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Abstract. We study the effects of phase-insensitive noise on homodyne
measurements of a radiation density matrix. We prove that this noise has an
effect equivalent to a non-unit quantum efficiency at detectors. The overall
effective quantum efficiency 1y of the measurement is evaluated in terms of the
quantum efficiency at detectors and of the average number of noise photons
added to the radiation field. For pure Gaussian-displacement noise, we show
that half a photon of noise is enough to prevent the homodyne measurement of
the density matrix.

1. Introduction

The problem of measuring the density matrix p of radiation has been
extensively considered both experimentally and theoretically [1, 2] Homodyne
tomography is presently the only viable method that can be used to achieve such
measurement. T his method is based on the idea that the density matrix can be
evaluated in optical homodyne experiments from the collection of quadrature
probability distributions for the radiation state. The field quadrature is defined as
% = la exp(i¢) + a exp (- i) |2, where ¢ is the phase shift with respect to the
local oscillator (a" and a are fhe creation and annihilation operators of the field
mode). As shown in [3], the matrix can be obtained after calculating the Wigner
function as the inverse Radon transform of such quadrature distributions. By
following the approach of [3], the feasibility of the matrix measurement was
experimentally demonstrated [4, 5], even though the matrix evaluation from the
Wigner function requires a filtering procedure of the experimental data that
produces systematic errors. A direct method for measuring a radiation density
matrix p was proposed recently [6-8] such a method avoids the intermediate
calculation of the Wigner function because p is written as an average over the
quadrature probability distributions of an appropriate kernel operator. The
density matrix elements are then directly evaluated as experimental averages on
optical homodyne data of kernel functions (the matrix elements of the kernel
operator). The kernel functions depend on the representation basis chosen for p
and on the detector’s quantum efficiency 1 In [7], depending on the matrix
representation, the bounds for 1 have been established below which the matrix
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elements cannot be measured. In particular, for 1< 1/2 the matrix cannot be
measured in any known representation.

In this paper we demonstrate the robustness of the homodyne tomography
method to phase-insensitive noise. The physical situations where such noise arises
are common in many experiments: for example, phase-insensitive linear amplifica-
tion, field damping towards a thermal distribution (due to losses along an optical
fibre, or at a beam splitter), or linear interaction of the radiation field with random
fluctuating classical fields. We show that the effect of such noise can be taken into
account in the kernel operator by introducing an effective quantum efficiency 1} of
the measurement. This is not surprising in the case of noise due to losses (see for
example [9]), however it is not trivial for the case of amplification. T he result of [7]
is generalized in terms of T}, i.e. if << 1/2 the density matrix cannot be measured
in any known representation basis.

The present paper is organized as follows. The effect of phase-insensitive noise
on radiation is described in section 2 by a Fokker Planck equation for the
generalized Wigner function: in particular, this kind of noise arises for drift linear
term in the field variables and constant diffusion coefficient. From the analytical
solution of the Fokker Planck equation, we calculate the quadrature probability
distributions as marginal distributions of the generalized Wigner function, and we
evaluate the kernel operator, whose matrix elements are the kernel functions. We
also introduce the quantum efficiency of the measurement 1} as a function of the
average number of noise photons added to the radiation field and of homodyne
detectors’ quantum efficiency. In section 3 we focus our attention on pure
Gaussian-displacement noise, corresponding to the case of zero field-gain. We
show that this noise imposes very strong limits for 1}, discussing the bound for T}
in order to measure the density matrix. Section 4 concludes the paper.

2. The kernel operator

The effect of additive phase-insensitive noise on the density matrix is deter-
mined by the following Fokker Planck equation for the generalized Wigner
function Wi(o, o) (for ordering parameter s)

O W0, 1) = [Q(Caat+ 0a0) + 2D, 5 Wil 0, 65 1), (1)

where Q and D; are, respectively, the drift and diffusion coefficients. Equation (1)
corresponds to the master equation

op = 2MLf' T+ BLET:, (2)
for Q=B- A4 and 2Dy= A+ B+ s(A - B). In equation (2), L[c\] denotes the
Llndblad superoperator [10] (affecting the radiation state as L[ p= &oe'-

{c c, pY). Since LEz exp (- i¢)]= LEI] the dynamical evolution for the density
matrlx is phase-insensitive.

In the present paper p= po denotes the state of radiation that must be
measured, whereas the ‘time-evolved’ operator p: denotes the state affected by
noise.

The evolution of the average field is given by (@), = &), with g = exp (- Q1).
Thus, one can see that for 4 > B equation (2) describes phase-insensitive
amplification with field gain g In this case, equation (2) models unsaturated
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parametric amplification with thermal idler mode, or unsaturated laser action (if 4
and B are proportional to atomic populations on the upper and lower lasing levels,
respectively). For B > A, on the other hand, equation (2) describes, for example, a
field damping towards the thermal distribution (with inverse photon lifetime
I =2(B- A) and equilibrium photon number m= 4 /(B - A)), a loss along an
optical fibre or a beam splitter, or even a loss due to frequency conversion [11].
The case 4 = B leaves the average field invariant, but introduces noise, changing
the average photon number as {a'a), = {a'a), + n, where n = 2A¢. In this case the
solution of equation (2) is given by

2
pi = jdzﬂi-exp( - Jﬁ_l—) bpsd'(p), (3)
nn n
where DA(/}) = exp(pa’ - Pa) is the usual displacement operator. Equation (3)
describes the Gaussian-displacement noise studied in [12] and [13] also commonly
referred to as ‘thermal noise’. This noise models many kinds of undesired
environmental effects, as, for example, the linear interaction of the signal field
with random fluctuating classical fields, and, obviously, zero-gain phase-insensi-
tive linear amplification.
The solution of equation (1) is the Gaussian convolution

2 _ 2 _
Wila, o 1) = I%sgexp [- Ja_é‘zgﬁl_‘l Wi(B,B;0), (4)
with K
& = ol- g g=exp(- 0. (5)

The probability distribution pu(x,¢;7) of the field quadrature is the marginal
distribution of the Wigner function, as [3]

o0
X, 651 = f dy Wioqpi((x+ iy) exp (i), (x - iy) exp (- i¢); 1), (6)
- 00
where 1) is the quantum efficiency of homodyne detectors, s=1- 17" and

o= x+ iy. Thus, from equation (4) one obtains the quadature probability in the
form of a Gaussian convolution, as

dx- v-g'x°
pr(x,651) = exp(Q1) Jio(zmg)‘/z exp[- ( 2221 ) ]Pn(x’,¢§0), (7)
with A% =1g28. nt- The analytical solution for the quadrature probability
distribution (7) allows calculation of the kernel operator, that is needed to measure
the density matrix p. Indeed, we note that from equation (7) the generating
function of the X,-moments for the initial ideal probability p(x,$;0) can be written
in terms of the experimental one as follows

0 A2 1- 0
dxp(x,¢;0)exp (igkx) = exp —ngzk2 + gzkz dxpn(x, ¢; ¢) exp (ikx).
- o0 2 Sn - 00

(8)
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T hus, the operator identity [7]

Ja f dkuTrPexp(lkm ]exp(-lkx4,) (9)
0

s written as

J: f dxpy(x,¢; 0K, (g 'x- x4,) (10)

with kernel operator

B} A * lk 1- S A
Kn(g 'x- %) :f koZlexp g_njtkz exp Ek(g 'x- m)] (11)

and overall effective quantum efficiency 1} defined by the relation

=+ 4an (12)
The efficiency 1} is written in terms of master equation parameters as
o1 1 24
Tk = exp [2(B- A)t:h + 3- 4 {exp [2(B- A)t]- 1}, (13)
whereas in terms of the field gain g and of the average number of photons it reads
nl=nl gty ] Plalan + '] (14)

In the case of pure Gaussian-displacement noise (Q = 0 in equation (1), i.e.
g=1), the density matrix undergoes the transformation (3) and the overall
effective quantum efficiency is given by

n'=n'+2n (15)
As we will see in the next section, the conditions for the density matrix measure-
ment require that 1 >1/2. Thus, it is just sufficient to have half a photon of
Gaussian noise to completely prevent the homodyne measurement of the matrix.

3. Feasibility of the measurement R
Equation (10) shows that any density matrix element <l//1p|<p>is the expectation
value of the kernel function

SR (g %e) = YKn(g 'x- 2)o) (16)

for quadrature probability distribution pr(x,¢;?) (where we denote any pair of
basis vectors of the Fock space by |l//> and |<p »). Finally, we have

Ylple> = J:;JTOO dxpr(x, 050 /% (€ ' 9). (17)

T he matrix element is measured as follows. By means of homodyne detection, the
field quadrature X, is measured at any desired phase shift ¢ with respect to the
local oscillator. Then <l/43|<p> is evaluated by averaging the kernel function, which
is calculated for (scaled) random homodyne outcomes: as the experimental data are
distributed according to the probability pw(x,¢; ), this average gives a measure-
ment of the matrix element. In other words, <l/4p|<p>1s measured by experimentally
sampling the kernel function.
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The present method can be used if the kernel function is bounded for any
¢ EE), nE indeed, in this case the central limit theorem guarantees that <l/43|<p> can
be sampled over a sufficiently large set of data, because the different values
obtained from different experiments are Gaussian distributed and, moreover, the
confidence interval of the measured matrix element can be evaluated.

Hereafter we will focus our attention on pure Gaussian-displacement noise. In
this case the corresponding kernel operator reads

(e 0]
Knlx- %) = f dklﬂexp( L R ikx) exp (- ik%,) (18)
Lo 4 &M
with effective quantum efficency given by equation (15). For g = 1, equation (18)
shows that the kernel function (16) is bounded if <l/4 exp (- ikf\c¢)|<p> decays faster
than exp [— K(1- 1) /8‘r]k] By following the same lines of [7], we introduce the
‘resolution’ €,(¢) of vector |l//> in the representation of quadrature eigenstates by
the relation

X2
Lot ~ex - 2375 (1

where the symbol = denotes the leading term as a function of x. Then we evaluate
the convergence of the matrix element in equation (16). We conclude that the
kernel function is bounded if (for any ¢ ep,n[)

1

nk > 1+ 462(¢)’ (20)

where we introduced the harmonic mean €*(¢) of the ‘resolutions’ eﬁ,(¢) and ei(¢)
as

2 _ 1, 1
2(9)  ele) ()

If the inequality (20) is satisfied, the matrix element <l/43|<p> can be measured.
In other words, <l/43|<p> can be measured if the harmonic mean of the resolutions
for vectors |l//> and |<p> in the quadrature representations satisfies the bound

. 1f1- 1/2
¢I%'(1)?r[€(¢) >2(JW ) . (22)

In general, from equation (20) one has that for any representation satisfying the
relation 1

T
o) 643 =3 (23)
the density matrix cannot be measured if Ty < 1/2 (see also [14]). Equation (23) is
satisfied by all customary representations, including number, coherent and
squeezed representations.

The existence of such a lower bound for 1} is of fundamental relevance, as it
prevents one from measuring the wave function of a single system by schemes of
repeated weak indirect measurements on the same system [15] One might wonder
if it is possible to find a basis for the Fock space with the product of resolutions in
equation (23) larger than 1/4. This point has been discussed in [2] where, in
particular, it was noted that the product of resolutions is preserved by a unitary

(21)
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transformation of the basis, so that it is very difficult to devise an ‘exotic’
representation with product of resolutions larger than 1/4.

4. Conclusions

In this paper we demonstrated that the method of homodyne tomography can
be used even if phase-insensitive noise affects the radiation state. We introduced a
linear Fokker Planck equation for the generalized Wigner function to describe this
noise. We evaluated the kernel operator, whose matrix elements are the kernel
functions that must be averaged on experimental homodyne data in order to obtain
the density matrix elements. The effects of such noise are taken into account by
introducing an overall effective quantum efficiency 1} of the measurement that is a
function of the homodyne detector’s quantum efficiency and of the average
number of noise photons added to the radiation field. Thus the lower bonds for
the quantum efficiency given in [7] are rewritten in terms of T}. In particular, the
detrimental effect of the noise for gain g= 1 (Gaussian noise) is very strong.
Indeed, it is sufficient to have just half a photon of noise to prevent the homodyne
measurement of the density matrix.
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