state with Gaussian Wigner function. In other words, one
can use a known Gaussian state to probe and characterize an optical device
described by a Hamiltonian as in (2.180). Assuming t = 1 without loss of
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generality, the Heisenberg evolution of the radiation mode a is given by

U† aU = γa+ δa† + µ , (2.181)

with

γ = cos(
√
ϕ2 − |ξ|2)− i ϕ√

ϕ2 − |ξ|2
sin(

√
ϕ2 − |ξ|2) , (2.182)

δ = −i ξ∗√
ϕ2 − |ξ|2

sin(
√
ϕ2 − |ξ|2) ,

µ =
ϕα∗ − ξ∗α
ϕ2 − |ξ|2 (cos(

√
ϕ2 − |ξ|2)− 1)− i α∗√

ϕ2 − |ξ|2
sin(

√
ϕ2 − |ξ|2) .

For an input state ρ with known Wigner functionWρ(β , β∗), the correspond-
ing output Wigner function writes

WUρU†(β , β∗) =
Wρ[(β − µ)γ∗ − (β∗ − µ∗)δ , (β∗ − µ∗)γ − (β − µ)δ∗] . (2.183)

Hence, by estimating the parameters γ, δ, µ and inverting (2.182), one obtains
the ML values for α,ϕ, and ξ of the Hamiltonian in (2.180). The present
example can be used in practical applications for the estimation of the gain of
a phase-sensitive amplifier or equivalently to estimate a squeezing parameter.
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