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Abstract. We present a first feasible scheme for detecting the phase of a single mode of

radiation with ideal RMS sensitivitg¢ ~ 71 versus the average number of photans It

involves pairs of alternate independent homodyne measurements of two conjugated quadratures
on a weakly squeezed state at the input. Nonunit quantum efficieatghotodetectors degrades
phase sensitivity leading to a power lag ~ 7~7 ™, with y increasing versus.

In phase-sensing interferometers minute variations of environmental parameters are detected
through changes in the phase shift of a light beam relative to a local oscillator (LO). The
back-action effect of radiation pressure on the measured parameter poses the problem of
optimizing phase sensitivity for a given average number of phoidis?2]. In a shot-noise
limited homodyne interferometer that uses coherent states, the root-mean-square (RMS)
phase erroB¢ is proportional taz~1/2. Sensitivity can be improved up & ~ 7! using
squeezed states [1-3]. Such a power law, however, only holds in a small neighbourhood
of a fixed working point that should be pursued by a feedback, whereas any sizeable phase
shift would greatly degrade sensitivity. Moreover, nonideal quantum efficigneyl1 of
photodetectors leads again to shot noisenfgr n/[8(1 — n)].

Strictly speaking, homodyne based interferometers do not provide a proper phase
detection, because the output photocurrent from the homodyne is proportionairgle
quadrature of the field, sa§, = 3(ae™ + a'€?), with a denoting the annihilator of
the field mode andp the tunable phase of the LO. Upon dividiag by the input field
amplitude|{a)| (which should be known in advance) one has a knowledge of the phase
shift ¢ only in an average sense, i.gy) = |(a)|cog¢ — ¢), but a single outcome of
as, may still correspond to an unreal phase whes |(a)|. Moreover,¢ turns out to be
defined in ar-window, instead of a2 one. For these reasons a scheme to detect the phase
of one field mode should ultimately correspond to measuring the polar angle betmeen
output (reduced) photocurrents, shyand I; [4]. The outcomes of the detector are points
distributed in the complex plane= I, +il, = p€?, and the phase probability distribution
p(¢) is just the marginal one of the probabiliff («, @) of the complex currend, namely

o0
p@) = / pdoH (p€?, pe'?). 1)
0
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We are now faced with the problem of optimizing the phase sensitbdityor suchtwo-
current schemes. At the purely abstract level, the problem of optimidifpgyersusn has

been addressed in general terms in the framework of quantum estimation theory [5]. Shapiro
et al [6] adopted the reciprocal peak likelihood as a measure of sensitivity, and found that the
ultimate quantum limit goes a& ~ i7~2. However, on the basis of numerical simulations
Laneet al [7] have shown that the reciprocal peak likelihood is not an actual measure of
phase sensitivity, and in [8] pathologies in this definitiors¢fhave been found. In [9] the
customary RMS error has been adopted ¢ and the ultimate quantum limit has been
obtained:

1.36
§¢p >~ ——. (2

n
However, there is no known two-current scheme which achieves the ideal limit (2), and
the optimal RMS sensitivity which ideally could be gained by an actual apparatus (double
homodyne or heterodyne [10]) 4% ~ 7~?/3 [9], in between the shot noise lewip ~ i7~Y/2
and the ideal bound (2). Thus, the current state of the art on phase sensitivity is represented
by the ultimate limit (2), but with no available scheme for achieving it.

The aim of this paper is to provide a concrete detection scheme for reaching the ideal
limit (2). We will show that, except for a constant factor, the power law (2) can actually
be achieved by means of pairs of independent homodyne measurements of two conjugated
guadratures on a (stable) weakly squeezed state at the input. We will also analyse the
effect of nonunit quantum efficiency < 1 at photodetectors, and show that, in contrast to
the single-measurement scheme, sensitivity is not unstable vgrsiith slow degradation
corresponding to a power lasy ~ =7, with y increasing as a function of.

For heterodyne or double homodyne detectors the probability desity, &) in
equation (1) is just the-function of the field density matriy [9, 11]

1
O, ) = —{alpla). 3
T

In this case the sensitivit§gp ~ 7~%/° can be obtained for optimal states which are almost
indistinguishable from weakly squeezed states [9]. This phase noise is mainly related to
the additional 3dB noise suffered by the distributifiie, &), which is due to the fact that
these schemes achievgaint measuremendf two noncommuting quadratures [12]. For
this reason one is led to consider a scheméndépendentmeasurements of conjugated
guadratures, and this will be contemplated in the following.

Generalizing the previous framework, one can think of@h@&inction as just a particular
case of thes-ordering Wigner function, namely

2
W, (o, @) = / %eaxfm Tr(ﬁeg\atxmr%s\xlz)_ (4)
Fors = —1 one obtains th@-function, which is the probability distribution for antinormally
ordered fields;s = 0 ands = 1 correspond to symmetrical and normal orderings,
respectively. From equation (4) one can see that lower negatipeoduce smoother
functionsW;: thus, in order to improve sensitivit, a sharper Wigner functiors > —1)
should be considered instead of tkkefunction. However, only fors < —1 the Wigner

1 The bound in (2) has been obtained numerically, and is actually given by

1.36+0.01
= ;100001 -
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function is non-negative for all statgs whereas by definition the functiol is a genuine
experimental probability in all cases. Thus, for- —1 there remains only the possibility
that H(a, &) coincides withW,(«, @) for some special states: far < 0 this is true for
squeezed states [13]. In fact, let us consider a squeezed|gtate with signal 8 and
squeezing parameterboth real positive. Fos < 0 the Wigner function (4) is given by
the double Gaussian

W (O[, &) =

(Rea — )% (Ima)? c
27 01,02, |: 2012S 2(722Y :| ®)
where the variances are thes-ordered second moments of the two conjugated quadratures
ag anday 2, namely
0f =(Aad ) = 1€ —5) (6)
05 = (1 Ad ) = 5(€7 —5). )
The sharpest distribution clearly corresponds te 0.

The scheme for detecting the Gaussian Wigner function (5)sfer 0 is based on
homodyne detection, but with the highly excited LO alternately switching between phases
¢ = 0 andgp = 7/2. In this way each experimental event consists of a pair of independent
measurements of the conjugated quadratdgeand a, », with measurements successively
performed on the input field prepared again in the same state. This scheme is similar to the
optical homodyne tomograph$4], where the Wigner function is recovered by an ensemble
of many repeated measurements of the quadratiydsr different phaseg of the LO (in
current experiments up to 401 measurements can be performed within the stability time
of the source). In our case only two measurements at differesrte needed, because we
know in advance that the Wigner function is Gaussian. It is clear that the present scheme is
used to detect time-dependent phase shifts due to some perturbing force or change of any
environmental parameter (which is the actual motivation of any phase detection), so the pair
of measurements should be performed within a time delay much shorter than the typical
time scale of the perturbation. If we denote byndy the outcomes of the measurements
of ap and a,», respectively, each event corresponds to a point in the complpbane
defined bye = x +iy. The probability distribution of the complex outcomes is given by

H(a, @) = po(Rea) pro(Ima), (8)
where p, represents the probability distribution of the quadratage It is clear that
H(x,@) = Wo(a, @) in equation (5) for squeezed statgk r), because each Gaussian
factor in the probability (5) is just a quadrature probability in equation (8). Hence, the
proposed scheme detects the Wigner functis(«, @) for Gaussian states (squeezed or
coherent).

Before addressing the problem of optimizing the phase sensitivity, let us consider the
case of nonunit quantum efficiency at photodetectors. A photodetectornwith 1 is
equivalent to an ideal detector preceded by a beam splitter with transmisgiwtjth this
scheme in mind it is simple to check that the probability distributigi/) of the output
photocurrent of a homodyne detector becomes the following Gaussian convolution of the
ideal probabilityps(1):

> exp[—2n(I — x)?/(1—n)]
= dx . 9
S B ©)
The output probability distribution of the whole apparatus is thus given by
Hy.@) = [ & wos P2 = PL/A = ) (10)
e o 7 (1—n)/2n
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and coincides with the Wigner quasiprobability for negatiymamely
Hy (o, @) = Wi_,1(o, @). (11)

Therefore, the Wigner function for negativecoincides with the probability distribution
of the detector that has nonunit quantum efficiency at the photodetectorl/(1 — s)
[15]. Notice thaty = % (s = —1) leads to theQ-function, which, as already seen, can
also be measured by means of heterodyne or double homodyne schemes with unit quantum
efficiency: the effective quantum efficiengy= % corresponds to the additional 3 dB noise
due to jointly measuring the pair of conjugated quadratures [12].
Now we address the problem of phase optimization for our scheme.s K010 the
marginal phase distribution of the Wigner function (5) is given by

1 i —sintt r
- - _rm=>rnr @
ps(9) = pr———_ exp( 207 ) {1+ @ /1) [l+ erf (\/Tcp))]} (12)
where
(@ —sinifr)eZ
Mo = 202 (02 + o tart ¢) (13)
_1|cog¢  sifg
and erfx) denotes the error function
erf(x) = \/25 /Ox dre . (15)
We evaluate the RMS phase sensitivity in ther] 7] window, namely
P 1/2
¢ = [ / dgp ¢2px(¢)} : (16)

The phase sensitivity is optimized numerically by varying the fraction of squeezing photons
lgg = sint? r at fixed total average photon number The optimald¢ versusi is plotted in
figure 1 for various;. In figure 2 the optimal fraction,, /i of squeezing photons is given.
For all negatives the phase sensitivity obeys the power law

S ~ i v 17)

where the exponent versusy is plotted in figure 3. One can notice that for decreasing
there is a degradation of sensitivity, and the exponeinicreases as a function gf(roughly

one hagy’ ~ 1—n+/1 — nin the considered range). Only a few per cent of squeezing photons
is needed for optimal sensitivity, and fewer squeezing photons are required if the detectors
are less efficient. (Physically a less efficient detector is more sensitive to the signal than to
the squeezing photons.) The case —1 corresponds to the result already obtained in [9]

for a heterodyne or double homodyne detector. The best sensitivity is obviously attained
for unit quantum efficiency(= 1, s = 0). In this case the power law is explicitly given

by

2.72
8¢ ~ — (18)

Equation (18) differs from the ultimate RMS sensitivity (2) by just a factor of two, and
another factor of two must be accountedséf is written in terms of the total number of
photonsny = 21z per experimental point.
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Figure 2. Fraction of squeezing photons, /i corresponding to optimal sensitivities in figure 1.

In conclusion, we have presented a feasible two-current detection scheme that achieves
ideal phase sensitivity¢ ~ 7=, The scheme is based on pairs of independent homodyne
measurements of two conjugated quadratures. Within the limits of our numerical analysis
we have seen that a nonunit quantum efficiency slightly degrades the exponent of the power
law: this is relevant from the experimental point of view, especially if one considers that
the best sensitivity of conventional homodyne interferometric schemes is unstable wersus
(any value ofp < 1 leads to shot noise for sufficiently larg®. The present scheme is
much more efficient than the heterodyne or double homodyne schemes considered in [9, 10],
which have a halved effective quantum efficiency related to the additional 3dB noise due
to the joint measurement of the two quadratures. With respect to the heterodyne/double
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Figure 3. Exponenty of phase sensitivitys¢p ~ n~" versus quantum efficiency of
photodetectors.

homodyne schemes, the one proposed here needs twice the number of measurements on
the same state: however, for sufficiently high numbers of photons the improved sensitivity
versusi makes the present scheme the most convenient one.
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