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Abstract. Using quantum tomography and a single entangled state it is possible to
characterize completely a quantum device, a channel, or a measuring apparatus. The
method is very robust to imperfections of the tomographers and of the input state
(which more generally can be a “faithful” state), and can be made very efficient by
max-likelihood methods specially designed for this purpose. Using this method with
homodyne detection one can in principle achieve the first absolute characterization
of a photocounter.

Introduction

The new field of quantum information has opened the way to a new kind
of astonishingly efficient information processing achieved by physical trans-
formations. This new kind of processing will be performed by a radically
new generation of quantum devices, and this will make the design of char-
acterization tools for such devices of paramount importance, besides be-
ing already of foundational interest by themselves, for the obvious possi-
bility of experimental determination of the dynamics of a quantum sys-
tem.

Quantum devices can perform either deterministic or probabilistic trans-
formations of a quantum state. The transformations of the deterministic
class are generally referred to as “processes” or “channels”, and describe
the evolution of closed systems or of open systems undergoing an irre-
versible dynamics, such as due to an interaction with a bath. The class of
probabilistic transformations, on the other hand, typically describe the so
called “state reduction” occurring in a quantum measurement. Both types
of transformations can be described in the language of quantum operations
(QO) [1, 2], and, within this common mathematical structure, both deter-
ministic and non-deterministic transformations can be characterized by the
same means.

At the root of the characterization problem, there is the need of find-
ing a way to imprint the description of the QO of the device on a suitable
input state that is processed by the device, and is then characterized at
its output by some quantum tomographic means. Linearity of QO’s is the
first key ingredient for solving this “quantum black box” problem. In [3, 4]
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it was shown that for a “complete” set of input states, i.e. for a set of
generators of the space of states, the “transfer matrix” of the device re-
mains encoded in the input/output correlations in the same way as for any
classical linear system, the only difference being that in the quantum case
one needs many copies of the outputs to perform their quantum tomog-
raphy. Quantum process tomography was achieved by this method in liq-
uid nuclear magnetic resonance systems [5–7], and for processes on qubits
encoded in the polarization of a radiation mode [8, 9]. Unfortunately, this
method needs the preparation of an orthogonal set of input states along
with some relative superpositions, and such sets of states are very seldom
available in the lab: for example, they are not achievable in quantum op-
tics.

Quantum mechanics, however, offers a unique opportunity to achieve
our goal by using a composite system. In fact, in [10] and [11] it was
shown that the action of a quantum process on one system of an en-
tangled pair produces a joint output state containing a complete descrip-
tion of the process itself, a result also known as the Jamiolkowsky iso-
morphism [12, 13]. In simple words, a fixed maximally entangled input
state supports the imprinting of any QO, as if it was effectively running
all possible input states in parallel, and in this way the determination of
the process is achieved by simply performing the tomography of the joint
state at the output, with the device acting on one of the two entangled
systems only. Experiments of process tomography using entangled input
probes have been recently implemented [14–16] for optical qubits, and pro-
posed for optical “continuous variables” systems using homodyne tomogra-
phy [10].

In [17], the two methods—“many inputs” versus “single entangled in-
put”—have been bridged together in a complete classification of all states
(and/or all ensembles of states) that support a complete imprinting of a
generic QO, thereafter named “faithful states”. There, the existence of sepa-
rable faithful states has been established, thus clarifying that for the “quan-
tum black box” problem the only thing that matters is the use of composite
systems (i. e. with the tensor product rule), more than entanglement itself.
Among such faithful separable states there are also the Werner states used in
the process tomography experiment of [15]. In [17], a measure of the “faith-
fulness” of the state has also been given, which measure in some way the
precision of the tomographic characterization, showing that maximally en-
tangled states offer the best performance.

Once the information on the process is encoded on the quantum state, all
known techniques of state-tomography and state-discrimination [18] can be
applied. Such techniques will allow, in the future, a precise characterization
of any kind of quantum device, from an optical fiber for a quantum commu-
nication channel, to an NMR qubit gate, from a parametric amplifier to a
photon-counting detector.
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The present chapter is aimed at a complete and self-contained presenta-
tion of the theoretical basis of the methods for imprinting quantum opera-
tions on quantum states, also providing concrete examples of experimental
setups based on homodyne tomography, to be used for tomography of either
quantum processes or detectors. In Sect. 8.1 we introduce the formalism of
quantum operations (QO) and positive operator-valued measures (POVM)
for describing the state transformations operated by a quantum device and
the statistics of the outcomes of a quantum measurement, respectively. The
properties of these two mathematical objects are derived as necessary conse-
quences of the definition and interpretation of quantum state, and the defi-
nition of the states of composite systems. These properties are the starting
point for constructing powerful representations of QO’s that will be used
first for illustrating the relation between QO’s and POVM with customary
unitary evolutions and projective measurements, and then to analyze the
problem of the characterization of a device. This mathematical framework is
then employed in Sect. 8.2 for giving the complete classification of the faith-
ful states—i.e. the input states that can be used for the characterization of a
quantum device—and to address the problem of quantifying their degree of
faithfulness. Finally, Sect. 8.3 is devoted to the exposition of a quantum opti-
cal setup for performing a device characterization by homodyne tomography
using an entangled input state from parametric down-conversion of vacuum.
Finally, we report numerical simulations of experimental results that can be
obtained with the current technology for the homodyne tomography of an
amplitude displacing device and of an On/Off photo-detector, using either
the averaging or the maximum-likelihood strategies.

8.1 Quantum Operations and Quantum Measurements

Quantum operations (QO), introduced for the first time in [1,2], describe all
possible transformations—either deterministic or probabilistic—of the state
ρ of a quantum system. Mathematically, QO’s are completely positive (CP)
linear maps from the set of (trace-class) operators on H to itself, and are
trace preserving when deterministic and trace-decreasing when probabilistic,
with the probability of occurrence given by the output trace.

In this section we’ll show how these properties for QO’s can be traced back
to the indistinguishability of different preparations of the same ensemble of
systems and to the tensor product structure of composite systems. After
these observations, we will introduce a one-to-one correspondence between
CP maps and positive operators on H⊗2, which provides the easiest framework
to proof most relevant results concerning quantum operations.

At the end, we will review the concept of POVM and its connection
with quantum operations, for representing the probability distribution of the
outcomes of a quantum measurement.
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8.1.1 Properties of Quantum Operations

Let’s consider a system in the state ρ, and suppose it enters a device in which
a physical transformation described by the map T

ρ �→ T (ρ) (8.1)

occurs with a probability p(ρ), in such a way that we know whether the trans-
formation has occurred or not. This situation describes a general quantum
measurement, in which an “occurrence flag” for the transformation represents
the “outcome”, and the dependence of p(ρ) on ρ will give us some information
on the state of the system. Since T (ρ) is a quantum state, then the map T
satisfies for all ρ

T (ρ) ∈ T(H) , T (ρ) ≥ 0 , and tr T (ρ) = 1 , (8.2)

where T(H) denotes trace-class operators on H. Consider now an ensemble of
systems prepared as {(pi, ρi)}. After the action of the device, the portion of
systems having undergone the transformation is

∑
i pi p(ρi), and the selection

of these systems yields an ensemble described by the state

ρ′ =
∑
i pi p(ρi) T (ρi)∑
i pi p(ρi)

.

On the other hand, the initial ensemble is also represented by the state
ρ =

∑
i pi ρi, so that the final post-selected ensemble will correspond to

the state T (ρ), with a fraction of transformed systems equal to p(ρ). The two
descriptions must be consistent, because of the indistinguishability of two
different preparations of the same ensemble, thus the fraction of transformed
systems and the final state must be the same in both cases, namely

p(ρ) =
∑
i

pi p(ρi) , (8.3)

T (ρ) =
∑
i pi p(ρi) T (ρi)∑
i pi p(ρi)

. (8.4)

The first equation implies that p(ρ) is a linear function of ρ, and, as we
shall see later, this holds for any probability distribution of the outcomes
of a quantum measurement, and it is unrelated to the details of the state
transformation corresponding to each outcome: this will allow us to introduce
the concept of POVM, which gives only the probability distribution of the
outcomes as a function of the state. In the present context we are actually
describing a “yes/no” measurement, i.e. our transformation T “has” or “has
not” occurred.

If we now introduce the map E(ρ) .= p(ρ)T (ρ), (8.4) tells us that E is a
linear function of ρ. Taking the trace of the above definition of E , and remem-
bering that tr T (ρ) = 1, we find p(ρ) = tr E(ρ), so that the transformation T
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and the probability p(ρ) can be written in terms of E as follows

T (ρ) =
E(ρ)

tr E(ρ)
, p(ρ) = tr E(ρ) . (8.5)

From (8.2), and from the fact that p(ρ) is a probability, one argues that also
the following properties must hold for E

E(ρ) ≥ 0 (positivity) ,
tr E(ρ) ≤ 1 (trace decreasing or preserving) . (8.6)

The more stringent property of complete positivity for E follows from the
tensor-product structure of composite systems in Quantum Mechanics. In
fact, when T acts only on a single subsystem of a bipartite quantum system,
the joint state R of the system transforms according to

ρ �→ (E ⊗ I) (R) ,

and thus not only E but also its extension E ⊗ I must be positive, in such
a way that the result of the local transformation is still a quantum state.
This must hold for all possible extensions to larger composite systems. This
property is called complete positivity and it is not equivalent to positivity,
as counterexamples exist. For example, the transposition of the state with
respect to a given basis ρ �→ ρT is a linear, positive, trace preserving map,
but generally gives a non positive operator when acting on a system of an
entangled pair, whence it is not completely positive and it can’t be achieved
physically. In the following we will refer to completely positive linear maps
simply as CP maps, quantum operations corresponding to the class of trace
non-increasing CP maps.

Up to now, we have shown that any transformation of the state of a
quantum system is described by a quantum operation (QO), namely a lin-
ear, completely positive, trace non increasing map E : T(H) → T(H), with
the state transformation given by ρ �→ E(ρ)/ tr E(ρ), and occurring with
probability p(ρ) = tr E(ρ). Trace preserving QO’s describe deterministic
transformations—also called quantum processes, or channels)—namely with
p(ρ) = 1, whereas trace decreasing QO’s describe the transformation of the
state of a system undergoing a quantum measurement for a given outcome
occurring with a probability p(ρ) = tr E(ρ) ≤ 1.

8.1.2 Representing CP Maps

In the following we will suppose dim(H) < ∞, whence we will generically
denote trace-class, Hilbert-Schmidt and bounded operators on H simply
as B(H). CP maps are nothing but a special subset of the set of linear
maps from B(H) to B(H), and therefore they can be represented by means
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of their “matrix elements”

E lmij = 〈i| E
(
|l〉〈m|

)
|j〉 , (8.7)

so that, once defined ρlm = 〈l|ρ|m〉, E(ρ) can be evaluated as

E(ρ) =
∑
ijlm

E lmij ρlm|i〉〈j| . (8.8)

However, to have more insight into the structure of linear maps, it is prefer-
able to reorganize the set of matrix elements E lmij into an operator on H⊗H,
aiming that the properties of the map (being CP, trace decreasing, invertible,
etc.) have a simple translation into properties of the associated operator.

The following notation will be useful to simplify calculations by avoiding
the use of a lot of indices in our equations, thus making them more insightful.
Fixed an orthonormal basis {|m〉} for the Hilbert space H, we identify any
vector |Ψ〉〉 ∈ H⊗ H,

|Ψ〉〉 =
∑
m,n

Ψmn|m〉 ⊗ |n〉 , (8.9)

with the operator Ψ ∈ B(H) whose matrix elements on the chosen basis
are Ψmn. For example, the vector |I〉〉 represents the maximally entangled
unnormalized vector

∑
m |m〉 ⊗ |m〉. It is easy to check that

A⊗B|C〉〉 = |ACBT 〉〉 , 〈〈A|B〉〉 = tr[A†B] ,
tr2[|A〉〉〈〈B|] = AB† , tr1[|A〉〉〈〈B|] = ATB∗ , (8.10)

where OT and O∗ denote respectively the transposition and the complex
conjugation of the operator O with respect to the chosen basis.

Focusing our attention on the linearity of E , with the notation introduced
in (8.9), we notice that the vector |E(ρ)〉〉 is a linear transformation of |ρ〉〉,
and thus the relation between the two vectors can be expressed by means of
an operator ŠE ∈ B(H⊗ H) such that

| E(ρ) 〉〉 = ŠE |ρ〉〉 . (8.11)

The map is faithfully represented by ŠE , since the previous relation defines
its action on any state. By substituting in the above equation the definition
of E lmij given in (8.7) one finds

ŠE =
∑
ijlm

E lmij |i〉〈l| ⊗ |j〉〈m| . (8.12)

The power of this representation of linear maps resides in the fact that it
translates the composition of two maps into the multiplication of their related
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operators, as one can easily verify from the following identity

| E1 ◦ E2(ρ) 〉〉 = ŠE1 | E2(ρ) 〉〉 = ŠE1 ŠE2 |ρ〉〉 . (8.13)

Moreover, such a representation provides a useful tool to evaluate some prop-
erties of the map. For example, the image of the map E(B(H)) corresponds
to the set the operators A such that |A〉〉 ∈ Rng ŠE , where “Rng” denotes the
range (i.e. the image) of an operator. Analogously, the kernel of E , i.e. the
set of operators A such that E(A) = 0, is exactly the set of operators A such
that |A〉〉 ∈ Ker ŠE . Finally, by definition, E is invertible iff ŠE is invertible,
and the two inverses are related through the identity

| E−1(ρ) 〉〉 = Š−1
E |ρ〉〉 , (8.14)

so that

| E−1 ◦ E(ρ) 〉〉 = Š−1
E ŠE |ρ〉〉 = |ρ〉〉 .

Being too much geared around linearity, unfortunately the above rep-
resentation of maps tells us nothing about complete positivity. In order to
explore this, it is convenient to introduce another operator representation of
the map E in terms of the operator SE ∈ B(H⊗ H) resulting from the action
of the extended map E⊗I on the operator |I〉〉〈〈I| ∈ B(H⊗ H) [12,13], namely

SE = (E ⊗ I) [ |I〉〉〈〈I| ] =
∑
ijlm

E lmij |i〉〈j| ⊗ |l〉〈m| . (8.15)

The inverse relation of identity (8.15) can be easily checked to be

E(ρ) = tr2[(I ⊗ ρT )SE ] . (8.16)

A comparison between (8.12) and (8.15) shows that ŠE and SE are connected
by a transposition of indices: if the matrix elements of the first are E lmij , the
ones of the second are Ejmil , or in other terms

ŠE = (ST2
E E)T2 = (E ST1

E )T1 , (8.17)

where E =
∑
ij |i〉〈j| ⊗ |j〉〈i| is the so called swap operator, and OTl denotes

the partial transposition of the operator O on the l-th Hilbert space.
One immediately notices that if E is CP, then SE is a positive operator,

since it results from the application of the extension E⊗I of a CP map to the
positive operator |I〉〉〈〈I|. Actually, the converse holds too, namely any map
defined through (8.16) with SE ≥ 0 is CP. In fact, given that SE is positive,
it can be decomposed as

SE =
∑
i

|Ai〉〉〈〈Ai| , (8.18)
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so that by substituting the above equation into (8.16), and applying the rules
of (8.10), one finds that the resulting map can be expressed in the so called
Kraus form [19]

E(ρ) =
∑
i

AiρA
†
i . (8.19)

Any map of this form is completely positive, in fact the result of the action
of its extension E ⊗ I on a positive operator R ∈ B(H⊗ K) is

RE = E ⊗ I[R ] =
∑
i

(Ai ⊗ I) R (A†
i ⊗ I) , (8.20)

which is still positive since

〈〈Ψ |RE |Ψ〉〉 =
∑
i

〈〈A†
iΨ |R|A

†
iΨ〉〉 ≥ 0 , ∀ |Ψ〉〉 . (8.21)

Of course, any CP map E admits a Kraus form that can be found by
decomposing SE as we did in (8.18). When this decomposition is a diagonal-
ization, i.e., when |Ai〉〉 are the unnormalized orthogonal eigenvectors, then
the related Kraus form is said to be canonical, and it has the minimum re-
quired number of operators, corresponding to the eigenvectors of SE , i.e. the
cardinality of the Kraus decomposition is rank SE . Any couple of Kraus de-
compositions {Ai} and {Bi} are connected as Bi =

∑
j vijAj , where vij is

an isometry (i.e.
∑
j vijvjk = δik). In terms of a Kraus decomposition {Ai}

of the map E one can also express ŠE as

ŠE =
∑
i

Ai ⊗A∗
i , (8.22)

as it easily follows from the definition of ŠE in (8.11) and the first rule
in (8.10).

Several properties other than complete positivity can be expressed in
terms of SE or equivalently in terms of the elements of a Kraus decomposition
{Ai}, for example, the trace decreasing condition becomes

tr1 SE ≤ I or equivalently
∑
i

A†
iAi ≤ I , (8.23)

where the equality sign would imply that the map is trace preserving.
If rankSE = 1 then the map is pure (i.e. it preserves purity of input

states), and its Kraus decomposition has only one element. Unitary evolu-
tions are the only pure trace preserving transformations, and they play a
special role since any other deterministic map can be realized as a unitary
transformation acting on the system plus an ancilla whose state is then dis-
regarded. In fact, given a Kraus decomposition {Ai}i=1...r of the map E one
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can define an operator U on the Hilbert space H ⊗ C
r whose action on the

vectors of the basis of the form |m〉|0〉 is defined as

U |m〉|0〉 =
r∑
i=1

(Ai|m〉) |i〉 = |m, 0〉〉′ , (8.24)

Since the map is trace preserving, then
∑
iA

†
iAi = I, and this assures that

the resulting vectors |m, 0〉〉′ in (8.24) are orthonormal: the operator U can
then be easily extended to a unitary operator using a larger orthonormal set
by means of the customary Gram-Schmidt procedure. By making the ancilla
prepared in the state |0〉 interact with the system in the state ρ by means of
the unitary transformation U , the final “local” state of the system only reads

E(ρ) = tr2[ U (ρ⊗ |0〉〈0|)U† ] . (8.25)

Notice that instead of disregarding the ancilla as we did in the previous
equation, one could instead perform a measurement on it, for example by
measuring the orthonormal basis |i〉, thus obtaining the state of the system
in correspondence of the outcome i in terms of the pure trace decreasing
quantum operation

ρi =
Ai ρA

†
i

tr [Ai ρA
†
i ]
. (8.26)

If we do not read the result of such a measurement, we still end up with a
system in the state E(ρ) =

∑
i p(i|ρ)ρi : the emergence of a non-pure quantum

operation such as E can be interpreted as a “measurement without reading
the outcome”, or else as an information leakage in an environment. This is
another way to understand how unitary operators describe the evolution of
a closed system, whereas non pure trace preserving CP maps represent the
evolution of open systems in interaction with a reservoir.

The procedure used to build U actually accomplishes a purification of
E that is analogous to the purification of a mixed state, and it is a sort of
purification of the operator SE . It also returns unitaries to their priviliged
role at the axiomatic level.

As we argued from (8.26), it is possible to realize a trace decreasing map
by means of a suitable joint unitary evolution of the system coupled with an
ancilla, followed by a final projective measurement on the ancilla. Consider
for example a measurement leading to N possible results {1 . . . N}, and such
that in relation to the outcome k the state is transformed according to a
map E(k) whose Kraus decomposition is {A(k)

i }i=1...rk
. If we do not read the

outcomes of the measurement and we do not separate the reduced systems
accordingly, the final ensemble will be described by the state

E(ρ) =
∑
k

p(k|ρ) E
(k)(ρ)

tr E(k)(ρ)
=
∑
k

E(k)(ρ) . (8.27)
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The map E is a non-pure deterministic map admitting {A(k)
i } as its Kraus

decomposition, hence
∑N
k=1

∑rk
i=1A

†(k)
i A

(k)
i = I. If we define U on H⊗C

rmax⊗
C
N such that on the elements of the basis of the form |m〉|0〉|0〉 it behaves as

U |m〉|0〉|0〉 =
N∑
k=1

rk∑
i=1

(A(k)
i |m〉) |i〉|k〉 , (8.28)

then U can be completed to a unitary operator on the whole space by the
Gram-Schmidt procedure, since the resulting vectors in the above equation
are orthonormal. The original maps can now be realized by evolving the
system in the state ρ jointly with the two additional ancillas prepared in the
state |0〉|0〉 with the unitary U , and then performing a projective measurement
|k〉〈k| on the second ancilla while disregarding the first one with a partial
trace, i.e.

E(k)(ρ) = 3〈k| tr2
[
U (ρ⊗ |0〉〈0| ⊗ |0〉〈0|)U† ] |k〉3 . (8.29)

Also in this case, the maps E(k) are non-pure because some infomation has
leaked into the first ancilla, which has been disregarded. If we would measure
also the basis of the first ancilla, instead of taking the partial trace, in corre-
spondence with the outcome (i, k) the state of the system would be described
by a pure quantum operation

ρ(i,k) =
A

(k)
i ρA

(k)†
i

tr [A(k)
i ρA

(k)†
i ]

. (8.30)

8.1.3 Positive Operator Valued Measures (POVM)

When what matters in a quantum measurement is only the probability dis-
tribution of outcomes in relation to the state of the system, we don’t need the
detailed description of the measurement process given in terms of quantum
operations. Following reasoning lines similar to those followed in Sect. 8.1.1,
in particular from (8.3), it follows that the probability distribution of the
outcomes of any quantum measurement must be linear in the state ρ, and
that therefore it is described by the so called Born’s rule

p(k|ρ) = tr[ρPk] , (8.31)

where k is the outcome and the set {Pk} is called positive operator valued
measure (POVM ), namely it is a set of operators that must be positive and
wit

∑
k Pk = I, in order to have p(k|ρ) a properly positive and normalized

probability distribution [20].
In the present context we are interested in deriving the connection be-

tween QO’s and POVM’s using the operator representation of maps, consid-
ering a measuring process for which each outcome k is described by the CP
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maps E(k). By means of (8.16) the probability distribution of outcomes reads

p(k|ρ) = tr[ E(k)(ρ) ] = tr
[
ρ tr1[SE(k) ]T

]
= tr[ρPk] , (8.32)

and thus the measurement maps E(k) induce the POVM elements Pk which
can also be expressed as

Pk = tr1[SE(k) ]T =
∑
i

A
(k)†
i A

(k)
i , (8.33)

{A(k)
i } being a Kraus decomposition of the k-th map. On the contrary, given

a POVM {Pk} one can always find a set of QO’s E(k) describing a measuring
process with the given POVM, for example using Ak =

√
Pk and E(k)(ρ) =

A(k)ρA(k)†
. By “purifying” these maps with the unitary transformation U

defined in (8.28) of the previous section, we see that it is possible to realize
any POVM in terms of an indirect measurement scheme in which a projective
measurement is performed on an ancilla after a unitary interaction with the
system.

8.2 Imprinting Quantum Operations
into Quantum States

Characterizing a quantum device means performing a measurement that pro-
vides information about the QO performed by the device. However, quantum
measurements can only give information about the state of a system, and
that’s why we need to devise a way to encode the information about the QO
into a quantum state. This will then allow us to use the whole theory of state-
discrimination and state-tomography also for discrimination and tomography
of QO’s.

The way to encode the QO of a device on the state is to let the device
act on some systems suitably prepared, so that their final state contains
an imprinting of the device. The aim of this section is to classify the input
states that support a full imprinting of the QO of the device, i. e. what we
call faithful states. We will also contextually consider the case in which the
information on the QO is carried not by a single state, but by an ensemble
of them, and we will correspondingly call the ensemble faithful.

After briefly recalling the first proposed methods for quantum process to-
mography [3,4], based on the use of many different input states, we shall see
how a single pure entangled state can support a full imprinting of the QO [10].
Then we will extend the analysis to mixed states, showing how entanglement
is not strictly needed [17], and finally giving a complete characterization of
faithful states and ensembles, along with a measure of their “faithfulness”. It
will become clear that the possibility of characterizing a device with a single



308 Giacomo Mauro D’Ariano and Paoloplacido Lo Presti

fixed input state is a distinctive feature of quantum mechanics with no clas-
sical analog, and it is rooted in the tensor-product nature of composite quan-
tum systems, instead of the cartesian-product “classical” composite systems.
However, the fact that entanglement is not strictly necessary for faithfulness
also indicates that the classical input-output correlations are enough to rep-
resent the device itself, but using an ensemble of state, whereas the possibility
of imprinting a complete description of the device into these correlations for
a “single passage” of the device intimately pertains to quantum mechanics.

In what follows, we will first restrict the analysis to devices performing
quantum processes (i.e. deterministic QO’s), and then extend the treatment
to devices performing non deterministic QO’s. Finally we will also present
how to encode a POVM on quantum states [21].

8.2.1 Ensembles of Input States Versus a Single Entangled State

The first proposed methods for quantum process tomography [3,4] exploited
the linearity of the map representing the process, and since a linear operator is
defined by its action on a set of vectors spanning the Hilbert space, in the same
way, any is completely defined by its action on a set of operators generating
the linear space of all operators B(H). Hence, for encoding a quantum process
E on states, one should look for a set of states ρi that span B(H), since then
their respective output states E(ρi) would completely determine E , namely
the set of states would be faithful. In fact, the action of the map E on a
generic state ρ can be recovered by expanding ρ on the generators of the
space, ρ =

∑
i ci ρi, so that by linearity one obtains the action of the map on

any state ρ as E(ρ) =
∑
i ciE(ρi).

As an example, consider the set of states given in [22] for quantum process
tomography

{
|m〉, |φmn〉 =

|m〉+ |n〉√
2

, |ψmn〉 =
|m〉+ i|n〉√

2

}
(8.34)

it is a faithful set of states, as it is a set of generators for B(H) because the
elements of the basis |m〉〈n| of B(H) can be written as

|m〉〈n| = |φmn〉〈φmn|+ i|ψmn〉〈ψmn| −
1 + i

2
|m〉〈m| − 1 + i

2
|n〉〈n| . (8.35)

Quantum process tomography has been realized with this method in liquid
nuclear magnetic resonance systems [5–7], and for qubits encoded in the
polarization of a radiation mode [8, 9], all situations where the dimension
of the Hilbert space of the system is small. A method using the eigenstates
of the quadrature operator as inputs has also been proposed in [23], for a
phase-space representation of quantum transformations.

The above method has its main drawback in the difficulty—usually
impossibility!—of preparing the needed number of the order of dim(H)2 of
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Fig. 8.1. Encoding the information about a quantum device on an bipartite state.
Two identical quantum systems are prepared in the state R. One of the two systems
enters the device and undergoes the map E , whereas the other is left untouched. The
joint output state contains information on E . When such information is complete the
state R is called faithful. A pure input R = |A〉〉〈〈A| is faithful iff rankA = dim(H).

different inputs. As we will see in the following, the method also turns out
to be quite inefficient in achieving the information on the channel with a
minimal number of measurements (the point is not that the device must
be used several times to imprint the information on the channel only once,
since quantum tomography even of a single output state would need many
measurements).

A viable alternative to the above method of “spanning states” inspired by
the operator representation of a channel was presented in [10] and [11], and
experimentally implemented for polarization qubits in [14–16]. By preparing
a bipartite system in the initial state R = |A〉〉〈〈A| and letting the first sub-
system evolve under the map, as depicted in Fig. 8.1, the output state RE
reads

RE = (E ⊗ I) [ |A〉〉〈〈A| ] = (I ⊗AT )SE (I ⊗A∗) . (8.36)

It is clear that whenever the operator A is invertible (i.e. A is full rank, or
equivalently the bipartite system is in a maximal Schmidt’s number entangled
state) it is possible to recover SE from RE by the simple inversion

SE = [I ⊗ (AT )−1]RE [I ⊗ (A∗)−1] , (8.37)

and then the action of the map on a state ρ is found via (8.16), namely

E(ρ) = tr2[ (I ⊗ ρT ) SE ] . (8.38)

Summarizing, any bipartite state with maximal Schmidt number is faith-
ful, namely by entering a quantum device it gets imprinted the full informa-
tion about its channel. This method for encoding a channel on a state exploits
the quantum parallelism of entanglement, with a fixed bipartite entangled
state playing the role of the several input states of the previous method. The
information on the device is encoded in a “native” way, which perfectly re-
flects the nature of the CP map representing the device itself. Moreover, it is
encoded with a single use of the device, in contrast to the many uses of the
method based on the generating set of states (this feature can be exploited at
best in the context of devices discrimination [18], where a single measurement
is allowed). Of course, when no prior knowledge of the device is provided, in
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order to recover the encoded information we have to perform a full quantum
tomography of the output state, whence many copies of the imprinted state
are still necessary. However, the main advantage of the method based on a
single entangled state resides on the fact that a generating set of states is
often not available in the lab, whereas we can produce entangled states: this
is the case, for example, of quantum optics (in the domain of so-called con-
tinuous variables in contrast single qubits encoded on polarization of single
photons), where a faithful entangled state is provided by a twin-beam from
parametric down-conversion of vacuum, whereas photon number states and
their superpositions as in (8.34) will remain an impossible dream for many
years. Another relevant advantage of the single-pure-state method versus the
generating-set one is a much higher statistical efficiency, i.e. the number of
measurements needed to achieve a given statistical error in the reconstruc-
tion of the map of the device. In addition, thanks to the “native way” of
encoding the transformation—reflecting both complete positivity and trace
preserving/decreasing property of the map—the use of the single input state
allows an easy implementation of the maximum likelihood strategies for the
characterization of the device.

All the above observations will be analyzed in detail later in this section,
when a measure of “faithfulness” will be introduced, and also in the next sec-
tion, where some practical applications of this framework for characterizing
quantum devices will be exposed.

8.2.2 Faithful States

In the previous paragraph we showed that a pure entangled bipartite state
|A〉〉 supports the imprinting of a quantum channel whenever the operator A
is invertible. Here we want to extend this result to a generally non pure input
state R, in order to characterize all faithful states.

So let’s consider a bipartite state R, with spectral decomposition R =∑
l |Al〉〉〈〈Al|. By applying the relation |Al〉〉 = (I ⊗ ATl )|I〉〉, we can rewrite

the corresponding output state RE = (E ⊗ I)[R] as

RE = (E ⊗ I)[R ] =
∑
l

( I ⊗ATl ) (E ⊗ I)[ |I〉〉〈〈I| ] ( I ⊗A∗
l ) =

=
∑
l

( I ⊗ATl ) SE ( I ⊗A∗
l ) . (8.39)

If we define the completely positive map R as

R(ρ) =
∑
l

ATl ρA
∗
l , (8.40)

it is immediate to notice that

RE = (I ⊗R) [SE ] , (8.41)



8 Characterization of Quantum Devices 311

and therefore whenever the map R is invertible the output state RE will be
in one-to-one correspondence with SE , and thus with the map E , namely it
will contain all the information about the map.

From the above considerations it follows that the input state R is faith-
ful iff it leads to a map R that is invertible. Recalling what we wrote in
Sect. 8.1.2, and in particular (8.14), the invertibility of the CP map R re-
sorts to the invertibility of a customary operator. In fact, by considering the
following equation involving vectors in H⊗ H

|R(ρ)〉〉 = |
∑
l

ATl ρA
∗
l 〉〉 = (

∑
l

ATl ⊗A
†
l ) |ρ〉〉 .= ŠR|ρ〉〉 , (8.42)

one realizes that the map R is invertible iff the relation between vectors
|R(ρ)〉〉 ↔ |ρ〉〉 is invertible, and looking at the above equation it is clear that
this happens iff the operator ŠR

.=
∑
lA
T
l ⊗ A

†
l on H ⊗ H is invertible. As

we already noticed in Sect. 8.1.2, the action of the inverse map R−1 can be
defined through the relation

|R−1(ρ)〉〉 .= Š−1
R |ρ〉〉 , (8.43)

so that |R−1(R(ρ))〉〉 = Š−1
R ŠR|ρ〉〉 = |ρ〉〉. The operator ŠR can be expressed

directly in terms of R, without having to evaluate its spectral decompo-
sition, as

ŠR = (ER)T2E = (RT2E)T1 (8.44)

where E =
∑
ij |ij〉〈ji| is the swap operator, and OTl denotes the partial

transposition of the operator O on the lth Hilbert space.
In summary, we have found that R is faithful iff ŠR is invertible. In this

case the relation between the output state RE = (E ⊗I)[R] and the operator
SE is one-to-one, with all the information about the CP map E encoded in
RE . The map E can be recovered from the joint output state RE as follows

E(ρ) = tr2
[

(I ⊗ ρT ) (I ⊗R−1)[RE ]
]
. (8.45)

Later we will show some examples of faithful states, and among them
there will be also separable states. On first sight this may be surprising, but
it becomes obvious if one realizes that the set of faithful states is dense,
because it is related to the set of invertible operators which is dense too.

As a further generalization, we now discuss the faithfulness of the bipartite
state R of two quantum systems described by different Hilbert spaces H and
K. We need now to consider vectors in either H⊗ K, H⊗2, or K⊗2, and in all
cases we will keep our notation |A〉〉 for the vectors, with the corresponding
operator A in B(K,H), B(H), or B(K) respectively.

Similarly to the previous reasoning lines, in relation to the biparite input
state R =

∑
l |Al〉〉〈〈Al| on H ⊗ K, the output reads RE = I ⊗ R [SE ], where

the map R(ρ) =
∑
lA
T
l ρA

∗
l now is from B(H) to B(K). Then, faithfulness
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of R is still equivalent to the invertibility of the map R, but now it is more
generally equivalent to its left-invertibility 1. The operator ŠR =

∑
lA
T
l ⊗A

†
l

associated to R now maps vectors in H⊗2 to vectors in K⊗2, and it is still
such that ŠR|ρ〉〉 = |R(ρ)〉〉. Again, faithfulness of R is equivalent to left-
invertibility of the operator ŠR from H⊗2 to K⊗2, that in turn is equivalent
to the condition rank ŠR = dim(H)2. Among all the possible left-inverses of
ŠR one can use the Moore-Penrose pseudo-inverse Š‡

R, and thus define the
left-inverse of the map R as

|R−1(ρ)〉〉 .= Š‡
R|ρ〉〉 , (8.46)

so that one can recover SE from RE by the relation SE = (I ⊗R−1) [RE ].

8.2.3 A Measure of Faithfulness

Even though in principle any faithful state can be used for encoding quantum
processes on their outputs, the actual choice of the input will be dictated by
some figure of merit depending on the particular situation. For example,
consider the case in which we want to discriminate bewteen two processes E1
and E2. For input state R, their respective outputs will be

RE1 = (I ⊗R) [SE1 ] and RE2 = (I ⊗R) [SE2 ] , (8.49)

and thus we shall tune R in order to improve the distinguishability of these
two outputs.

More generally, we see that an overall performance indicator for the faith-
fulness of the state R is a measure of its ability to keep outputs corresponding
to different processes as far as possible in average, namely the ability of the
1 A generic operator T : H → K is left-invertible iff rank T = dim(H). For having
T left-invertible is therefore necessary that dim(K) ≥ dim(H), the inverse being
unique whenever the equality holds, whereas non-unique in the case of a strict
inequality. Among the infinitely many possible left-inverses, the Moore-Penrose
pseudo-inverse T ‡ [24] is the most used one, due to its nice properties. Starting
from the singular values decomposition (SVD) of T

T =
∑

i

σi|vi〉〈ui| , (8.47)

where {|vi〉} and {|ui〉} are two sets of orthonormal vectors, and σi are positive
real numbers (the singular values), T ‡ is defined as

T ‡ =
∑

i

σ−1
i |ui〉〈vi| . (8.48)

By definition, Q = T ‡T is the orthogonal projector on Supp(T ) ≡ Ker(T )⊥,
whence T ‡ inverts T on its support, which for a left-invertible operator coincides
with the whole space H.
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map R in (8.49) to keep its outputs as far as possible. By considering the
singular value decomposition for the operator ŠR

ŠR =
∑
i

σi|Vi〉〉〈〈Ui| , (8.50)

with {|Vi〉〉} and {|Ui〉〉} sets of orthonormal vectors, and σi > 0, and by
remembering that |R(ρ)〉〉 = ŠR|ρ〉〉, the action ofR on an operator ρ becomes

R(ρ) =
∑
i

σi tr[U†
i ρ]Vi , (8.51)

whence it is clear that the smaller are the singular values σi, the nearer are
the outputs of R, since their components on the basis {|Vi} will be shrunk.
Therefore, in summary, the larger are the singular values of ŠR the better is
the chosen input state R.

Thus, a synthetic measure of faithfulness could be for example

F (R) =
∑
i

σ2
i = tr[Š†

RŠR] . (8.52)

This quantity can be expressed in a more meaningful form by observing that
if we use the spectral decomposition R =

∑
i |Ai〉〉〈〈Ai|, with the vectors

|Ai〉〉 being an orthogonal basis, namely 〈〈Ai|Aj〉〉 = tr[A†
iAj ] ∝ δij , then

ŠR =
∑
iA

∗
i ⊗A

†
i , and thus the following equations hold

tr[Š†
RŠR] =

∑
ij

tr[ATi A
∗
j ] tr[AiA

†
j ] =

∑
i

tr[ATi A
∗
i ] tr[AiA

†
i ] =

=
∑
i

(〈〈Ai|Ai〉〉)2 = tr[R†R] . (8.53)

Therefore, from (8.52) one obtains

F (R) = tr[R†R] , (8.54)

so that faithfulness of a state turns out to be exactly its purity. This result
implies that faithful pure states are the optimal faithful states, and that they
yield outputs states encoding the maps that are the most far apart.

The definition of F (R) can be also interpreted in another way. Imagine to
implement quantum process tomography using a finite number of copies of R
as input states, and then reconstruct the output RE . The measured RE will
be affected by experimental errors that will be mostly independent on RE
itself, and these errors will be propagated to the experimental estimation of
SE by the inversion map R−1. Since, in practice, the inversion map involves
multiplications by σ−1

i , then the smaller the singular values of ŠR are the
higher the amplification of experimental errors on the measured SE .
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For an unfaithful state R, ŠR will have at least one null singular value,
yet F (R) is different from zero. Actually, as we shall see, the state can still
be used to recover the action of a device on some inputs only. Moreover, on
such inputs it can achieve an even better reconstruction resolution than a
faithful state, since its faithfulness is focused on a smaller subspace.

8.2.4 Faithful Ensembles of States

Now we will consider the case in which not a single bipartite state, but an
ensemble of them {R(n)}Nn=1 on H ⊗ K is used, and we want to understand
whether or not it is faithful, namely if it supports a complete imprinting of the
information about a quantum process. In other words, we will discuss when
the set of outputs {R(n)

E }, with R(n)
E = (E ⊗ I) [R(n)], is a perfect encoding

of a generic channel E . This analysis will bridge the scenario with the set of
generating states and the one of single bipartite faithful state.

Mathematically, it is evident that the state Rset on H⊗K⊗C
N defined as

Rset =
N∑
n=1

pnR
(n) ⊗ |n〉〈n| , (8.55)

where pn are fixed non vanishing probabilities, is in 1-to-1 correspondence
with the set of states {R(n)}. The same correspondence holds between the
output state

Rset E = (E ⊗ I ⊗ I) [Rset] =
N∑
n=1

pnR
(n)
E ⊗ |n〉〈n| (8.56)

and the set of outputs {R(n)
E }. Hence, if the state Rset E contains all the in-

formation about the map, then the same holds also for the set of outputs
{R(n)

E }, or, equivalently, if Rset is faithful, then the set {R(n)} is faithful too.
Briefly, faithfulness for the set of states {R(n)} is translated into faithful-

ness for the single state Rset. The latter can be evaluated with the techniques
exposed in the previous paragraph for bipartite states, by simply considering
Rset as a bipartite state of H and K⊗ C

N .
The nature of the state Rset can be interpreted from two subtly different

points of view. On one hand, to use Rset is equivalent to running all the states
{R(n)} in parallel, while keeping track of each of them thanks to the tensoring
with the basis |n〉〈n| of C

N . On the other hand, Rset represents the situation
in which the states {R(n)} are employed in the characterization each with
a frequency equal to pn. In fact, measuring the basis |n〉〈n| on C

N (either
before or after the action of the device) is equivalent to preparing the input
R(n) with a probability pn, where n is the outcome of the measurement.

For this reason, any quantity (e.g. the faithfulness F ) being defined for
faithful states can be extended consistently to ensembles of states simply by



8 Characterization of Quantum Devices 315

evaluating it on the corresponding Rset. For example, the faithfulness of a
set of generating states ρn (employed with the same frequency) is equivalent
to the faithfulness of the bipartite state Rset =

∑
n

1
nρn ⊗ |n〉〈n|, and since

the latter is a mixed state, it will lead to a non-optimal faithfulness. This
shows why the encoding on an entangled state is theoretically better than
the encoding on a set of generating states: while in the first case faithfulness
is 1, in the second one it scales as O[1/dim(H)].

8.2.5 Patching Sets of Unfaithful States

An unfaithful state R can still be useful in encoding only some quantum
channels, or at least in encoding partial information about them, which can
then be used to evaluate their action on some particular states. In fact, even
if the map R is not invertible (it maps to zero any state ρ such that |ρ〉〉 ∈
Ker(ŠR)), one can still employ its pseudo-inverse R‡ defined as

|R‡(ρ)〉〉 .= Š‡
R|ρ〉〉 . (8.57)

This map is such that R‡R = Q, where Q is the projection map on the
support of the map R, and which is also defined by

|Q(ρ)〉〉 = Š‡
RŠR|ρ〉〉 = ŠQ|ρ〉〉 , (8.58)

the operator ŠQ being the projector on Supp(ŠR) = Ker(ŠR)⊥.
It is clear that such pseudo-inversion, instead of using the full operator

SE , corresponds to its projection

S̃E = (I ⊗R‡)[RE ] = (I ⊗ Q)[SE ] (8.59)

which represents a partial encoding of E . The partially recovered map Ẽ(ρ) =
tr2[(I ⊗ ρT ) S̃E ] could have also been written as Ẽ = EQ∗, Q∗ being the map
corresponding to the operator Š∗

Q. Clearly Ẽ coincides with E for any ρ such
that Š∗

Q|ρ〉〉 = |ρ〉〉.
For any bipartite R one can define a number of faithfulness ϕ as ϕ(R) =

rank(ŠR), i.e. as the dimension of the space of input states R for which
the action of the map E is described faithfully. Clearly, a state is faithful iff
ϕ(R) = dim(H)2. Notice that for ϕ(R) < dim(H)2 one can have the situa-
tion in which Ker⊥(ŠR) = Span{|ρ〉〉, ρ ∈ A}, with A being Abelian algebra,
in which case the state R allows to reconstruct completely only “classical”
channels, with the input restricted to commuting states.

The introduction of pseudo-inversion provides an alternative yet equiv-
alent way for studying the faithfulness of a set of states {R(n)} . Suppose
they lead to the projection maps {Q(n)}, then the set will be faithful iff we
can recover any operator ρ from its projections Q(n)(ρ), and this is possible
iff, given a basis {Bi} for B(H), one has Span{Q(n)(Bi)}i,n = B(H). In such
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circumstances, any element of the basis can be expressed as a linear combina-
tion of the Q(n)(Bi), i.e. Bi =

∑
jn λ

n
ijQ(n)(Bj), and therefore it is possible

to recover M ≡
∑
i tr[B

†
iM ]Bi by “patching” the projections Q(n)(M) as

M =
∑
ijn

λn∗
ij tr[B†

j Q(n)(M)]Bi . (8.60)

Analogously, by patching the partial encodings {̃S(n)
E } [see (8.59)] we get SE

as

SE =
∑
ijn

λn∗
ij tr2[(I ⊗B†

j ) S̃
(n)
E ]⊗Bi . (8.61)

Of course this patching procedure can also be used with an unfaithful set of
states, to obtain a more complete yet still partial encoding of the channel.

8.2.6 Generalization to QO’s and POVM’s

Suppose we have a quantum device performing the measurement described
by the CP maps Ei, i = 1 . . . N being the outcomes, is it possible to encode
all the maps or else their corresponding POVM? If we use a bipartite input
state R and we let the device act on the first subsystem, the output state
corresponding to the outcome i will be

REi
=

(I ⊗R) [SEi
]

tr[ (I ⊗R) [SEi ] ]
, (8.62)

where the denominator is also the probability of occurrence for the outcome
i. In the case of R faithful, from this output it is possible to recover SEi up
to a normalization factor by means of the inverse map R−1.

After preparing an ensemble of systems described by a faithful state R, we
let the measuring device act on them, and then we separate them according to
the outcome i, thus obtaining N different ensembles, each labeled by the cor-
responding i, and described by the states REi

. The denominator of (8.62) can
be evaluated as the fraction of systems of the original ensemble that have been
transformed into the i-th state, therefore an exact reconstruction of all the SEi

is possible, being equivalent to the full reconstruction of the measuring device.
Notice that, in contrast to what happens for a deterministic device, in the
case of a probabilistic QO a single use is not enough to imprint the whole in-
formation about it, due to of the need for evaluating the normalization factor.

In many practical situations, e.g. in a photodetector, the measuring device
destroys the measured system. Here, however, with the same setup with a
bipartite faithful R, the reduced state ρi on the unmeasured system is still
available. It reads,

ρi = tr1 REi =
R [tr1 SEi ]

tr[R [tr1 SEi ] ]
=

R [PTi ]
tr[R [PTi ] ]

, (8.63)
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where Pi is the POVM of the measurement relative to the outcome i. Hence,
by performing a quantum tomography on the above reduced output states,
one can recover the POVM of the apparatus by inverting the map R, while
evaluating the denominator of the previous equation as the probability of
occurrence of i.

8.2.7 Faithfulness and Separability

Since, as we have seen, faithfulness is equivalent to an invertibility condition,
the set of faithful states R is dense within the set of all bipartite states.
Therefore, there must be faithful states among mixed separable ones, which
means that classical correlations in mixed bipartite states are sufficient to
support the imprinting of any quantum channel. Let us see some examples
of separable faithful states.

The Werner’s states for dimension d

Rf =
1

d(d2 − 1)
[(d− f)I + (df − 1)E], −1 ≤ f ≤ 1, (8.64)

are separable for f ≥ 0, however, they are faithful for all f �= 1
d . In fact, one

has

(ERf )T2 =
1

d(d2 − 1)
[(d− f)|I〉〉〈〈I|+ (df − 1)] , (8.65)

hence the singular values of ŠRf
are df−1

d(d2−1) with multiplicity d2 − 1 and 1
d

with multiplicity 1. In [15] an experiment employing these states for quantum
process tomography was presented.

Similarly, the “isotropic” states

Rf = f
d |I〉〉〈〈I|+

1−f
d2−1 (I − 1

d |I〉〉〈〈I|), (8.66)

are faithful for f �= 1
d2 and separable for f ≤ 1

d , the singular values of ŠRf

being d2f−1
d(d2−1) and f

d .

8.2.8 Faithfulness in Infinite Dimensions

For infinite dimensions (the so-called “continuous variables” in quantum op-
tics), one needs to restrict B(H) to the Hilbert space of Hilbert-Schmidt
operators on H, and this leads to the problem that the inverse map R−1

is unbounded. The result is that we will recover the channel E from the
measured RE , however, with unbounded amplification of statistical errors,
depending on the chosen complete set of operators B = {Bj} in B(H) used
for representing the channel map. As an example, let’s consider a twin beam
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from parametric down-conversion of vacuum

|Ψ〉〉 = Ψ ⊗ I|I〉〉, Ψ = (1− |ξ|2) 1
2 ξa

†a, |ξ| < 1 (8.67)

for a fixed ξ, a† and a, with [a, a†] = 1, denoting the creation and annihilation
operators of the harmonic oscillator describing the field mode corresponding
to the first Hilbert space in the tensor product (in the following we will
denote by b† and b the creation and annihilation operators of the other field
mode). The state is faithful, but the operator Ψ−1 is unbounded, whence
the inverse map R−1 is also unbounded. In a photon number representation
B = {|n〉〈m|}, the effect will be an amplification of errors for increasing
numbers n,m of photons.

As an example, consider the quantum channel describing the Gaussian
displacement noise [25]

Nν(ρ) =
∫

C

dα
πν

exp[−|α|2/ν]D(α)ρD†(α), (8.68)

where D(α) = exp(αa† − α∗a) denotes the usual displacement operator on
the phase space. The Gaussian noise is, in a sense, analogous of the depolar-
izing channel for infinite dimension. The maps Nν for varying ν satisfy the
multiplication rule NνNµ = Nν+µ, thus the inverse map is formally given by
N−1
ν ≡ N−ν . Notice that, since the map Nν is compact, the inverse map N−1

ν

is necessarily unbounded. As a faithful state consider now the mixed state
given by the twin-beam, with one beam spoiled by the Gaussian noise, namely

R = I ⊗Nν(|Ψ〉〉〈〈Ψ |). (8.69)

Since the (unnormalizable) vector |D(z)〉〉 = [D(z)⊗ I]|I〉〉 is a eigenvector of
the operator Z = a− b†, with eigenvalue z, one can easily find that

R =
1
ν

(Ψ ⊗ I) exp[−(a− b†)(a† − b)/ν](Ψ † ⊗ I), (8.70)

thus its partial transposed on the second space reads

RT2 = (ν + 1)−1(Ψ ⊗ I)
(
ν − 1
ν + 1

) 1
2 (a−b)†(a−b)

(Ψ † ⊗ I), (8.71)

where transposition is defined with respect to the basis of eigenvectors of a†a
and b†b. Since our state R is Gaussian, it is separable iff its partial trans-
position is a positive operator [26], therefore, for ν > 1, R is separable (see
also [27]), yet it is formally faithful, since the operator Ψ and the map Nν
are both invertible. Notice that unboundedness of the inversion map can even
wash out completely the information on the channel in some particular chosen
representation B = {Bj}, e. g. when all operators Bj are out of the bound-
edness domain of R−1. This is the case, for example, of the (overcomplete)
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representation B = {|α〉〈β|}, with |α〉 and |β〉 coherent states, since from the
identity

Nν(|α〉〈α|) =
1

ν + 1
D(α)

(
ν

ν + 1

)a†a

D†(α), (8.72)

one obtains

N−1
ν (|α〉〈α|) =

1
1− νD(α)

(
1− ν−1)−a†a

D†(α), (8.73)

which has convergence radius ν ≤ 1
2 , which is the well known bound for Gaus-

sian noise for the quantum tomographic reconstruction for coherent-state and
Fock representations [28]. Therefore, we say that the state is formally faith-
ful, however, we are constrained to representations that are analytical for the
inverse map R−1.

8.3 Homodyne Tomography of Channels and POVM’s

Once the information about a device is encoded into quantum states, all the
techniques of quantum tomography, which are also reviewed in this set of
Lecture Notes, can be applied to determine the channel or, more generally,
the quantum operation describing the device. To date, several experiments
of quantum process tomography have been implemented for qubits either in
NMR systems [5–7] or in quantum optics [8, 9, 14,15], the latter also deserv-
ing an entire chapter in these Lecture Notes. However, no experiments in the
realm of continuous variable optical systems have been realized yet. Here,
with the help of Monte Carlo simulations, we analyze the feasibility of some
experiments in such context, using as a faithful state a twin-beam emerging
from parametric down-conversion of vacuum, and performing a joint homo-
dyne tomography on both the modes of radiation at the output. The actual
experimental feasibility of the technique is partly proved by the experiment
of [29], in which quantum homodyne tomography of the (joint number prob-
ability distribution of) a twin-beam was achieved using the setup depicted in
Fig. 8.2. After a brief introduction on homodyne tomography, we report as
an example of quantum process tomography the result presented in [10] for
the tomography of a displacement unitary transformation. Then we address
the problem of the feasibility of the homodyne tomography of a POVM for an
ON/OFF photo-detector. For the tomography of the unitary transformation
the tomographic reconstruction will be performed by the method of pattern
function averaging. For the tomographic of the photo-detector, on the other
hand, we will also consider maximum likelihood methods, to show how they
can give a huge boost to the precision of the characterization, at the sole
expense of greater computational complexity.



320 Giacomo Mauro D’Ariano and Paoloplacido Lo Presti

������������������������
����
�	
����

��

���

������

�

������

��� ���

������

���� ���

�!"��

��#

���� ���

���$�% &�

�

���$�% &�

�

��'�&����

�(������

��������	
�
���

Fig. 8.2. A nondegenerate optical parametric amplifier (a KTP crystal) is pumped
by the second harmonic of a Q-switched mode-locked Nd:YAG laser, which pro-
duces a 100-MHz train of 120-ps duration pulses at 1064 nm. The orthogonally
polarized twin-beams emitted by the KTP crystal are separately detected by two
balanced homodyne setups that use two independent local oscillators derived from
the same laser. The output of the apparatus is a measure of the quadrature ampli-
tudes Xφ′ ⊗Xφ′′ for random phases φ′ and φ′′ with respect to the local oscillators.
(From [29])

Overall, homodyne tomography of processes and detectors will become a
major diagnostic tool in quantum optics, opening new perspectives for the
calibration of measuring apparatuses and the characterization of the dynam-
ics of optical devices.

8.3.1 Homodyne Tomography

A balanced homodyne detector in the strong oscillator limit ideally measures
the field quadrature observable

Xφ =
a†eiφ + a e−iφ

2
, (8.74)

where a and a† are the annihilation and the creation operators of the mode
of interest (set by the local oscillator), for a chosen value of the phase φ. In
the Fock basis |n〉 the (unnormalizable) eigenstate |x〉φ of the quadrature Xφ
is given by

|x〉φ =
∞∑
n=0

(
2
π

) 1
4 1√

2nn!
exp(−x2)Hn(

√
2x)einφ|n〉 , (8.75)

Hn(x) denoting Hermite polynomials. Once the phase φ is fixed, the ideal
measurement realizes the POVM Hom(x;φ) = |x〉φφ〈x| for the “continuous
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variable” x, with a probability density distribution of the outcomes given
byproduct

p(x;φ) = tr [ ρHom(x;φ) ] , (8.76)

ρ being the state of the system. In the non-ideal situation on non-unit quan-
tum efficiency, the POVM, and in turn the probability distribution of out-
comes, becomes Gaussian convoluted with variance ∆2

η = 1−η
4η , the parameter

η denoting the quantum efficiency of photo-detectors used in the homodyne.
Homodyne tomography is a method for estimating the state ρ from a fi-

nite sample of homodyne data, i.e distributed according to p(x;φ) in (8.76).
The easiest strategy estimates the ensemble average of any operator O by av-
eraging bounded pattern function Pη[O](x, φ) of homodyne data. This means
that one has

〈O〉 = tr[ ρO ] =
∫ π

0

dφ
π

∫ +∞

−∞
dx pη(x;φ)Pη[O](x, φ) , (8.77)

and the expectation value is achieved by averaging the pattern function on
the homodyne data {(xn, φn)} in the limit of infinitely many data

1
N

N∑
n=0

Pη[O](xn, φn)
N→∞−→ 〈O〉 (with probability 1) . (8.78)

By averaging the pattern functions of the form Pη[|j〉〈i|], the matrix elements
〈i|ρ|j〉 of the state of the system are estimated. These pattern functions can
be found in the first chapter of this set of Lecture Notes.

Here we are interested in the homodyne tomography of the joint state of
two modes of radiation, which can be experimentally separately measured, so
that their quadratures Xφ and X ′

φ′ are jointly and independently measured,
yielding the set of outcomes {(xn, φn, x′

n, φ
′
n)}. It is easy to show that the

pattern function of the tensor product of two operators factorizes, namely

P[O1 ⊗O2](xn, φn, x′
n, φ

′
n) = P[O1](xn, φn)P[O2](x′

n, φ
′
n) , (8.79)

whence the matrix elements of a bipartite state R can be estimated as

1
N

N∑
n=0

Pη[|j〉〈i|](xn, φn) Pη[|m〉〈l|](x′
n, φ

′
n) → 〈i|〈l|R |j〉|m〉 . (8.80)

Another estimation strategy for homodyne tomography is the maximum
likelihood one, in which the “true” state ρ̂ is estimated from homodyne data
{(xn, φn)} as the one which most likely has generated the observed data,
namely the one that maximizes the likelihood functional

L[ρ] =
∑
n

ln tr[ ρHomη(xn;φn) ] . (8.81)
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Obviously, for finite samples the estimated state will differ from the true one,
and an estimation of errors (statistical and systematic) is in order.

The maximum likelihood (ML) method is an effective method for solving
more generally LININPOS (i.e. positive linear inverse) problems [30], and the
present case of state estimation from homodyne data is just an example. Of
course, the ML approach extends straightforwardly to the case of a bipartite
system. A survey on the use of maximum likilihood methods in quantum
mechanics is presented in this set of Lecture Notes.

8.3.2 Homodyne Tomography of a Field Displacement

In this first example, the input state |Ψ〉〉 = (1 − |ξ|2) 1
2
∑∞
n=0 ξ

n|n〉|n〉 is
generated by parametric downconversion of the vacuum, with ξ = [n̄/(n̄ +
1)]

1
2 , n̄ being the average number of photons in each mode. A displacement

unitary transformation D(z) = exp(za† − z∗a) is then applied to one of the
two beams, thus yielding the output state

Rz=[D(z)⊗I]|Ψ〉〉〈〈Ψ |[D†(z)⊗I]=(1− |ξ|2) |D(z) ξa
†a〉〉〈〈D(z) ξa

†a | , (8.82)

which is then measured with two balanced homodyne setups, one for each
mode.

In Fig. 8.3 some results of the Monte Carlo simulation of the proposed
experiment are reported. To show how this technique is effective, the matrix
elements 〈n|〈n|Rz|0〉|0〉 are estimated by pattern function averaging, and then
an estimate of diagonal elements of the operator D(z) is calculated as

Ann = 〈n|D(z)|n〉 = (1− |ξ|2)−1/2ξ−n 〈n|〈n|Rz|0〉|0〉√
〈0|〈0|Rz|0〉|0〉

, (8.83)

and compared with the theoretical value. As one can see, a meaningful recon-
struction of the matrix elements ofD(z) can be achieved in the range n = 0÷7
with 106 ÷ 107 data, with approximately n̄ = 3 thermal photons, and with
quantum efficiency as low as η = 0.7. These experimental parameters corre-
spond to those of the experiment of [29]. Improving quantum efficiency and
increasing the amplifier gain (toward a maximally entangled state) have both
the effect of making statistical errors smaller and more uniform versus the
photon labels n and m of the matrix Anm.

In the experiment of [29], the relative phases between the local oscilla-
tors of the two homodyne detectors and the pump of the twin-beam were
completely random and uncontrolled, and this allowed measurement of the
diagonal matrix elements 〈n|〈m|R|n〉|m〉 only of the two mode state R, since
the corresponding pattern functions are the only ones not depending on the
phases. This experimental limitation is difficult but not impossible to over-
come.
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Fig. 8.3. From [10]. Homodyne tomography of the displacement of one mode of the
radiation field. The estimated diagonal elements Ann of the displacement operator
(shown by a thin solid line on an extended abscissa range, with their respective error
bars in a gray shade) are compared to the theoretical values 〈n|D(z)|n〉 (thick solid
line). Similar results are obtained for the remaining matrix elements. The recon-
struction has been achieved using an entangled state |Ψ〉〉 at the input corresponding
to parametric downconversion of vacuum with mean thermal photon n̄ and quan-
tum efficiency at homodyne detectors η. Left: z = 1, n̄ = 5, η = 0.9, and 1.5 × 106

data have been used. Right: z = 1, n̄ = 3, η = 0.7, and 6 × 107 data have been
used. The last plot corresponds to the same parameters of the experiment in [29].

Comments on the Maximum-Likelihood Strategy

The reconstruction can be made much more efficient by ML methods [31–37]
also reviewed in these Lecture Notes, with a reduction of the needed number
of data up to a factor 100−1000. Within our experimental scheme, the action
of a generic quantum process E on one mode of the twin-beam generates the
output state RE = (I ⊗ ΨT )SE(I ⊗ Ψ∗) [cfr. (8.36)], SE being the operator
corresponding to the quantum process under analysis, which is positive and
satisfies tr1 SE = I. The probability distribution of the result (x, φ, x′, φ′) of
a double homodyne detection on the two modes becomes

Pr(x, φ, x′, φ′;SE) = tr [Homη(x;φ)⊗Homη(x′;φ′) RE ] ,
= tr

[
Homη(x;φ)⊗ (Ψ∗Homη(x′;φ′)ΨT ) SE

]
. (8.84)

Given a set of double homodyne data {(xn, φn, x′
n, φ

′
n)}, the investigated

quantum process can be estimated as the one whose corresponding operator
SÊ maximizes the likelihood functional

L[SE ] =
N∑
n=0

ln [ Pr(xn, φn, x′
n, φ

′
n;SE) ] , (8.85)

within the simplex defined by the constraints SE ≥ 0 and tr1 SE = I. If some
prior knowledge about the process is available (for example, one could already
know that the device performs a unitary transformation) then the maximiza-
tion can be further restricted to a smaller set of candidates, thus improving
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further the efficiency of the estimation. In contrast to what happens with
pattern averaging, here, by construction, the estimated map is automatically
CP and trace preserving, and can fulfill any desired additional requirement.

As regards statistical efficiency, for the ML estimator we can assert that
it is in some sense the most efficient with the following reasoning. Given a
generic family of probability distributions Pr(x;θ) depending on the indepen-
dent, unconstrained parameters θ ∈ R

d, one defines the Fisher information
matrix as

F (θ)mn =
〈
∂ ln Pr(x;θ)

∂θm

∂ ln Pr(x;θ)
∂θn

〉
x

(8.86)

and for any unbiased estimator θ̂ of θ, defined on samples of N data drawn
from Pr(x;θ), the covariance matrix

Σmn =
〈
(θ̂m − θm)(θ̂n − θn)

〉
x1...xN

. (8.87)

The two matrices satisfy the Cramer-Rao bound

ΣF (θ) ≥ 1
N
, (8.88)

which puts a limit on the efficiency of the estimation that is independent of
the estimator. It is possible to prove that if there exists an estimator that
achieves the bound, then it coincides with the ML estimator, and that ML
saturates the bound asymptotically, for increasing sample size N , when the
ML estimator becomes approximately Gaussian distributed around θ, with
a covariance matrix given by the so called CR matrix F−1(θ)/N .

When the parameters θ ∈ R
d are constrained to a subset Θ ⊂ R

d, the
problem should be reparametrized, at least in a neighborhood of the true
value θ, and the new set of independent unconstrained parameters should be
then used to calculate a new Fisher information and the related CR matrix.
However, this procedure is in general inelegant and difficult to use. In [38],
a much more convenient way to compute the constrained CR bound was
presented, based on the distinction between regular points of Θ (i.e. the
points in the closure of the set of interior points of Θ) and non-regular points.
As an example, for Θ defined by the constraints 0 ≤ θi ≤ 1, all the points
are regular, whereas for Θ equal to a lower dimensional manifold embedded
in R

d (e. g. a surface defined by some equality constraints) all points are
nonregular. The result is that if θ is a regular point, then the CR matrix is
unaltered, whereas if θ is not a regular point then the CR matrix must be
corrected by subtracting a positive matrix depending on θ that makes the CR
matrix smaller and singular. The singularity of the CR matrix reflects the fact
that some parameters could be actually evaluated as functions of others, and
thus do not have an independent associated error. A very simple derivation
of equality constrained CR bound can be found in [39], along with a proof
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that, for constrained problems, if the bound is achieved by an estimator,
then the estimate is a stationary point for the problem of maximizing the
likelihood function subject to the constraints. For the problem of k < d
equality constraints fj(θ) = 0, the corrected constrained CR bound becomes

Σ ≥ 1
N

[
F−1 − F−1G(GTF−1G)−1GTF−1] , (8.89)

where G denotes the d × k matrix of the gradient of the constraints Gij =
∂fj(θ)
∂θi

.
For the general problem of quantum process tomography, the likelihood

functional L[SE ] of (8.85) is defined for a parameter SE living in an infinite
dimensional Hilbert space. The maximum of the likelihood is not achieved
over the whole space and it is more appropriate to restrict the attention to a
subspace Q(N) on which the maximum exists, and to let its dimension grow
with the number N of data, so to cover the whole parameter space in the limit
of an infinite size sample. This method—called sieved maximum likelihood—
has been analyzed in [40] for homodyne tomography of a quantum state,
with the sieves as the span of the Fock states |0〉 . . . |d(N)〉, and the function
d(N) chosen in order to guarantee the consistency of the estimator, i.e. the
convergence of the estimated state to the true value in the limit of infinite N .

For the particular problem at hand, because of the exponentially decreas-
ing twin-beam components on the Fock basis, the choice of a suitable cut-off
dimension will not introduce any significant bias in the estimation, and the
action of the quantum channel will be reconstructed only on a finite dimen-
sional subspace, consistently with the fact that the faithfulness of the input
state rapidly vanishes for larger photon numbers.

The only downside of the ML approach is the difficulty involved in the
maximization of the nonlinear functional in (8.85), which can be tackled ei-
ther with standard techniques of numerical constrained maximization or with
suitable modifications [41] of the iterative algorithms of the kind expectation-
maximization (EM) for maximum likelihood [30,42]. In practice, several tech-
nical problems may arise, as we will discuss concretely in the following ex-
ample.

8.3.3 Homodyne Tomography of an On/Off Detector

In what follows we exploit the ideas of Sect. (8.2.6) for realizing the to-
mography of the POVM of a measuring apparatus. One of the beams in the
twin-beam state |Ψ〉〉 generated by parametric down-conversion of the vacuum
(same setup as before) is now measured by an ON/OFF photo-detector. This
is described by a two-value POVM, with elements Π(0) and Π(1) = I−Π(0).
As discussed in Sect. 8.2.6, looking at (8.63), the reduced states of the re-
maining beam after the measurement will be

ρ(i) =
ΨTΠ(i)TΨ∗

tr[ΨT Π(i)T Ψ∗ ]
, (8.90)
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i being the measurement outcome, with the denominator of the previous
expression giving its probability. Homodyne tomography is then performed
on each reduced state in order to recover the POVM elements.

As a model of ON/OFF detector with non unit quantum efficiency and
dark current, we will use an ideal ON/OFF photodetector preceeded by a
beam-splitter of transmissivity τ with one port entered by the mode of in-
terest and with the other port fed by a thermal radiation state with mean
photon number µ [43]. The POVM element for the OFF outcome reads

Π(0) =
1

ν + 1

∞∑
n=0

(
1− τ

ν + 1

)n
|n〉〈n| , (8.91)

ν = µ(1 − τ) being the resulting mean photon number of the background
noise, whereas the POVM element for the ON outcome is Π(1) = I −Π(0).

Reconstruction Using Pattern-Function Averaging Strategy

The graphs in Fig. 8.4 show that a meaningful reconstruction can be obtained
within the same range of values for the parameters used in the tomography
of the displacement. As usual, in order to achieve the reconstruction of the
off-diagonal terms of the POVM, the phase-control for the local oscillator of
the balanced homodyne detector relative to the pump of the down-converter
is required. The presence of non-vanishing off-diagonal terms in the POVM
would allow the detector to reveal some form of coherence in the input state,
and in our model it could be simulated by having some coherence for the ther-
mal radiation injected in the beam-splitter. Of course, if one already knows
that the detector is perfectly phase-insensitive (as for a customary photo-
detector, for its intrinsic detection mechanism), one can focus the attention

Fig. 8.4. Homodyne tomography of an On/Off photo-detector having transmissiv-
ity τ = 0.4 and number of thermal noise photons ν = 0.1. Only the diagonal matrix
elements of the POVM elements Π(0) and Π(1) are reported (the off-diagonal ones
are zero, and have similar error bars). The reconstruction is obtained by pattern-
function averaging of 1.5 · 106 data, for quantum efficiency η = 0.9 and n̄ = 3,
and presents error bars of the same magnitude as the ones for the displacement
reconstruction reported in Fig. 8.3
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only on the diagonal part of the state, without the need of phase-control for
the local oscillators.

It is important to notice that when the only diagonal part of the POVM
of the measuring apparatus is under examination, it is not necessary to
have the input state R faithful, but it is sufficient to have the matrix
Rmn = 〈m|〈n|R|m〉|n〉 invertible, with more easily experimentally available
input states. In fact, in correspondence with the measurement outcome i, the
diagonal matrix elements of reduced state ρ(i) of the auxiliary system are
given by

ρ(i)nn =
∑
mRmnΠ

(i)
mm

tr[
∑
mnRmnΠ

(i)
mm ]

, (8.92)

so that, once measured ρ(i)nn, it is possible to recover Π(i)
mm given that Rmn is

invertible. In summary, a “diagonally faithful” state and homodyne tomogra-
phy (i.e. without phase control) is enough for the reconstruction of a diagonal
POVM.

Reconstruction Using Maximum-Likelihood Strategy

Now, we will analyze the data from the same experimental scheme using the
maximum likelihood strategy, assuming, for simplicity, that we already know
the POVM is diagonal in the Fock basis for its intrinsic detection mech-
anisms, such that a bipartite diagonally faithful state R and homodyne to-
mography without phase-control will suffice for the purpose of reconstructing
the POVM.

Non-ideal homodyne detection can be modeled as the action of the loss
map followed by ideal homodyne detection, with a suitable rescaling of out-
comes, such that the POVM can be written as follows

Homη(x, φ) =
√
η

∞∑
j=0

V †
j e
iφa†a|√ηx〉〈√ηx|e−iφa†aVj , (8.93)

where Vj = (η−1 − 1)
j
2 ajη

1
2a

†a/
√
j! are the elements of the Kraus decompo-

sition of the loss map, and η denotes the quantum efficiency of the detectors
(this scheme is equivalent to having an ideal homodyne detector preceded
by a beam-splitter with transmissivity η and its second port fed with the
vacuum state). If the phase is out of control and uniformly random, then
the POVM corresponding to the measurement is the average over the phase
of (8.93), which yields a diagonal POVM Homη(x) (this also makes it clear
why without phase control it is impossible to reconstruct the off-diagonal
matrix elements).

The probability of getting the outcome (i, x) with the photo-counter sig-
naling outcome i and the homodyne measuring x, is given by
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Pr(i, x;Π) = tr[R Π(i) ⊗Homη(x) ] =
∑
mn

RmnΠ
(i)
mmHomηnn(x) =

=
∑
m

Π(i)
mmAm(x) , (8.94)

where R denotes twin-beam state, and the positive coefficents Am(x) are
defined as

Am(x) =
√
η
∑
n≥h

Rmn

(
n

h

)
ηh(1− η)n−h

(
2
π

) 1
2 e−2ηx2

2hh!
H2
h(
√

2ηx) > 0 .

(8.95)

For a given set of experimental data {(il, xl)}, the maximum likelihood esti-
mate Π̂ is the one maximizing the functional

L[Π] =
∑
l

ln

[∑
m

Π(il)
mm ·Am(xl)

]
, (8.96)

with Π restricted to the simplex of diagonal POVM’s.
First, one must choose the dimension of the subspace on which one is

performing the maximization of the likelihood and thus the estimation of
the POVM elements. In such a finite dimensional subspace, the ML estimate
is well defined, being the point attaining the unique maximum of a convex
functional restricted to a simplex. In principle this restriction introduces a
bias in the estimation, however, in our case the exponentially decreasing
components of the twin-beam state in the Fock basis in practice makes the
bias negligible, by making the components 〈n|ρ(i)|n〉 of the reduced state
after the measurement rapidly vanishing for large n.

The maximization of the functional L[Π] is a nonlinear convex program-
ming problem, and can be faced with several different kind of algorithms
as the simplex method (see contribution of D’Ariano et al. to these Lecture
Notes), or the methods of sequential quadratic programming (SQP), or the
methods of expectation-maximization (EM) type (see chapter by Hradil et
al. in these Lecture Notes) that can be easily impemented in this particular
example since, for fixed m and varying i, the numbers Π(i)

m define a probabil-
ity distribution. For all methods convergence is assured, since the functional
to be maximized is convex and differentiable over the simplex of diagonal
POVM’s. However, when applying any of these methods, the convergence
speed and the reliability of the result at a given iteration step are two major
concerns. In fact, the derivatives of L[Π] with respect to some of the pa-
rameters θ defining Π can be very small, so that very different values of the
parameters will give almost the same likelihood, thus making it hard to judge
whether the point reached at a given iteration step is a good approximation of
the point corresponding to the maximum: in few words, the problem becomes
numerically ill conditioned, with an extremely low convergence rate.
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Notice that the Fisher information matrix (8.86) for the probability dis-
tribution Pr(i, x;Π) can be expressed in terms of the expectation value of
the derivatives of the likelihood with respect to the independent parameters
θm defining Π

F (Π)mn =
1
N

〈
∂L[Π]
∂θm

∂L[Π]
∂θn

〉
(i1,x1)...(iN ,xN )

, (8.97)

so that the derivatives of the likelihood not only affect the numerical stability
of the maximization, but also limit the theoretical precision of the estimation
via Cramer-Rao lower bound. This bound, in turn, can be used to check
whether or not the estimation is good, depending on how much the variance
of the estimator is bigger than the lower bound of (8.88). This, however,
needs the calculation of the Fisher information matrix in correspondence of
the unknown true value of Π, and this can be approximated by the Fisher
information at the estimated value, which is a reasonably good approximation
provided the estimated value doesn’t deviate too much from the true one.

As already mentioned, in the limit of large size samples the ML estimator
is Gaussian distributed around the true value with a covariance matrix equal
to (NF )−1. Therefore for large samples the confidence levels can be assumed
to be Gaussian, with variances calculated from the Fisher information, which
can be evaluated on the estimated parameter for not too large errors. How-
ever, this is an asymptotic property, so that for finite size samples sometimes
there is the problem of estabishing the errors and the confidence levels for
the estimation. When working with Monte Carlo simulation, the virtual ho-
modyne experiment can be repeated several times, in order to evaluate the
distribution of the ML estimator, and thus its confidence levels. Clearly, this
approach is not satisfying for an experimentalist, who would need to col-
lect a lot of data only to evaluate the statistical errors for a small subset of
them. A valid alternative is then provided by the method of bootstrap [44],
which is based on the simple idea that when some data are drawn from an
unknown probability distribution, then the distribution of those data is the
best approximation we have of the real probability distribution. Thus, once
the experimental data are collected, we can perform the ML estimation on
artificial samples repeatedly generated by random sampling of the experi-
mental data: the distribution of such estimates approximates well the one
that we would have from the real experiment, and can be used to evaluate
the confidence levels for the estimator.

Back to our problem of On/Off detector tomography, we have produced
a Monte Carlo simulation of the joint homodyne and on/off data distributed
according to (8.94), for the POVM model presented in (8.91), with the same
parameters as Fig. 8.4, and various values of the quantum efficiency η. The
detector POVM has been estimated with the maximum likelihood method,
with the only hypothesis of diagonal POVM, and putting the dimensional
cut-off at the first 15 elements of the Fock basis (for a number of photons
in the twin-beam equal to n̄ = 3 this introduces almost no bias, with an
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Fig. 8.5. Homodyne tomography of an On/Off photodetector with transmittivity
τ = 0.4 and number of thermal noise photons ν = 0.1, with n̄ = 3 photons in
the twin-beam. The ML estimation of the diagonal of the only Off POVM element
are reported for different values of sample size N and quantum efficiency η. Left:
N = 105, η = 0.7; Middle: N = 104, η = 0.9; Right: N = 106, η = 0.7 .

actual suppression of a factor 100 between the first diagonal element of the
POVM and the first excluded element). The results are reported in Fig. 8.5 for
different sample sizes and quantum efficiencies, where the only “Off” element
of the POVM is reported, since the “On” element is simply its complement
with respect to the identity.

A direct comparison with Fig. 8.4 evidences the much higher efficency
of maximum likelihood reconstruction. The graph on the left shows how the
same magnitude of errors is achieved on a larger subspace with less than one
tenth of the data (105 vs. 106) and with a much lower quantum efficiency (0.7
vs. 0.9). For the same quantum efficiency η = 0.9, here the results are much
better even with as few as 1% of the data (graph in the middle), analogously,
for the same amount of data (N = 106), here the results are much better
even for a quantum efficiency as low as 0.7 (graph on the right).

The distribution of the estimator in each bin, which is necessary for giv-
ing proper confidence levels for the result, has been evaluated by repeated
Monte Carlo experiments, however, which is equivalent to the bootstrapping
techniques for truly experimental data. As a result the estimator in each bin
is not Gaussian distributed, a sign of the fact that the number of data used
is not enough to reach the asymptotic Gaussian distribution of the ML es-
timator. In the plot, the only variances are reported for each bin, showing
that the errors are distributed with respect to n differently than for pattern
averaging.

The maximization has been performed numerically by the routine
donlp2 [45] that implements an SQP algorithm, and then the self-consistency
of the solution has been checked by means of a few EM type iterations applied
alternatively to the probability distributions corresponding to the elements
Π

(i)
m , for fixed m. Of course, it would be much easier to employ the only

EM algorithm, being a recursive application of an easily implementable it-
eration. However, this algorithm has an extremely low convergence speed,
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which also could make the iteration stop too early, leading to (statistically
wrong!) results—which may even fit well the theoretical POVM. This para-
doxical behavior is an artifact due to the smoothness of the theoretical curve
of the considered model, as one can easily check by changing the model.
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