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We present a general dilation scheme for quantum instruments with continuous
outcome space in finite dimensions, in terms of a measurement on a finite-
dimensional ancilla, described by a positive operator valued measure �POVM�. The
general result is then applied to a large class of instruments generated by operator
frames, which contains group-covariant instruments as a particular case and allows
one to construct dilation schemes based on a measurement on the ancilla followed
by a conditional feed-forward operation on the output. In the case of tight operator
frames, our construction generalizes quantum teleportation and telecloning, produc-
ing a whole family of generalized teleportation schemes in which the instrument is
realized via a joint POVM at the sender combined with a conditional feed-forward
operation at the receiver. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3105923�

I. INTRODUCTION

The theory of quantum measurements for discrete spectrum has been formulated by von
Neumann in the pioneering work.1 For continuous outcome quantum measurements, however, a
satisfactory theory has been laking for another 30 years, when the problem was finally settled by
Ozawa.2 The main difficulties with the continuous-outcome measurements were �i� the issue of
repeatability and �ii� the compatibility between the statistics of the measurement and the dynami-
cal evolution of the observed system and the measuring apparatus. In their pioneering work,3

Davies and Lewis introduced an operational framework for the statistical description based on the
mathematical concept of “instrument”—i.e., of transformation-valued measure. In this framework
they formulated a weak repeatability hypothesis and conjectured that instruments for continuous-
outcome measurements can never be repeatable, even in such weak sense. Davies and Lewis,
however, overlooked the requirement of complete positivity of the state change in measurements,
which was instead established by Kraus4 in the particular case of yes-no measurements. Thirteen
years later Ozawa2 showed that the state change due to an arbitrary measuring process is described
by completely positive �CP� instruments, and, vice versa, that any CP instrument can be dilated to
an indirect measurement process, with the measured system unitarily interacting with an ancilla
which then undergoes the measurement of a von Neumann observable with the same outcome
space of the instrument. In the same paper, Ozawa finally proved the Davies and Lewis conjecture
for CP instruments, showing that they cannot be weakly repeatable unless their outcome space is
discrete.
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A von Neumann observable with continuous-outcome space is a projection-valued measure
�PVM�, such as the spectral measure of a self-adjoint operator with continuous spectrum. Such a
continuous outcome observable can exist only for infinite-dimensional systems. It follows that the
Ozawa dilations of quantum instruments with continuous-outcome space, even for finite-
dimensional systems, require an infinite-dimensional ancilla. A general positive operator valued
measure �POVM�, on the contrary, can have a continuous-outcome space even for finite dimen-
sions, e.g., for the measurement of the spin direction.5 Recently, in Refs. 6 and 7, it has been
shown that in finite dimensions every continuous-outcome POVM can be achieved as the random-
ization of finite-outcome POVMs with no more than d2 outcomes, d being the dimension of the
system’s Hilbert space. Exploiting Naimark dilation8 of the finite-outcome POVMs involved in the
randomization, this implies that for finite dimensions any continuous-outcome POVM can be
realized as a randomized observable with dimensions no greater than d2. Therefore, realization of
an instrument via indirect measurement of a POVM on a finite-dimensional ancilla allows one to
achieve the instrument as the indirect measurement of a randomized observable in finite dimen-
sion.

The existence of the dilation for the continuous-outcome instrument to a POVM on a finite-
dimensional ancilla has not been considered yet in the literature, and it is not a priori obvious,
since the usual dilation procedure exploits the orthogonality of the PVM. Such an indirect POVM
realization of the instrument is the main result of the present paper, where we construct a general
realization scheme for a quantum instrument with continuous outcome space in finite dimension,
in terms of an indirect POVM measurement performed on an ancilla interacting with the system.
In addition, in this paper we define the notion of instruments generated by operator frames and
specialize our dilation theorem to this case, showing that any such instrument allows a realization
in terms of an ancilla measurement followed by a conditional feed-forward operation. For tight
operator frames, the feed-forward scheme becomes a generalized teleportation scheme, namely, a
scheme where a sender performs a joint POVM measurement on the input system and locally on
another system of an entangled pair and communicates the measurement outcome to the receiver,
who then performs a suitable conditional quantum channel on the other system of the entangled
pair. The notions of instruments and channels generated by frames and the related feed-forward
realization schemes provide a general framework encompassing a great deal of existing experi-
mental schemes9–12 and theoretical proposals, such as telecloning13 and universal-NOT.14

The paper is organized as follows. in Sec. II we recall the preliminary notions used in the
paper, also giving a new compact rule for expressing the minimal Stinespring dilation of a given
CP map as a function of its Choi–Jamiołkowski �CJ� operator. The general dilation theorem for
quantum instruments in finite dimensions is then presented in Sec. III, where we construct an
indirect measuring process based on a POVM on a finite-dimensional ancilla. In Sec. IV we
introduce a class of instruments generated by operator frames, which contains group-covariant
instruments as a special case. The case of group-covariant instruments is then analyzed in detail in
Sec. V. In Sec. VI we specialize to the case of instruments generated by tight operator frames,
showing that any such instrument can be realized via generalized teleportation scheme, with a
joint measurement at the sender and a conditional operation at the receiver. This construction
generalizes quantum teleportation and provides the general framework for quantum tasks such as
telecloning13 and tele-UNOT,14 as shown in Sec. VII.

II. GENERAL NOTIONS ON QUANTUM INSTRUMENTS AND CHANNELS

In the following we will denote by Lin�H� the vector space of linear operators on the Hilbert
space H and by Lin�H ,K� the vector space of linear operators from H to K. We will exclusively
consider finite-dimensional Hilbert spaces. Moreover, we will denote by S�H� the convex set of
density matrices on H and by CP�H ,K� the convex cone of CP maps from Lin�H� to Lin�K�.
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A. Quantum operations

In quantum mechanics the most general evolution of a system is described by a quantum
operation.15 We will consider generally different input and output systems in the evolution and
denote by Hin and Hout the corresponding Hilbert spaces. Then, a quantum operation with input
space Hin and output space Hout is a CP map E�CP�Hin ,Hout� which is also trace nonincreasing.
The operation E transforms the input state �in�S�Hin� into the output state �out�S�Hout� as
follows:

�out =
E��in�

Tr�E��in��
, �1�

the transformation occurring with probability pEªTr�E��in�� among a set of possible transforma-
tions. In the deterministic case the map E is trace preserving, and the quantum operation is usually
called quantum channel.

B. Representations of operators and CP maps

1. Operators and bipartite vectors

In finite dimensions it is convenient to exploit the isomorphism between Lin�Hin ,Hout� and
Hout � Hin induced by the linear map

F � Lin�Hin,Hout� � ��F�� ª �F � 1in���1in�� � Hout � Hin, �2�

where ��1in���Hin
�2 is the maximally entangled vector ��1in��ª�n�en��en� defined by the choice of

a distinguished orthonormal basis 	�en�
n=1
din for any copy of Hin.

Fixing an orthonormal basis 	�cm�
m=1
dout for any copy of Hout, the transpose and the complex

conjugate of F are uniquely defined through the relations

�1out � F����1out�� = ��F�� , �3�

F� = �F†��, �4�

where ��1out��=�m�cm��cm� and F†�Lin�Hout ,Hin� is the adjoint of F. Definitions �2� and �3� imply
the elementary identities

�B � A���F�� = ��BFA��� ,

��F�G�� = Tr�F†G� ª �F,G�HS, �5�

where B and A are arbitrary operators in Lin�Hout� and Lin�Hin�, respectively, and �· , ·�HS denotes
the Hilbert–Schmidt scalar product in Lin�Hin ,Hout�.

2. Linear maps and bipartite operators

In finite dimensions it is convenient to represent linear maps M from Lin�Hin� to Lin�Hout� as
linear operators RM on Hout � Hin via the so-called Choi-Jamiołkowski �CJ� isomorphism,16,17

RM = �M � I����1in����1in���, M��� = Trin��1out � ���RM� , �6�

where I is the identity map and Trin denotes the partial trace on Hin �see Ref. 18 for the second
equality in Eq. �6��. The transpose and the complex conjugate of a map are uniquely defined by
through the relations

�I � M�����1out����1out��� = RM, �7�
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M� = �M†��, �8�

where M† is the adjoint of the linear operator M with respect to the Hilbert–Schmidt scalar
product, i.e., �B ,M�A��HS= �M†�B� ,A�HS. According to the above definitions, one has the useful
relation

RBMA = �B � A���RM� , �9�

where B is an arbitrary map from Lin�Hout� to Lin�Hout� and A is an arbitrary map from Lin�Hin�
to Lin�Hin�.

It is easy to check that the linear map M is CP if and only if the CJ operator RM is positive
and the correspondence M↔RM is an isomorphism of positive cones. Moreover, M is trace
nonincreasing if and only if the following dominance relation holds:

Trout�RM� � 1in, �10�

the equal sign corresponding to the trace-preserving case of the quantum channel.
Another convenient isomorphism is the one between linear maps M from Lin�Hin� to

Lin�Hout� and linear operators ŘM from Hin
�2 to Hout

�2 given by

ŘM��A�� = ��M�A��� ∀ A � Lin�Hin� , �11�

such a definition depending on the two chosen basis 	�cm�
 and 	�en�
 for Hout and Hin, respectively.

In this case one has ŘAB= ŘAŘB, namely, the correspondence M↔ ŘM is an isomorphism of

�finite dimensional� algebras. The correspondence M↔ ŘM also induces a one-to-one correspon-

dence between RM�Lin�Hout � Hin� and ŘM�Lin�Hin
�2 ,Hout

�2�,

ŘM = I�RM� . �12�

Like ŘM, the isomorphism I depends on the two chosen basis 	�cm�
 and 	�en�
 for Hout and Hin.
Every quantum operation M can be written in a �nonunique� Kraus form,

M��� = �
i

Mi�Mi
† ∀ � � Lin�Hin� . �13�

Any Kraus form is equivalent to a decomposition of the CJ positive operator RM into rank-one
positive operators,

RM = �
i

��Mi����Mi�� . �14�

In particular, diagonalization of RM yields the canonical Kraus form M���
=�iKi�Ki

† , Tr�Ki
†Kj�=�ij�Ki�2

2, where �X�2ªTr�X†X�1/2 is the Hilbert–Schmidt norm.
For a map M with Kraus form �13�, it is immediate to show that the maps M†, M�, and M�

have the Kraus forms

M���� = �i
Mi

��Mi
� ∀ � � Lin�Hin� ,

M†�A� = �i
Mi

†AMi ∀ A � Lin�Hout� ,

M��A� = �i
Mi

�AMi
� ∀ A � Lin�Hout� . �15�

Moreover, using Eqs. �11� and �5� the operator ŘM=I�RM� can be written in terms of the
Kraus form as follows:
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I�RM� = �
i

Mi � Mi
�. �16�

Different Kraus decompositions are all connected to a minimal one—e.g., the canonical—by an
isometric matrix W as follows:

Mi = �
j

WijKj, �
k

Wki
� Wkj = �ij . �17�

Therefore, the operator space Span	Mi
 is independent of the choice of the Kraus form and is a
function only of the map M. In the following we will make use of the corresponding Hilbert
space, which is spanned by the bipartite vectors 	��Mi��
:

HM = Span	��Mi��
 � Supp�RM� � Rng�RM� , �18�

having used that the CJ operator RM is positive, whence support and range coincide. Note that
generally HM can be a proper subspace of Hout � Hin.

C. Operator frames

The Kraus operators 	Mi
 are generally nonorthogonal and not even linearly independent.
They are a so-called operator frame for the operator space Span	Mi
, namely, a �possibly infinite�
set of vectors such that the sum �i��Mi����Mi�� converges to an operator M �Lin�Hout � Hin�,
called the frame operator. For Kraus operators, we have indeed

M ª �
i

��Mi����Mi�� = RM. �19�

Any vector ��A�� in Supp�RM� can be expanded on the frame 	��Mi��
, and the expansion can
be written in terms of another set of operators 	Ni
 called dual of the frame 	Mi
 as ��A��
=�i��Mi����Ni �A��. Equivalently, we have the completeness relation

�
i

��Mi����Ni�� = 1out � 1in. �20�

A possible choice of dual, particularly relevant to our purposes, is the canonical dual given by

��M̂i�� = M−1��Mi�� . �21�

The inverse M−1 is actually defined on HM=Rng�RM��Supp�RM�, and on Hout � Hin, it
must be regarded as the Moore–Penrose pseudoinverse with support on HM.

D. Minimal dilation of a quantum operation

For 	Mi
 Kraus operators of the CP map M, the frame operator M is just the CJ operator
RM�M of the map M, whence it is independent of the choice of the Kraus operators 	Mi
.
Consider now the operator V :Hin→Hout � HM defined by

V ª �
i

Mi � ��M��−1/2��Mi
���� = �

i

Mi � ��M��−1/2��Mi
���� , �22�

having used M�=M� since M �0. Note that V is independent of the choice of the Kraus form:
indeed, one has
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V = �
ijk

WijWik
� Kj � ��RM

� �−1/2��Kk
���� = �

j

Kj � ��RM
� �−1/2��Kj

���� = �
j

Kj �
��Kj

���
�Kj�2

, �23�

having used Eq. �17� and the fact that each canonical Kraus operator Ki is eigenvector of RM with
eigenvalue �Ki�2

2. Clearly the operator V provides a dilation of the CP map M, with HM playing
the role of ancillary Hilbert space,

M��� = TrHM
�V�V†� . �24�

For quantum operations V is a contraction �V†V�1in�, while for quantum channels V is an isom-
etry �V†V=1in�.

Among all possible dilations of M, the one given by V in Eq. �24� has minimum ancilla
dimension. Indeed, for any operator V� :Hin→Hin � HA, such that M���=TrA�V��V�†�, the map
M��� has Kraus representation 	Miª A�i�V
, where 	�i�A
 is an orthonormal basis for HA. Then,
according to Eq. �14� dim�HA�� rank�RM�=dim�HM�. In other words, V is the minimal Stine-
spring dilation of the CP map M.19 Any nonminimal dilation V� is connected to the minimal one
via an isometry of ancillary spaces Y :HM→HA, Y†Y =1HM

. Indeed, using Eq. �17�, one has

V� = �
ij

WijKj � �i� = �
j

Kj � �� j� = �1out � Y�V , �25�

where 	�� j��HA
 are the orthonormal vectors �� j�ª�iWij�i� and Y is the isometry Y
ª �� j���Kj

��� / �Kj�2. The minimal Stinespring dilation is unique up to local unitaries on the ancilla
Hilbert space HM, namely, if V� is also minimal, then Y is a unitary from HM to HA.19

We now give a new compact formula for the minimal Stinespring dilation of a CP map in
terms of the CJ operator RM.

Proposition 1: Let RM�Lin�Hout ,Hin� be the CJ operator associated with the CP map M
�CP�Hin ,Hout�, and let HM be the Hilbert space HM=Supp�RM�=Rng�RM�. Then, a minimal
dilation V :Hin→Hout � HM is given by

V = �1out � �RM
� �1/2����1out�� � 1in� , �26�

or, alternatively, by

V = �I�RM
1/2� � 1in��1in � ��1in��� , �27�

I being the one-to-one correspondence defined in Eq. (12)
Proof: It is simple to check that Eq. �26� provides a dilation of M, which is clearly minimal

since the ancilla space is HM=Supp�RM�. Indeed, using the inclusion Hout � HM�Hout
�2

� Hin and
Eqs. �5� and �6�, one has for any ��S�Hin�

TrHM
�V�V†� = Trout2

Trin��1out � RM
� ����1out����1out�� � ��� = Trout2

��1out � Trin��1out � ��RM
� ��

����1out����1out���� = Trout2
��1out � M�������1out����1out��� = M��� , �28�

where Trout2
denoting partial trace over the second copy of Hout in the tensor product Hout

�2
� Hin.

On the other hand, using the relation �RM�s=� j�Kj�2�s−1���Kj����Kj�� along with Eq. �16�, we get
I�RM

1/2�=� j�Kj�−1/2Kj � Kj
�. Substituting I�RM

1/2� into Eq. �27� and comparing with Eq. �23�, we
obtain that the definitions of V in Eqs. �27� and �22� actually coincide. Finally, direct calculation
shows the coincidence of definitions of V in �26� and �27�. �

E. POVMs and quantum Instruments

The statistics of a quantum measurement is described by a measurable space � with a
	-algebra 
� of events and a probability measure p on �� ,
��. In quantum mechanics the
probability measure in terms of the quantum state � is given by the Born rule,
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∀B � 
�, p�B� = Tr��PB� , �29�

where P is a POVM, namely, a map from events B�
� to positive operators PB�0 on H,
satisfying the requirements

P� = 1 �normalization� , �30�

P��i=1
� Bi�

= �
i=1

�

PBi
∀ 	Bi
:Bi � Bj = � ∀ i � j �	-additivity� , �31�

where the series converges in the weak operator topology.
A complete description of a measurement in a cascade of different measurements performed

on the same system must also provide the conditional state associated with any possible event. In
quantum mechanics this is given by the notion of “quantum instrument,”2 in which each event
B�
� corresponds to a quantum operation ZB�CP�Hin ,Hout�. More precisely, we have the
following.

Definition 1: A map Z :
�→CP�Hin ,Hout� is a quantum instrument if it satisfies the prop-
erties

Tr�Z����� = Tr��� ∀ � � S�Hin� , �32�

Z��i=1
� Bi�

= �
i=1

�

ZBi
∀ 	Bi
:Bi � Bj = � ∀ i � j . �33�

Using the CJ isomorphism �6�, any instrument Z can be associated in a one-to-one fashion
with a POVM Z, which we call CJ measure �CJM� of the instrument, given by

ZB ª RZB
= �ZB � I����1in����1in��� ∀ B � 
�. �34�

Differently from usual POVMs, for which the normalization is given by Eq. �30� the measure Z
has the normalization condition,

Trout�Z�� = 1in, �35�

Trout�·� denoting partial trace over Hout.
The POVM P giving the probability of the event B�
� for state ��S�Hin� can be written in

terms of the CJM Z using the isomorphism �6� as follows:

Tr�PB�� = Tr�ZB���� = Tr��1out � ���ZB� = Tr��Trout�ZB
� �� , �36�

whence

PB = Trout�ZB
� � ∀ B � 
�. �37�

In finite dimensions, the correspondence between instruments and CJMs allows one to simply
prove the existence of an instrument density with respect to a suitable scalar measure.20,21

Proposition 2: Any instrument Z :
�→CP�Hin ,Hout� in finite dimensions can be written as

ZB = 

B

��d
�S
, �38�

where ��d
� is the finite measure defined by ��B��Tr�ZB� ∀B�
�, and the density S
 is a
CP-map valued function, uniquely defined �-almost everywhere.

Proof: Let 	�k�
 be an orthonormal basis for Hout � Hin and define the complex measures �kl,
�kl�B�ª �k�ZB�l�. Due to positivity, one has ��kl�B�����k�ZB�k��l�ZB�l��Tr�ZB�=��B�, i.e., all
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measures �kl are absolutely continuous with respect to �. Therefore, any measure �kl admits a
density 	kl�
� with respect to �. We then have

ZB = �
k,l

�kl�B��k��l� = �
k,l



B

��d
�	kl�
��k��l� = 

B

��d
�S
, �39�

having defined S
ª�k,l	kl�
��k��l�. Since S
 is the density of the POVM ZB with respect to the
scalar measure �, it is positive and uniquely defined �-a.e. The instrument density S
 is then
obtained by the relation S
���=Trin��1out � ���S
�. �

III. DILATIONS OF QUANTUM INSTRUMENTS

We are now in position to prove a dilation theorem for instruments with generally continuous-
outcome space in finite dimensions. A dilation of a quantum instrument Z :
�→CP�Hin ,Hout� is
a triple �HA ,V ,Q�, where HA is an ancillary Hilbert space, V :Hin→Hout � HA is an isometry, and
Q :
�→Lin�HA� is a POVM on the ancilla, such that

ZB��� = TrHA
�V�V†�1out � QB�� ∀ B � 
�. �40�

The triple �HA ,V ,Q� represents an indirect measurement scheme where the input system Hin
evolves through the isometry V, producing the output Hout and the ancilla HA, which then under-
goes a POVM measurement Q with the same outcome space as the instrument.

Theorem 1: Let Z :
�→CP�Hin ,Hout� be an instrument with outcome space � and Z :
�

→Lin�Hout � Hin� be the associated CJM. A minimal dilation of the instrument is given by the
triple �HA ,V ,Q� where the ancillary Hilbert space HA is isomorphic to HZªSupp�Z��
=Rng�Z��, V :Hin→Hout � HA is the isometry

V ª �1out � �Z�
� �1/2����1out�� � 1in� , �41�

and Q is the POVM on HA given by

QB ª �Z�
−1/2ZBZ�

−1/2�� ∀ B � 
�. �42�

Proof: According to Eq. �26�, V is the minimal Stinespring isometry of the channel Z�. On the
other hand, Q is clearly a POVM on HA, since QB�0 ∀B�
� and Q�=1HA

. Moreover, exploit-
ing the inclusion Hout � HA�Hout

�2
� Hin, we have

TrHA
�V�V†�1out � QB�� = Trout2

Trin����1out����1out�� � ���1out � ZB
� ��

= Trout2
��1out � ZB�������1out����1out��� = ZB��� , �43�

thus proving that �HA ,V ,Q� is actually a dilation of the instrument Z. Finally, the dilation has
minimal ancilla dimension. Indeed, for any dilation �HA� ,V� ,Q�� of the instrument Z, we have a
dilation of the channel Z�, given by Z����=TrHA�

�V��V�†�. Since V is the minimal Stinespring

isometry of the channel Z�, one necessarily has dim�HA���dim�Supp�Z����dim�HA�. �

Any other dilation of the instrument Z arises from some nonminimal isometry V� :Hin
→Hout � HA, which is necessarily of the form V�= �1out � Y�V, where Y :HA→HA�

is an isometry
of ancilla spaces. Substituting the form of V� in Eq. �40�, we then obtain

QB = Y†QB�Y ∀ B � 
�. �44�

Since Y can be viewed as an isometric embedding of HA into HA�, the above equation means that
Q is the projection of Q� on the support of Y. This is indeed the case of the nonminimal dilation
provided by the dilation theorem of Ozawa,2 where Q� is a PVM on the infinite-dimensional
ancilla space HA�. According to Eq. �44�, Q� is then a Naimark dilation8 of the minimal POVM Q
provided in our theorem.
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IV. INSTRUMENTS GENERATED BY OPERATOR FRAMES

We now introduce the definition of frame-orbit instruments, which will play an important role
in the construction of feed-forward realization schemes and generalized teleportation schemes.

Fix a finite measure ��d
� on the outcome space �, a measurable family of quantum opera-
tions A�ª 	A


��, and a measurable family of quantum channels B�ª 	B


��. Then we have
the following.

Definition 2: �Frame-orbit instruments� An instrument Z :
�→CP�Hin ,Hout� is a frame-orbit
instrument with respect to �� ,A� ,B�� if Z admits a density with respect to �, and the density has
the form

S
 = B
S0A

† � − ∀ 
 � � , �45�

where S0 is a fixed CP map. In the case B
�Iout∀
�� we say that Z is a frame-orbit
instrument with respect to �� ,A��.

According to Proposition 2, any instrument Z can be trivially viewed as a frame-orbit instru-
ment by taking ��B�ªTr�ZB�, A
�S
, S0�I, and B
�I. However, a given instrument can be
a frame-orbit instrument with respect to several different triples �� ,A� ,B��, and, on the contrary,
once a triple �� ,A� ,B�� has been fixed, not all instruments are frame-orbit instruments with
respect to that triple.

From now on we will restrict our attention to the case where the elements of A� are single-

Kraus operations A
�·�ªA
 ·A

† . The generalization of all results to the case A
�·�=�k=1

din
2

A
,k ·A
,k
†

is straightforward, as it only consists in replacing the index 
 by the couple �
 ,k�, ����d
� by

����d
��k=1
din

2

, and taking B�
,k�ªB
 and S
ª�k=1
din

2

S�
,k�.
Lemma 1: Let Z :
�→CP�Hin ,Hout� be a frame-orbit instrument with respect to

�� ,A� ,B�� with density S
=B
S0A

† , S0�·�=�i=1

r Si ·Si
† be a Kraus form for S0 and �

ª�i=0
r Si

†Si�Lin�Hin�. Then,



�

��d
�A
�A

† = Trin2

��1in � ���A� = 1in, �46�

where A�Lin�Hin
�2� is the frame operator,

A = 

�

��d
���A
����A
�� , �47�

and Trin2
denotes partial trace over the second copy of Hin in the tensor Hin

�2. Vice versa, for any
positive operator ��Lin�Hin� satisfying Eq. (46) there exists a frame-orbit instrument with respect
to �� ,A� ,B��.

Proof: For the normalization of the instrument Z, Z� must be trace preserving, and we have
Tr�Z�����=����d
�Tr�A
�A


† ��=Tr���∀��S�Hin�, whence Eq. �46�. Vice versa, for any ��0
satisfying Eq. �46�, we can define S0�·�ª�1/2 ·�1/2, so that S
ªB
S0A


† is the density of a
normalized frame-orbit instrument. �

In particular, whenever the elements of A� are all proportional to unitary channels, the class
of frame-orbit instruments with respect to �� ,A� ,B�� is nonempty, as one can choose, e.g., �
=�1in with suitable normalization constant ��0. As we will see in Sec. V, this includes the case
of group-covariant instruments. Similarly, if A�ª 	A

 is a tight operator frame, namely, A=1in

�2,
by definition Eq. �46� holds for any ��Lin�Hin�. Notice that, however, the operators in A� do not
need to be unitary, in general, nor A� needs to be a tight frame, since it is enough that Eq. �46�
holds for a single operator 0���Lin�Hin�.

A. Canonically associated POVMs and their densities

According to Sec. III, there are two POVMs P and Q that are canonically associated with the
instrument Z. The POVM P gives the probability distribution of the instrument for each event and

042101-9 Realization of quantum instruments J. Math. Phys. 50, 042101 �2009�

Downloaded 03 Jun 2009 to 193.204.40.97. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



each state, whereas the POVM Q allows to express the minimal dilation of the instrument via the
minimal isometry V= �1out � Z�

�1/2����1out�� � 1in�. Both P and Q can be written in terms of the CJM
ZB=ZB � I���1in����1in��� of the instrument �see Eq. �34�� as

PB = Trout�ZB
� �, QB = �Z�

−1/2ZBZ�
−1/2��. �48�

Obviously, since the instrument Z admits a density with respect to �, also the CJM Z will admit
a density with respect to �, given by

S
 ª �S
 � I����1in����1in��� , �49�

which is positive and uniquely defined �-almost everywhere. From Eqs. �45�, �9�, and �8�, it is
also clear that the density S
 has the form

S
 = �B
 � A

� ��S0� , �50�

having defined S0ª �S0 � I����1in����1in���=�i=1
r ��Si����Si��. Finally, from Eq. �48� it follows that

the POVMs P and Q admit densities with respect to �, �
, and �
, respectively, given by

�
 = A
�A

† , � ª Trout�S0

�� = �
i=1

r

Si
†Si,

�
 = �Z�
−1/2S
Z�

−1/2��. �51�

B. Feed-forward realization of frame-orbit instruments

The realization of frame-orbit instruments with respect to �� ,A� ,B�� can be always reduced
to the realization of frame-orbit instruments with respect to �� ,A��, combined with a feed-
forward classical communication to implement the conditional channel B
. Indeed, according to
Eq. �45�, every frame-orbit instrument Z with respect to �� ,A� ,B�� is equivalent to the frame-
orbit instrument T with respect to �� ,A�� given by

TB = 

B

��d
�S0A

† �52�

followed by the channel B
 depending on the outcome 
. Notice that T is a normalized instru-
ment, since T and Z have the same normalization in Eq. �46�.

According to Eq. �50� the CJ operator T�= �T� � I����1in����1in��� is then given by

T� = 

�

��d
��I � A

� ��S0� = �S0 � I��


�

��d
��I � A

� ����1in����1in���� = �S0 � I��EA�E� ,

�53�

with S0�CP�Hin1
,Hout� and A�Lin�Hin

�2� being the frame operator in Eq. �47�, and E denoting
the unitary swap between the two copies of Hin in the tensor Hin

�2. Combining the feed-forward
scheme with the minimal dilation of the instrument T, we obtain the following.

Corollary 1: Let Z�CP�Hin ,Hout� be a frame-orbit instrument with respect to �� ,A� ,B��
with density S
=B
S0A


† and let T��Lin�Hout � Hin� be the CJ operator defined in Eq. (53).
Then, the instrument Z has the minimal feed-forward realization,

S
��� = B
�TrHA
�V�V†�1out � �
��� , �54�

where V is the isometry Vª �1out � �T�
� �1/2����1out�� � 1in� and �
 is the POVM density �


ª �T�
−1/2�1out � A


� �S0�1out � A

� �T�

−1/2��.

042101-10 Chiribella, D’Ariano, and Perinotti J. Math. Phys. 50, 042101 �2009�

Downloaded 03 Jun 2009 to 193.204.40.97. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



Feed-forward schemes have recently attracted a remarkable interest in quantum optics and
have been experimentally demonstrated in several applications, such as signal amplification,9

coherent state cloning,10 minimum-disturbance estimation,11 and squeezed state purification.12 In
the finite-dimensional case, frame-orbit instruments provide the most general mathematical frame-
work in which similar realization schemes can be searched.

V. GROUP-COVARIANT INSTRUMENTS WITH TRANSITIVE OUTCOME SPACE

A particular case of frame-orbit instruments is that of covariant instruments whose outcome
space � is a transitive G-space. Given a group G, we will denote by UGª 	Ug�Lin�Hin�
g�G, by
VGª 	Vg�Lin�Hout�
g�G two unitary representations of G, and by UGª 	Ug�CP�Hin ,Hin�
g�G,
VGª 	Vg�CP�Hout ,Hout�
g�G the corresponding sets of automorphisms Ug�·�ªUg ·Ug

†,
Vg�·�ªVg ·Vg

†.
Definition 3: �Group-covariant instruments� Given a topological group G acting on �, and

two continuous unitary (generally projective) representations UG and VG on the Hilbert spaces
Hin and Hout, respectively, we say that the instrument Z :
�→CP�Hin ,Hout� is group covariant
with respect to �G ,UG ,VG� when one has

ZB � Ug��� = Vg � Zg−1�B���� ∀ � � S�Hin�, ∀ B � 
�, ∀ g � G , �55�

with g−1�B�ª 	
�� �g
�B
.
In the case of transitive group action on the outcome space �, for any point 
0�� one has

�=G
0, and the outcome space � can be identified with the space of left cosets ��G /G0 with
respect to the stability group G0ª 	h�G �h
0=
0
. Denote by � the projection map � :G→�,
g���g�=g
0, and by � the invariant measure on � given by ��B�=��−1�B�dg, where dg is the
normalized Haar measure over G. Under this hypothesis and notation, the following structure
theorem holds.22,23

Theorem 2: Let G be a compact group, G0 be a closed subgroup, and Z :
�

→CP�Hin ,Hout� be a covariant instrument with respect to �G ,UG ,VG� with outcome space �
=G /G0. Then Z admits a density with respect to � of the form

S��g� = VgS0Ug
† ∀ g � G , �56�

where S0 is a CP map, Vg�·�ªVg ·Vg
†, and Ug

†�·�ªUg
† ·Ug.

From now on we will confine our attention to compact groups G. Since the group action is
transitive, Eq. �56� defines the density S
 for any 
��. Indeed one can take any measurable
section 	 :�→G, 
�	�
�, ��	�
��=
 and declare

S
 = V	�
�S0U	�
�
† . �57�

The above equation clearly characterizes any covariant instrument with �=G /G0 as a frame-orbit
instrument with respect to �� ,U	��� ,V	����. In addition, Eq. �56� implies the invariance condition,

S0 = VhS0Uh
† ∀ h � G0, �58�

which in terms of CJ operators becomes the commutation relation,

�S0,Vh � Uh
�� = 0 h � G0. �59�

A. Covariant POVMs and dilation of covariant instruments

1. Minimal dilation

Let Z be an instrument with outcome space �=G /G0 covariant with respect to �G ,UG ,VG�.
From Eqs. �50� and �57�, the CJM density is
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S
 = �V	�
� � U	�
�
� ��S0� . �60�

Exploiting the Mackey–Bruhat identity, which sets up an isomorphism between G equipped with
the Haar measure dg and ��G0 equipped with the product measure ��d
����dh�, ��dh� nor-
malized Haar measure over G0 �see, e.g., Ref. 24�, we obtain

Z� = 

�

��d
�S
 = 

��G0

��d
���dh��V	�
� � U	�
�
� ��S0� = 


G
dg�Vg � Ug

���S0� . �61�

As a consequence, we have �Z� ,Vg � Ug
��=0 ∀g�G, and the density �
 in Eq. �51� is given by

�
 = �V	�
�
�

� U	�
����V	�
�
�

� U	�
��† � ª �Z�
−1/2S0Z�

−1/2��, �62�

with � satisfying the commutation relation

��,Vh
�

� Uh� = 0 ∀ h � G0. �63�

This shows that POVM QB=�B��d
��
 used in the minimal dilation of Theorem 1 is a covariant
POVM with outcome space �,23 i.e.,

Qg�B� = �Vg
�

� Ug��QB� ∀ B � 
�. �64�

Furthermore, using the relation �Z�
� ,Vg

�
� Ug�= �Z�

� ,Vg
�

� Ug�=0 ∀g�G, it is immediate to see
that the minimal isometry V= �1out � �Z�

� �1/2����1out�� � 1in� intertwines the two representations
VG � VG

�
� UG and UG, namely,

�Vg � Vg
�

� Ug�V = VUg ∀ g � G . �65�

2. Minimal feed-forward realization and generalized teleportation schemes

A minimal feed-forward realization can be obtained by using Corollary 1, in terms of the
instrument TBª�B��d
�S0U	�
�

† . In this case we have

T� = 

G

dg�Iout � Ug
���S0� , �66�

whence �T� ,1out � Ug
��=0 ∀g�G. As a consequence, the POVM density �
 is now given by

�
 = �I � U	�
����I � U	�
��† � ª �T�
−1/2S0T�

−1/2��. �67�

Notice that in this case �
 is not a covariant POVM density, since the relation �� ,1out � Uh�
=0 ∀h�G0 does not necessarily hold. The minimal isometry V is now given by V= �1out
� �T�

� �1/2����1out�� � 1in� and enjoys the property

�1out
�2

� Ug�V = VUg ∀ g � G . �68�

For irreducible UG the above equation yields V= ����� � 1in for some ������Hout
�2, ���2=1,

namely, the isometry V is just the extension with some pure state. Precisely, computing the average
in Eq. �66�, we have T�=din

−1 Trin�S0� � 1in, whence

V = ��	1/2�� � 1in 	 ª din
−1 Trin�S0� = din

−1�
i=1

r

SiSi
†. �69�

The feed-forward realization then becomes a generalized teleportation scheme where ��	1/2�� plays
the role of entangled resource, the joint measurement �
 is performed by the sender on the input
system and on half of the entangled state, the outcome 
 is classically transmitted, and the
conditional operation V	�
� is performed at the receiver’s end. The discussion on generalized
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teleportation schemes will be extended in Sec. VI to the case of frame-orbit instruments generated
by tight operator frames.

3. Nonminimal feed-forward dilations

Using group theory it is easy to construct nonminimal dilations of group-covariant instru-
ments. Let us decompose Hin and UG as

Hin = �
��S

H� � Cm�, Ug = �
��S

Ug
�

� 1m�
, �70�

the sum running over the set S of inequivalent irreducible representations �irreps� of G contained
in the decomposition of UG, H��Cm�� being the representation �multiplicity� space of the irrep �,
of dimension dim�H��=d� �dim Cm� =m��. The group average of an operator O�Lin�Hin� is then
given by

�O�UG
ª 


G
dgUgOUg

† = �
��S

d�
−1�1d�

� TrH�
���O���� , �71�

�� denoting the projector onto H� � Cm�. For the dilation we introduce now two ancillary spaces

H0�Cr, where r=rank�S0�, and H̃, which is given by

H̃ ª �
��S

H� � Cd�, �72�

and carries the representation ŨGª 	Ũg= ���SUg
�

� 1d�

.

Proposition 3: Let Z be an instrument with outcome space �=G /G0, covariant with respect
to 	G ,UG ,VG
, and with density S
. A dilation of Z can be achieved as follows:

S��g���� = Vg�TrH0
TrH̃��1H0

� 1out � �g��V��V�†��Vg
†, �73�

where � :g���g��G /G0 projects group elements to the corresponding left coset, �g� is the

POVM density on H̃ given by

�g� = ��g���g� ��g� = �
��S

�d���Ug
��� � H̃ , �74�

and V� :Hin→H0 � Hout � H̃ is the isometry

V� = �
i=1

r

�i� � 

G

dgSiUg
†

� ��g� , �75�

	�i�
i=1
r being an orthonormal basis for H0.

Proof: As an immediate consequence of Eq. �71�, the vectors ��g�= Ũg��� provide a resolution

of the identity in H̃, namely,



G

dg��g���g� = 1H̃, �76�

whence �g� is the density of a normalized POVM. Moreover, it is easy verify that V� is an isometry.
First, we have ��g ��h�=���Sd����g−1h�, where ���g��Tr�Ug

�� is the character of the irrep �.
Then, as a consequence of the orthogonality of irreducible matrix elements, we have the relation
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G

dg��
�

d���
� �g��Ug = 1in, �77�

whence

V�†V� = �
i



G
dg


G
dhUgSi

†SiUh
†��g��h� = 


G
dg


G
dhUg�Uh

†��
�

d����g−1h��
= 


G
dg


G
dkUg�UkUg

†��
�

d���
� �k�� = 


G
dgUg�Ug

† = 1in, �78�

having used Eq. �46� with A��UG. Finally, identity �73� holds, namely,

Vg�TrH0
TrH̃�V��V�†�1A � 1H � �g����Vg

† = Vg��
i=1

r 

G

dh

G

dkSiUh
†�UkSi

†��g��h���k��g��Vg
†

= Vg��
i=1

r 

G

dh

G

dkSiUhUg
†�UgUkSi

†� �
��S

d���
� �h��

�� �
��S

d���
��k���Vg

† = Vg��
i=1

r

SiUg
†�UgSi

†�Vg
†

= VgS0Ug
†��� = S��g���� , �79�

having used Eqs. �77� and �56�. �

The above proposition shows that in order to realize the instrument Z, it is enough to perform
the indirect measurement �g—whose outcome space is the whole group G—and subsequently to
use the classical data processing g���g� that projects the g onto the final outcome space �
=G /G0. In this way, both the statistics and the state reduction associated with the operational
scheme of measurement and feed-forward are exactly the same as for the instrument Z.

4. Naimark dilation

Consider the Hilbert space ���ĜH� � Cd�, where Ĝ denotes the set of all possible unitary
irreps of G. According to Fourier–Plancherel theory,24 any vector �f�� ���ĜH� � Cd� is associ-
ated with a square-summable function f�g� as follows:

�f� � f�g� = �
��Ĝ

�d���Ug�����f� . �80�

In this way, one has �f �h�=�Gdgf��g�h�g�, and correspondence �f�� f�g� sets up a unitary equiva-
lence between the Hilbert spaces ���ĜH� � Cd� and L2�G ,dg�. Therefore, we can identify the

ancilla space H̃ in Proposition 3 with a subspace of L2�G ,dg�, the projector on H̃ being Y =
���S��. Hence the POVM Q� defined by the density �g� in Eq. �74� has the following Naimark
dilation:

�f �QB� �h� = 

B

dg �
�,��S

�d�d��f �����Ug
�����Ug

������h� = 

B

dg�Yf���g��Yh��g�

= �f �Y†EBY�h� ∀ �f�, �h� � L2�G,dg� , �81�

where E is the PVM on L2�G ,dg� defined by
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�f �EB�h� ª 

B

dgf��g�h�g� ∀ �f�, �h� � L2�G,dg� . �82�

The relation QB=Y†EBY shows that the POVM Q� is simply the projection of the PVM E on the

subspace H̃�L2�G ,dg�. It is worth noting that the POVM Q� is also the optimal POVM for the

estimation of an unknown unitary transformation Ũg acting on the finite-dimensional Hilbert space

H̃.25

VI. TIGHT OPERATOR FRAMES: TELEINSTRUMENTS AND TELECHANNELS

Let � be a finite measure on � and A� a measurable family of operators. A� is a tight
operator frame if the frame operator A is the identity on H�2, i.e.,

A = 

�

��d
���A
����A
�� = 1 � 1 . �83�

A special case of tight unitary frame is that of irreducible unitary representation of a compact
group G, namely, �=G, A�=UG, and ��d
�=dim H�dg.

Generalizing the notion of tight frame to the case where the frame operator is the identity only
on the first copy, we have the following.

Definition 4: Let � be a measure on � and A� be a measurable family of operators. We say
that A� is a left-tight operator frame if



�

��d
���A
����A
�� = 1 � K �84�

for some positive operator 0�K�Lin�H�.
Note that identity �84� is equivalent to the following ones:



�

��d
�A
XA

† = Tr�XK�� 1, ∀ X � Lin�H� ,



�

��d
�A
 � A

� = ��1����K��� . �85�

We will see in the following that operator-frame instruments generated by operations
A
�·�=A
 ·A


† corresponding to left-tight frames A� can be realized by generalized teleportation
schemes, in which two parties �conventionally named Alice and Bob� exploit an entangled re-
source to achieve the instrument via local operations and one-way classical communication: a
suitable joint POVM �
 is measured by Alice on the input, and on one side of the entangled state,
the measurement outcome 
 is announced to Bob, who performs a conditional feed-forward
operation B
 on the other side. We will also use the term teleinstruments to denote instruments
that admit such a realization. In addition, we will show that frame-orbit instruments generated by
tight unitary frames are useful for the realization of covariant channels. In this case, which covers,
in particular, the case of unitary irreducible group representations, a covariant channel can be
realized by a generalized teleportation scheme, hence becoming a telechannel. In particular, we
will provide also the realization of covariant channels such as universal cloning26 and universal
NOT.27
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A. Minimal teleinstruments

Let Z :
�→CP�Hin ,Hout� be a frame-orbit instrument with respect to �� ,A� ,B�� with A�

left-tight operator frame, and let S
 be the instrument density of Z. We consider now the minimal
feed-forward realization of Corollary 1. Using Eq. �85�, the CJ operator of the instrument channel
T� is given by

T� = �T� � I����1in����1in��� = 

�

��d
��1out � A

� �S0�1out � A


� � = Trin�S0�1out � �K����� � 1in

= Trin�S0�1out � K�� � 1in = 	 � 1in, �86�

having used the fact that �K���=K since K�0, and having defined the state

	 ª Trin�S0�1out � K�� = S0�K�� Tr�	� = 1. �87�

The minimal isometry V= �1out � T�
�1/2���1out�� � 1in is then given by

V = ��	1/2�� � 1in �88�

and Corollary 1 yields the following generalized teleportation scheme for the instrument Z:

S
��� = B
�Tr2,3����	1/2����	1/2�� � ���1out � �
��� , �89�

where the POVM density �
 is given by �
= �	−1/2� � A
�S0
��	−1/2� � A


† �.
In conclusion, in the minimal feed-forward realization the frame-orbit instrument Z can be

implemented by two parties that share the pure entangled state ��	1/2�� by using only local opera-
tions and one-way classical communication: it is enough for Alice to perform the joint POVM
�
= �	−1/2� � A
�S0

��	−1/2� � A

† � on the input state and on one side of the entangled resource and to

announce the measurement outcome 
 to Bob, who implements the conditional channel B
.

B. Nonminimal teleinstruments

Starting from the minimal dilation, it is simple to obtain other generalized teleportation real-
ization schemes. In particular, from Eq. �89� we obtain

S
 = B
�Tr2,3����	1/2����	1/2�� � ���1out � �	−1/2�
� A
�S0

��	−1/2�
� A


† ����

= B
�Tr2,3����1out����1out�� � ���1out � �S0
�

� I����A

� ����A


� ������

= B
�Tr2,3���I � S0
�����1out����1out��� � ���1out � ��A


� ����A

� �����

= B
�Tr2,3���S0 � I����1out����1out��� � ���1out � ��A

� ����A


� �����

= B
�Tr2,3���S0 � I����K�1/2����K�1/2��� � ���1out � ��K−1/2A

� ����K−1/2A


� �����

= B
�Tr2,3��	� � ���1out � �
� ��� �90�

having defined the state

	� ª �S0 � I����K�1/2����K�1/2��� �91�

and the POVM density

�
 ª ��K−1/2A

� ����K−1/2A


� �� . �92�

The normalization of 	� is given by Tr�	��=Tr�S0�K���=Tr�	�=1 �having used Eq. �87��, while
the normalization of the POVM �
� follows directly from Eq. �84�.
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Also the above feed-forward realization is a generalized teleportation scheme, which allows
Alice and Bob to implement the instrument Z as a teleinstrument. Notice that now the entangled
resource 	�= �S0 � I����K�1/2����K�1/2��� is a generally mixed state, whereas the joint POVM per-
formed by Alice has now the rank-one density �
� = ��K−1/2A


� ����K−1/2A

� ��.

C. Tight unitary frames and Bell measurements

A particularly interesting generalized teleportation scheme arises when the left-tight frame A�

consists of unitary operators, namely, A��U�. This is the case, for instance, when A
 is a unitary
irreducible representation of some compact group G.

It is immediate to see that a unitary left-tight frame A� is necessarily tight, since Eq. �84�
implies K=1in /din. For unitary tight frames, the nonminimal realization of Eq. �90� becomes

S
 = B
�Tr2,3�� S0

din
� ���1out � �
� ��� �
� = din��U


� ����U

� �� , �93�

and the joint POVM used by Alice is a Bell measurement, i.e., �
� are proportional to rank-one
projectors on maximally entangled states. On the other hand, the minimal realization of Eq. �89�
gives

S
��� = B
�Tr2,3����	1/2����	1/2�� � ���1out � �
��� , �94�

with 	=S0�1in� /din and POVM density �
= �	−1/2� � U
�S0
��	−1/2� � U


† �. Note that typically the
POVM �
 in the minimal realization is not a Bell POVM.

VII. REALIZATION OF COVARIANT CHANNELS

The realization of a covariant instrument Z also allows one to achieve the corresponding
channel Z� by simply averaging over the instrument outcomes. Therefore, the general realization
schemes presented in Theorem 1 and Corollary 1 for instruments can be directly transferred to the
corresponding channels. In particular, for any teleinstrument Z in Secs. VI B and VI A, we have
a corresponding telechannel Z� achieved by the same generalized teleportation scheme.

A particularly interesting case is that of covariant channels, which we intend here in a very
broad sense, according to the following.

Definition 5: Let A� be a family of quantum channels on Hin and B� a family of quantum
channels on Hout. A channel C�CP�Hin ,Hout� is covariant with respect to �A� ,B�� if

CA
 = B
C ∀ 
 � � . �95�

In particular, we consider the case where all channels in A� are unitary, namely,
A
�·��U
�·�=U
 ·U


† , for some unitary operator U
�Lin�Hin�. Since for a covariant channel one
has C=B
CU


† ∀
��, any covariant channel is trivially the channel corresponding to a frame-
orbit instrument, namely, C�Z� with ZBª�B��d
�S
, S
ªB
CU


† . In fact, the covariant chan-
nel C coincides with the instrument density S
 for any outcome 
. In particular, when U� is a tight
unitary frame, C becomes a telechannel, and the nonminimal dilation of Eq. �93� yields a gener-
alized teleportation scheme with Bell measurement,

C��� � S
��� = B
�Tr2,3��C/din � ���1out � din��U

� ����U


� ����� , �96�

with C= �C � I����1in����1in�����S0 � I����1in����1in���=S0.
The minimal dilation of Eq. �89� gives instead

C��� � S
��� = B
�Tr2,3����	1/2����	1/2�� � ���1out � �
��� , �97�

where 	=C�1in� /din according to Eq. �87�, and POVM density given by �
= �	−1/2�

� U
�C��	−1/2� � U

† �.
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Notice that the nonminimal realization uses the CJ state 	CJ=C /din as entangled resource,
while the minimal realization uses a purification of the local state 	=Trin�	CJ�. The two realiza-
tions coincide �up to local unitaries on Hin� when the CJ operator C is rank-one, corresponding to
unitary channels.

We conclude with the following examples of application.

A. Ideal teleportation

Ideal teleportation from Alice’s to Bob’s site is described by the identity channel C=I, which
is a covariant channel with respect to �U� ,U�� for any unitary frame U�, since trivially CU


=U
C ∀
��. For tight unitary frames, Eqs. �97� and �96� coincide and give the realization

C��� = U
�Tr2,3�� ��1����1��
d

� ���1out � d��U

� ����U


� ����� . �98�

In other words, our general scheme retrieves all possible schemes to achieve ideal teleportation
with Bell observables,28,29 and, more generally, with Bell POVMs.30

B. Universal telecloning

The optimal quantum cloning of pure states from N input copies to M output copies is given
by a channel CN,M �CP�HN

+ ,HM
+ �, where Hk

+ denotes the totally symmetric subspace of the tensor
product H�k. The channel is covariant with respect to the irreducible representations �UG

�N ,UG
�M�

of the group G=SU�d�, namely, CN,MUg
�N=Ug

�MCN,M ∀g�SU�d�, and is given by26,31

CN,M��� =
dN

+

dM
+ PM

+ �� � 1��M−N��PM
+ � � S�HN

+ � , �99�

where dk
+
ªdim Hk

+ and Pk
+ is the projector on Hk

+. The realization of Eq. �96� then yields a
generalized teleportation scheme with covariant Bell POVM,

CN,M��� = Ug
�M�Tr2,3��CN,M

dN
+ � ���1out � dN

+ ��Ug
��N����Ug

��N����� , �100�

with CN,M = �CN,M � I����1HN
+����1HN

+���. On the other hand, the feed-forward scheme of Eq. �97�
gives

CN,M��� = Ug
�M�Tr2,3�� ��PM

+ ����PM
+ ��

dM
+ � ���1out � �g��� , �101�

where �g is the covariant POVM given by

�g = dM
+ �1out � Ug

�N�CN,M
� �1out � Ug

†�N� . �102�

C. Optimal universal NOT gate

The optimal universal NOT is the channel from HN
+ to HM

+ with H=Span	�0� , �1�
�C2 which
transforms N copies of a pure state into one approximate copy of its orthogonal complement. The
channel N is given by the measure-and-reprepare scheme,32

N��� = 

SU�d�

dg Tr���g�Ug�1��1�Ug
†, �103�

where �g is the covariant POVM �g=dN
+�Ug�0��0�Ug

†��N. By definition, N�Z�, where Z the
covariant channel with density Sg���=Tr���g�Ug�1��1�Ug

†=UgS0Ug
†�N, S0���=Tr����0�

��0���N��1��1�. In this case, it easy to see that the minimal generalized teleportation scheme given
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by Eq. �89� coincides with the definition of the channel: indeed N is of the measure-and-reprepare
form, and by definition it can be achieved via a measurement at Alice’s site combined with a
conditional state preparation at Bob’s site. On the other hand, the nonminimal scheme of Eq. �90�
gives

N��� = 

SU�d�

dgUg�Tr2,3���1��1� � �0��0��N
� ���1out � dN

+ ��Ug
��N����Ug

��N����� . �104�
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