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Abstract
Within a general operational framework I show that a-causality at a distance
of ‘local actions’ (the so-called no-signalling) is a direct consequence of
commutativity of local transformations, i.e. of dynamical independence. On the
other hand, the tensor product of quantum mechanics is not just a consequence
of such dynamical independence, but needs in addition the local observability
principle.

PACS number: 03.65.Ta

1. Introduction

The quantum correlations due to entanglement are instantaneous. At first sight this may seem
useful for superluminal communications, e.g. in a communication scheme in which Alice,
using a singlet state entangled with Bob’s spin, communicates to him a bit value b = 0, 1
by measuring either σz or σx , respectively, and then Bob tries to determine if its local spin
state is an eigenstate of σz or of σx . Such a communication scheme was indeed considered in
[1]), where a strategy for discriminating Bob’s non-orthogonal states has been devised based
on cloning states into multiple copies via stimulated emission of radiation. However, the
possibility of cloning quantum states was ruled out in [2–5] (for a history of the no-cloning
theorem see [6]), where it was shown that perfect cloning is impossible as a consequence of
linearity of quantum-mechanical transformations, and, as a consequence of the no-cloning
theorem, it is impossible to discriminate with certainty among non-orthogonal states [7].

From the point of view of proving no-signalling, i.e. the impossibility of superluminal
communications, the no-cloning argument, however, is incomplete, since it does not rule
out the possibility of information transmission by other means, e.g. by approximate cloning
[8–11], or probabilistic cloning [12]. For example, we know that in some cases we can
discriminate perfectly among nonorthogonal states [13], however, with some probability of
inconclusive outcome: could not this be used to achieve a superluminal communication with
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some probability? Who guarantees that any quantum operation performed by Alice and Bob
cannot be used to make a superluminal communication using some entangled state?

Since neither no-cloning, nor no-state-discrimination impossibility theorems logically
imply no-signalling, an independent rigorous proof of no-signalling is in order, and, indeed,
several authors [14–19] have analysed the issue and proved no-signalling. The first proof that
non-locality of quantum mechanics cannot lead to superluminal transmission of information
has been given in [14, 15], and was then generalized to any trace-preserving quantum operation
in [19]. A proof of the local state invariance for trace-preserving quantum operations has also
been given in [20].

The ‘peaceful coexistence’ [21] between quantum non-locality and special relativity has
intrigued many physicists for years, on whether the no-signalling condition plays a more
fundamental role, e.g. it could be used as an axiom for deriving quantum mechanics itself.
In this line of thought some basic features of quantum mechanics have been analysed, such
as no-cloning itself. For example, the no-signalling constraint has been used to derive upper
bounds for the fidelity of cloning transformations [22–25]. Later, however, the existence of a
connection between approximate cloning and the no-signalling has been ruled out [19], and
it has been shown that the no-signalling constraint on its own is not sufficient to prevent a
transformation from surpassing the known optimal cloning bounds. More specifically, in [26]
the possibility of using no-signalling as an axiom of quantum mechanics has been considered
again, arguing that, once the Born rule is assumed, the linearity of quantum mechanics can be
derived from the no-signalling condition. A big step forward in understanding the axiomatic
role played by no-signalling in quantum mechanics has been done in [27]. There it has been
shown that, at the purely statistical level, there exist in principle super-quantum correlations that
violate the quantum bound (such as the Tsirelson’s bound [28] for the CHSH correlation [29])
without anyway violating the no-signalling condition. Therefore, it is possible in principle to
have a non-locality that is even stronger than the quantum one, however, still without violating
the no-signalling.

The above considerations and the past research history on no-signalling suggest seeking
more precise logical connections between seemingly related issues such as locality, causality,
dynamical independence and statistical independence, within a general purely operational
framework. In this paper, I will show that starting from a very general and comprehensive
definition of action by an agent in a communication scenario, the no-signalling is a direct
consequence of commutativity of local transformations, i.e. of dynamical independence. In
the process, I will also give an alternative very general proof of no-signalling in quantum
mechanics. On the other hand, I will show that the tensor product of quantum mechanics
(which leads to no-signalling) is not just a consequence of dynamical independence, but
needs an additional hypothesis, which is the local observability principle [30]. This plays a
crucial operational role in reducing the experimental complexity for experiments on composite
systems, reconciling holism with reductionism in a non-local theory. For a complete account
on the operational framework used in the present and a related axiomatic derivation of quantum
mechanics, the reader is addressed to [30].

2. Operational derivation of no-signalling from dynamical independence

In a purely operational framework, beyond physical theories, in analysing a communication
scenario we need precise definitions for action of a transmitting agent, locality of actions
and dynamical independence. As we will see, the dynamical independence is essentially
synonym of existence of local actions, and locality of actions is synonym of commutativity of
transformations, which in turn leads to no-signalling.
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2.1. Action and state

Definition 1 (action). The action on a object system (due to an agent producing an interaction
of the object with an apparatus) leads to an object transformation drawn from a set of possible
transformations, each one occurring with some probability.

According to our definition, the action is identified with a set A ≡ {Aj } of possible
transformations Aj that can occur on the object system. In an ideal situation the apparatus
signals which transformation actually occurred, and the agent has perfect knowledge of all
details of each transformation. The agent cannot control which transformation occurs, but he
can decide which action to perform, namely he can choose the set of possible transformations
A = {Aj }. For example, in an Alice&Bob communication scenario Alice encodes the different
bit values by choosing between two actions A = {Aj } and B = {Bj } corresponding to two
different sets of transformations {Aj } and = {Bj }. The agent has control on the transformation
itself only in the special case when the transformation A is deterministic. In the following,
wherever we consider a nondeterministic transformation A , we always regard it in the context
of an action A = {A ,B}, namely assuming that there exists a complementary transformation
B such that either A or B occurs.

Definition 2 (state). A state is a probability rule for transformations.

Therefore, ω is a state means that ω(A ) is a map from the set of all possible transformations
to [0, 1] satisfying the completeness condition

∑
Aj ∈A ω(Aj ) = 1. We will take the identical

transformation I as no-action with ω(I ) = 1. In the following for a given physical system
we will denote by S the set of all possible states and by T the set of all possible transformations.

2.2. Dynamics as conditioning

State conditioning. When composing two transformations A and B, the probability
p(B|A ) that B occurs conditional on the previous occurrence of A is given by the Bayes
rule for conditional probabilities p(B|A ) = ω(B ◦ A )/ω(A ). This sets a new probability
rule corresponding to the notion of conditional state ωA which gives the probability that a
transformation B occurs knowing that the transformation A has occurred on the physical
system in the state ω, namely ωA

.= ω(· ◦ A )/ω(A ) (in the following we will make
extensive use of the functional notation with the central dot corresponding to a variable
transformation). One can see that the present definition of ‘state’ leads to the identification
state-evolution≡state-conditioning, entailing a linear action of transformations on states
(apart from normalization) A ω := ω(· ◦ A ): this is the same concept of operation that
we have in quantum mechanics. Therefore, in the present context linearity of evolution is
just a consequence of the fact that the evolution of states is pure state-conditioning: this will
include also the deterministic case U ω = ω(· ◦ U ) of transformations U with ω(U ) = 1
for all states ω—the analogous of quantum unitary evolutions and channels.

Dynamical and informational equivalence. From the Bayes conditioning it follows that we
can define two complementary types of equivalences for transformations: the dynamical and
informational equivalences. The transformations A1 and A2 are dynamically equivalent when
ωA1 = ωA2∀ω ∈ S, whereas they are informationally equivalent when ω(A1) = ω(A2)∀ω ∈
S. The two transformations are then completely equivalent when they are both dynamically
and informationally equivalent, corresponding to the identity ω(B ◦A1) = ω(B ◦A2),∀ω ∈
S,∀B ∈ T. We call effect an informational equivalence class of transformations (this is
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the same notion introduced by Ludwig [31]). In the following we will denote effects with
the underlined symbols A ,B, and we will write A0 ∈ A meaning that ‘the transformation
A0 belongs to the equivalence class A ’, or ‘A0 corresponds to the effect A ’, or ‘A0 is
informationally equivalent to A ’. Since, by definition one has ω(A ) ≡ ω(A ), we will
legitimately write ω(A ) instead of ω(A ). Similarly, one has ωA (B) ≡ ωA (B), which
implies that ω(B ◦ A ) = ω(B ◦ A ), which gives the chaining rule B ◦ A ∈ B ◦ A
corresponding to the ‘Heisenberg picture’ evolution of transformations acting on effects (note
that in this way transformations act from the right on effects). Now, by definitions effects are
linear functionals over states with range [0, 1], and, by duality, we have a convex structure
over effects. We will denote the convex set of effects by P.

2.3. The structure of transformations

Addition of transformations. The fact that we necessarily work in the presence of partial
knowledge about both object and apparatus corresponds to the possibility of incomplete
specification of both states and transformations, entailing the convex structure on states and
the addition rule for coexistent transformations, namely for transformations A1 and A2 for
which ω(A1) + ω(A2) ! 1,∀ω ∈ S (i.e. transformations that can in principle occur in
the same action). The addition of the two coexistent transformations is the transformation
S = A1 + A2 corresponding to the event e = {1, 2} in which the apparatus signals that either
A1 or A2 occurred, but does not specify which one. Such transformation is specified by the
informational and dynamical equivalence classes ∀ω ∈ S: ω(A1 + A2) = ω(A1) + ω(A2)

and (A1 + A2)ω = A1ω + A2ω. Clearly the composition ‘◦’ of transformations is distributive
with respect to the addition ‘+’. We will also denote as S (A) :=

∑
Aj ∈A Aj the deterministic

transformation S (A) corresponding to the sum of all possible transformations Aj in A.
We can also define the multiplication λA of a transformation A by a scalar 0 ! λ ! 1
as the transformation which is dynamically equivalent to A , but occurs with rescaled
probability ω(λA ) = λω(A ). Now, since for every couple of transformation A and B
the transformations λA and (1−λ)B are coexistent for 0 ! λ ! 1, the set of transformations
also becomes a convex set. Moreover, since the composition A ◦ B of two transformations
A and B is itself a transformation and there exists the identical transformation I satisfying
I ◦ A = A ◦ I = A for every transformation A , the transformations make a semigroup
with identity, i.e. a monoid. Therefore, the set of physical transformations is a convex monoid.

It is obvious that we can extend the notions of coexistence, sum and multiplication by a
scalar from transformations to effects via equivalence classes.

2.4. Dynamical independence and local state

A purely dynamical notion of independent systems coincides with the possibility of performing
local actions. More precisely, we define

Definition 3 (dynamical independence). Two physical systems are independent if on the two
systems 1 and 2 we can perform local actions A(1) and A(2) whose transformations commute
each other (i.e. A (1) ◦ B(2) = B(2) ◦ A (1),∀A (1) ∈ A(1),∀B(2) ∈ B(2)).

Note that the above definition of independent systems is purely dynamical, in the sense that
it does not contain any statistical requirement, such as the existence of factorized states.
Indeed, the present notion of dynamical independence is so minimal that it can be satisfied
not only by the quantum tensor product, but also by the quantum direct sum. As we
will see in the following, it is the local observability principle of Postulate 1 which will
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select the tensor product. In the following, when dealing with more than one independent
system, we will denote local transformations as ordered strings of transformations as follows
A ,B,C , . . . := A (1) ◦ B(2) ◦ C (3) ◦ . . . . The notion of independent systems now entails the
notion of local state—the equivalent of partial trace in quantum mechanics.

Definition 4 (local state). For two independent systems in a joint state $, we define the local
state $|1 of system 1 as the probability rule $|1(A )

.= $(A ,I ) of the joint state $ with a
local transformation A only on the system 1 and with system 2 untouched.

Clearly, the above notion can be symmetrically defined for system 2, and can be trivially
extended to any number of independent systems, with the local state $|n of the nth system
representing the probability rule of the joint state in which all systems are left untouched apart
from system n.

3. The no-signalling theorem

We are now in a position to prove the general no-signalling theorem.

Theorem 1 (no-signalling). Any local action on a system does not affect another independent
system. More precisely, any local action on a system is equivalent to the identity transformation
when viewed from another independent system. In equations one has

∀$ ∈ S×2,∀A, $S (A),I |2 = $|2. (1)

Proof. Since the two systems are dynamically independent, for every two local transformations
one has A (1) ◦ A (2) = A (2) ◦ A (1), which implies that $(A (1) ◦ A (2)) = $(A (1) ◦ A (2)) =
$(A (1) ◦ A (2)) ≡ $(A (1),A (2)). By definition, for B ∈ T one has $|2(B) = $(I ,B),
and using the addition rule for transformations and recalling the definition of S (A), one has

$(S (A),B) = $([S (A)]inf,B) = $(I ,B) =: $|2(B), (2)
where [·]inf denotes the informational equivalence class. On the other hand, we have

$S (A),I |2(B) = $((I ,B) ◦ (S (A),I )) = $(S (A),B), (3)
namely the statement. "

Note how the no-signalling is a mere consequence of our minimal notion of dynamical
independence in definition 3. Note also the consistency with the dynamical part of the
definition of addition of coexistent transformations, i.e. conditioning

$S (A),I |2(B) = $S (A),I (I ,B) =
∑

Aj ∈A
$Aj ,I (I ,B)

$(Aj ,I )∑
Aj ∈A $(Aj ,I )

=
∑

Aj ∈A

$(Aj ,B)

$(Aj ,I )

$(Aj ,I )

$(I ,I )
=

∑

Aj ∈A
$(Aj ,B) = $(I ,B). (4)

Corollary 1. One has the logical equivalence
$(A ,I ) = 1 ⇐⇒ $(A ,B) = $(I ,B), ∀B ∈ T. (5)

Proof. The implication from the left to the right is trivial. To prove the reverse implication,
just consider another transformation A # to complete an action A = {A ,A #}. Now 0 =
$(A #,I ) = $(A #,B) + $(A #,B#) which implies that $(A #,B#) = $(A #,B) = 0.
This implies that $(I ,B) = $(A ,B) + $(A #,B) = $(A ,B). "

Assessing the truth of statement (5) implies no-signalling, since if $(S (A),I ) = 1 )⇒
$(S (A),B) = $(I ,B), i.e. $(S (A),B) = $2(B)∀B ∈ T.
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4. The quantum version of no-signalling theorem

Since assessing the truth of statement (5) implies the no-signalling, in order to prove no-
signalling in quantum mechanics we just need to prove validity of (5) in the quantum case.
For this purpose, we need a simple technical lemma that is reported in appendix A. We can
then prove the quantum version of no-signalling.

Theorem 2 (quantum version of corollary 1). For any positive operator R ∈ HA ⊗ HB and
any generally trace-decreasing quantum operation M which acts locally on states on HA, one
has

Tr[M ⊗ I (R)] = Tr[R] ⇐⇒ Tr1[M ⊗ I (R)] = Tr1[R]. (6)

Proof. That the identity Tr1[M ⊗ I (R)] = Tr1[R] implies Tr[M ⊗ I (R)] = Tr[R] is
obvious. The converse implication is not obvious. Therefore, assume that

Tr[M ⊗ I (R)] = Tr[R]. (7)

Invariance of trace under cyclic permutation gives

Tr1[M ⊗ I (R)] = Tr1[(K ⊗ I )R], (8)

where K = M ᵀ(I ), and M ᵀ denotes the quantum operation on the Heisenberg picture.
Hence, one has

Tr1[M ⊗ I (R)] = Tr1[R] + Tr1{[(K − I ) ⊗ I ]R} ≡ Tr1[R]. (9)

In fact, due to equation (7), one has

Tr{[(I − K) ⊗ I ]R} = 0, (10)

but according to lemma 1 in appendix A, the operator Tr1{[(I −K)⊗I ]R} is positive, whence,
being trace-less, it must be identically zero. "

5. The tensor product and the local observability principle

The tensor product realization of dynamically independent systems in quantum mechanics does
not follow just from the general definition of dynamical independence. Indeed, definition 3
does not exclude the quantum-mechanical realization in terms of direct sum, instead of tensor
product (see appendix B). One way of excluding the direct sum realization is to consider
the existence of states for which the probability factorizes e.g. $(A ,B) = ω1(A )ω2(B);
however, this would lead to a definition of independence that is not purely dynamical, but also
statistical. A way to exclude the direct sum in a purely dynamical way is to introduce the
following local observability principle

Postulate 1 (local observability principle). For every composite system there exist
informationally complete observables made only of local informationally complete
observables.

We recall the definition of informationally complete observable.

Definition 5 (informationally complete observable). An observable L = {li} is informationally
complete if each effect can be written as a linear combination of elements of L, namely for
each effect l there exist coefficients ci(l) such that

l =
∑

i

ci(l)li . (11)
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We call the informationally complete observable minimal when its effects are linearly
independent.

As a consequence of the duality between the convex set of states and that of effect, one
has the identity of their affine dimensions dim(S) = dim(P) − 1 (the missing dimension is
due to the normalization condition for states).

The local observability principle plays a crucial operational role, since it reduces
enormously the experimental complexity, by guaranteeing that only local (although jointly
executed!) experiments are sufficient to retrieve a complete information of a composite
system, including all correlations between the components. The principle reconciles holism
with reductionism in a non-local theory, in the sense that we can observe a holistic nature in a
reductionistic way—i.e. locally. The principle implies the following identity

Theorem 3. The affine dimension of the convex set of states S12 of a composed system can
be written in terms of the affine dimensions of the convex sets of states S1 and S2 of the
component systems as

dim(S12) = dim(S1)dim(S2) + dim(S1) + dim(S2). (12)

Proof. We can first prove that the right-hand side of equation (12) is an upper bound for
the left-hand side. Indeed, as we have seen, by duality between S and P the number
of outcomes of a minimal informationally complete observable is given by dim(P) =
dim(S)+1. Now, consider a global informationally complete measurement made of two local
minimal informationally complete observables measured jointly. It has number of outcomes
[dim(S1)+ 1][dim(S2)+ 1]. However, we are not guaranteed that the joint observable is itself
minimal, whence the right-hand side of equation (12) is just an upper bound.

The opposite bounding can be easily proved by considering that a global informationally
incomplete measurement made of minimal local informationally complete measurements
should belong to the linear span of a minimal global informationally complete
measurement. "

Identity (12) is the same that we have in quantum mechanics as a consequence of the tensor
product structure. In fact one has dim(S) = dim(H)2 − 1, and dim(H12) = dim(H1)dim(H2),
which gives dim(S12) + 1 = [dim(S1) + 1][dim(S2) + 1]. Therefore, the tensor product
is not a consequence of dynamical independence in definition 3, but follows from the local
observability principle.

6. Conclusion

We have considered a very general operational framework, and proved that the so-called no-
signalling (a-causality at a distance of ‘local actions’) is a direct consequence of dynamical
independence of systems. We have seen that the concept of purely dynamical independence can
only be defined in terms of commutativity of local transformations. Hence, as such, dynamical
independence is compatible with both tensor product and direct sum of operator algebras
in quantum mechanics. On the other hand, the tensor product description of independent
systems in quantum mechanics operationally follows from the additional requirement of local
observability. The local observability principle plays a crucial operational role, reconciling
holism with reductionism in a non-local theory, allowing us to observe a holistic nature in a
reductionistic way—i.e. locally.
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Appendix A. Technical lemma

Lemma 1. For A # 0 operator on HA and R # 0 operator on Ha ⊗ HB one has

Tr1[(A ⊗ I )R] # 0. (A.1)

Proof. For any vector |ϕ〉 ∈ HA one has Tr1[(|ϕ〉〈ϕ|⊗I )R] # 0, since for any vector |φ〉 ∈ HB

one has

〈φ|Tr1[(|ϕ〉〈ϕ| ⊗ I )R]|φ〉 = (〈φ| ⊗ 〈ϕ|)R(|φ〉 ⊗ |ϕ〉) # 0, (A.2)

due to positivity of R. Then, the statement follows by considering a spectral decomposition of
A, namely

Tr1[(A ⊗ I )R] =
∑

n

anTr1[(|ϕn〉〈ϕn| ⊗ I )R] # 0. (A.3)
"

Appendix B. The direct-sum dynamical independence

For a direct sum pair of systems, a local transformation on system 1 works on a joint state as
A (1) = A+ ⊕ pA I−, namely, on a joint state $ corresponding to ρ+ ⊕ ρ− one has

$(A ,I ) = Tr[A+(ρ+)] + pA Tr[ρ−]. (B.1)

Any couple of local transformations on the two ‘systems’ commute, since

A (1) ◦ B(2) = (A+ ⊕ pA I−)(pBI+ ⊕ B−) = pBA+ ⊕ pA B−

= (pBI+ ⊕ B−)(A+ ⊕ pA I−) = B(2) ◦ A (1). (B.2)

The probability rule of a joint state on local transformations is

$(A ,B) = Tr[pBA+ ⊕ pA B−(ρ)] = pBTr[A+(ρ+)] + pA Tr[B−(ρ−)], (B.3)

which gives the implication in the statement of Corollary 1—i.e. implying no-signalling—
since $(A ,I ) = 1 is satisfied only for pA = 1 and trace-preserving A+, which then implies
$(A ,B) = pBTr[ρ+] + Tr[B−(ρ−)] ≡ $(I ,B). Note how also state conditioning is
consistently defined

$A ,I (B) = pBTr[A (ρ+)] + pA Tr[B(ρ−)]
Tr[A (ρ+)] + pA Tr[ρ−]

. (B.4)
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