
PHYSICAL REVIEW A 85, 032333 (2012)

Memory cost of quantum protocols

Alessandro Bisio,* Giacomo Mauro D’Ariano,† and Paolo Perinotti‡

QUIT Group, Dipartimento di Fisica, and INFN, via Bassi 6, 27100 Pavia, Italy§

Michal Sedlák‖
QUIT Group, Dipartimento di Fisica, via Bassi 6, 27100 Pavia, Italy§ and

Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
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We consider the problem of minimizing the ancillary systems required to realize an arbitrary strategy of a
quantum protocol, with the assistance of classical memory. For this purpose we introduce the notion of memory
cost of a strategy to measure the resources required in terms of ancillary dimension. We provide a condition for
the cost to be equal to a given value, and we use this result to evaluate the cost in some special cases. As an
example, we show that any covariant protocol for the cloning of a unitary transformation requires at most one
ancillary qubit. We also prove that the memory cost has to be determined globally and cannot be calculated by
optimizing the resources independently at each step of the strategy.
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I. INTRODUCTION

Since the advent of quantum computation, the most impor-
tant theoretical efforts in this field have aimed at proving a
computational speedup in many information-processing tasks
[1,2] with respect to their classical counterparts. For this
reason, the optimization of algorithms is typically aimed at
minimizing the number of computational steps, possibly at
the expense of the computational space, i.e., the number of
ancillary quantum systems (qubits) that are needed in the
computation. This choice is dictated by the fact that time
is the most valuable resource in computation. Moreover,
compared with the classical case, in quantum computation,
time optimization is even more important because of the
detrimental effects of decoherence.

Besides time minimization, the next priority is optimization
of the computational space. More precisely, the resource we
need to minimize is quantum memory, that is, the number
of ancillary systems that need to be kept coherent between
subsequent steps. Since a classical memory has a negligible
cost with respect to a quantum one, it would be very valuable
to replace part of the quantum memory by a classical channel.

In Ref. [3] the minimization of quantum memory was
carried out under the restrictive assumption that all the
ancillary systems introduced during the computation are
kept coherent until the very last step. In the present paper,
we consider the same problem, taking into account the
possibility of breaking the coherence of ancillary systems
during the computation without affecting the overall strategy,
by measuring and compressing the ancillary computational
space at the expense of an extra classical memory that carries
measurement outcome. In order to quantify the quantum
memory cost of a strategy we introduce the notion of memory
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cost, which will be the logarithm of the maximum dimension
of ancillary quantum systems required at all steps. For the
special case of a strategy describing a single channel, our
notion of memory cost coincides with the one of entanglement
cost recently introduced in Ref. [4]. Indeed, a single channel
can be interpreted as a quantum strategy made of two steps:
(i) a quantum instrument followed by a compression con-
ditional on the classical outcome and (ii) a conditional
decompression. After providing a necessary and sufficient
condition for a strategy to have a given memory cost, we
show that its optimization cannot generally be carried out by
minimizing the memory required at each step separately. The
reason for this is that in the memory optimization of a strategy
one can exploit different channel implementations of the same
strategy. This fact implies that in general the optimization must
be a global one. Finally, we investigate how the symmetry
properties of a quantum strategy can lead to a nontrivial bound
of its memory cost and we calculate it for simple classes of
covariant channels.

The paper is organized as follows. In Sec. II we present
some elementary results of linear algebra with special empha-
sis on the Choi isomorphism. In Sec. III we review the general
theory of quantum combs [5–7], which provides a unified
framework to treat quantum strategies. Section IV provides
the definition of memory cost along with the main theorem.
In Sec. V we provide some examples in which the application
of the necessary and sufficient condition allows us to draw
nontrivial conclusions about the cost of a strategy. We conclude
the paper with Sec. VI, where we summarize the results and
discuss some open problems.

II. PRELIMINARIES AND NOTATION

In this section we introduce the basic mathematical tools
and the notation that will be used throughout the whole
manuscript. If H denotes a finite-dimensional Hilbert space,
L(H) denotes the set of linear operators on H. Once we fixed
an orthonormal basis {|n〉} for H a one-to-one correspondence
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A ↔ |A〉〉 between L(H) and H ⊗ H is well defined, with

A =
∑
nm

〈n|A|m〉|n〉〈m|,

|A〉〉 :=
∑
nm

〈n|A|m〉|n〉|m〉, (1)

and the following identity is satisfied:

A ⊗ B|C〉〉 = |ACBT 〉〉, (2)

where XT denotes transposition of X with respect to the
fixed basis (where X∗ will denote complex conjugation). In
the following we will denote Supp(A) as the support of A

and Rnk(A) as the dimension of Supp(A), i.e., Rnk(A) :=
dim[Supp(A)]. The set of linear maps from L(H1) to L(H2)
will be denoted by L(L(H1),L(H2)).

The following result, due to Choi [8], establishes a bijective
correspondence between L(L(H1),L(H2)) and L(H1 ⊗ H2).

Theorem 1. Let I be the identity on L(H1). The linear map
C : L(L(H1),L(H2)) → L(H1 ⊗ H2), defined as

C : C 	→ C := C ⊗ I(|I 〉〉〈〈I |), (3)

is invertible and its inverse C−1 is given by

[C−1(C)](A) = Tr1[(I2 ⊗ AT )C] = C(A), (4)

where Tr1 denotes the partial trace over H1 and I2 is the
identity on H2. The operator C = C(C) is called the Choi
operator of C.
Throughout this paper we will use the calligraphic style C
to denote the linear map and the italic C to denote the
corresponding Choi operator. It is useful to give a diagram-
matic representation of linear maps: we will sketch a map
C ∈ L(L(

⊗N
i=1 Hi),L(

⊗M
j=1 Hj )) as a box with N input wires

on the left and M output wires on the right. For example, if
C ∈ L(L(H0 ⊗ H0′),L(H1 ⊗ H1′ )) we have

C =

0

C

1

0 1
(5)

We now show how some features of a linear map C translate
in terms of the Choi operator C.

Proposition 1. Let C ∈ L(L(H0),L(H1 ⊗ HA)) and D ∈
L(L(H2 ⊗ HA),L(H3)) be two linear maps and C, D be their
Choi operators. Then we have

(a) C is completely positive if and only if C � 0;
(b) C does not increase the trace if and only if Tr1A[C] �

I0; the equality holds when C is trace preserving;
(c) the Choi operator of the composition (I1 ⊗ D) ◦ (I2 ⊗

C) is given by the link product [5] of C and D, that is. C((I2 ⊗
D) ◦ (I3 ⊗ C)) = C ∗ D, where

C ∗ D := TrA[(C ⊗ I34)(I01 ⊗ D)]. (6)

The link C ∗ D in Eq. (6) can be visualized as follows:

C ∗ D =

0

C

1 2

D

3

A .

III. QUANTUM STRATEGIES

In the usual description of quantum mechanics each physi-
cal system is associated with a Hilbert spaceH and the states of
the system are represented by positive semidefinite operators
ρ with Tr[ρ] = 1. A single use [9] of a physical device
which performs a transformation of the system is represented
by a linear map C ∈ L(L(Hin),L(Hout)) which is completely
positive (C � 0) and trace nonincreasing (TroutC � Iin). If
the transformation is deterministic, C is trace preserving
(Trout[C] = Iin) and is called a quantum channel, while in
the general probabilistic case it is called a quantum operation.
A set of quantum operations M ≡ {Mi} such that M� :=∑

i Mi is a quantum channel is called a quantum instrument.
Physically, a quantum instrument describes a device that has
both a classical and a quantum outcome. One can regard
a demolishing measurement device as a special case of a
quantum instrument where there is only a classical outcome.
The mathematical description of a measurement is given in
this case by a set of positive operators P := {Pi} which sum to
the identity

∑
i Pi = I—a positive operator valued measure

(POVM).
A general quantum strategy can be obtained by connecting

the outputs of some transformations into the input of some
others. If the transformations that we are connecting are
deterministic, i.e., quantum channels, we have deterministic
quantum strategies, and we talk about probabilistic quantum
strategies otherwise. In a valid quantum strategy no closed
loops are allowed [10]: this requirement ensures that causality
is preserved, since a closed path would correspond to a time
loop. Quantum strategies can be used to describe a huge
variety of multistep quantum protocols, such as cryptographic
protocols [11,12], standard quantum algorithms [1,2,13], and
multiround quantum games [14].

It is possible to prove that any deterministic quan-
tum strategy is equivalent to a concatenation of N chan-
nels Ci ∈ L(L(H2i−2 ⊗ Ai−1),L(H2i−1 ⊗ Ai)) (A0 = AN =
C) and thus it is represented by a map R(N) whose Choi
operator is given by the link product of the Ci’s, i.e.,

R(N) = C1 ∗ · · · ∗ CN. (7)

This result allows us to represent each deterministic quantum
strategy R(N) as a sequence of N computational steps, each of
them corresponding to a channel Ci :

R(N) =

0

C1

1 2

C2

3 2N − 2

CN

2N − 1

A1 A2
· · ·
AN−1 .

(8)

Equation (8) is our standard representation of a quantum
strategy R(N), where the apex (N ) makes explicit the number
of steps of the strategy. We chose to attach one free incoming
and one free outgoing wire to each map Ci since strategies in
which some input and output wires are missing correspond
to the special cases in which dim(Hj ) = 1 for some j . It is
worth noticing that a quantum channel C can be seen either as

a single-step strategy C or as a two-steps strategy in which
both the output of the first step and the input of the second one
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are one dimensional:

C =

0

C1 C2

3

A1 .
(9)

The representation given by Eq. (9) will be useful when
discussing the memory cost of a channel. In Eq. (8) we also
chose to label the free input and output wires by integer
numbers. In this way the Hilbert spaces of the input wires are
labeled by even numbers while the output ones correspond to
odd numbers. We define the overall input space of a quantum
strategy R(N) as Hin = ⊗N

i=1 H2i−2 and the overall output
space as Hout = ⊗N

j=1 H2i−1.
The previous considerations can be summarized by the

following definition.
Definition 1. A linear map R(N) ∈ L(L(Hin),L(Hout)) is

a deterministic quantum strategy when there exists a set
of channels {Ci ∈ L(L(H2i−2 ⊗ Ai−1),L(H2i−1 ⊗ Ai))} such
that C1 ∗ · · · ∗ CN = R(N). The set C := {Ci} is called a
realization of R(N) and the set S := {1,2, . . . ,N} is called
the set of steps of the quantum strategy.

It is important to notice that the same R(N) can have different
realizations. As long as one is not interested in the inner
structure of a quantum strategy but just in its properties as
a linear map from Hin to Hout, the description provided by
R(N) is exhaustive and there is no need to specify a realization.
On the other hand, if we fix a realization C of R(N) we
specify some details about the physical implementation of the
quantum strategy. For example, the dimensions of the spaces
Ai determine the amount of memory used in the physical
implementation of the strategy.

Definition 1 identifies the set of the Choi operators of
deterministic quantum strategies with the set of linear maps
R(N) for which there exists a realization C. The following the-
orem recasts this characterization in terms of linear constraints
which R(N) has to fulfill.

Theorem 2. A positive operator R(N) ∈ L(Hin ⊗ Hout) is
the Choi operator of a deterministic quantum strategy if and
only if it satisfies the normalization

Tr2k−1[R(k)] = I2k−2 ⊗ R(k−1), k = 1, . . . ,N, (10)

where R(k) ∈ L(
⊗2k−1

n=0 Hn) is the Choi operator of the quan-
tum strategy corresponding to the first k steps and R(0) = 1.
The Choi operator of a deterministic quantum strategy is called
a deterministic quantum comb [5] .

Theorem 2 can be understood as a generalization of
Theorem 1 to quantum strategies. It provides a one-to-one
correspondence between the set of deterministic quantum
strategies and the set of positive semidefinite operators
satisfying Eq. (10).

We now extend the previous discussion to the probabilistic
case. It is possible to prove a probabilistic counterpart of
Theorem 2, which states that a linear mapS (N) is a probabilistic
quantum strategy if and only if its Choi operator S(N) satisfies
the following constraint:

0 � S(N) � R(N), (11)

where R(N) is a deterministic comb. The Choi operator of
a probabilistic quantum strategy is called a probabilistic

quantum comb. The quantum strategy generalization of a
quantum instrument is called a generalized instrument and it is
a set of probabilistic quantum strategies R(N) := {R(N)

i } such
that the set R(N) := {R(N)

i } of the corresponding probabilistic
quantum combs satisfies

∑
i

R
(N)
i = R

(N)
� , (12)

where R
(N)
� is a deterministic quantum comb. A generalized

instrument is the mathematical representation of a strategy that
produces both the classical outcome i and the quantum out-
come R(N)

i (ρ) ∈ L(Hout) with probability Tr[R(N)
i (ρ)] when

the state ρ ∈ L(Hin) is fed into the free inputs of the strategy.
A typical example of a generalized instrument is a quantum
network in which at least one of the devices is a quantum
instrument:

0

C

1 2 3 4

E

5

A1 D A2 .
(13)

In Eq. (13) the two channels C and E are connected
through wires A1 and A2 to the quantum instrument D. If
R(N) := {R(N)

i } is a generalized instrument, one can verify
that

∑
i R

(N)
i ⊗ |i〉〈i|E , where {|i〉E} is an orthonormal basis

for an ancillary Hilbert space E , is a deterministic comb. If
we apply the von Neumann measurement P := {|i〉〈i|} on the
ancilla E , depending on the outcome i the Choi operator of
the strategy will be R

(N)
i . This proves that every generalized

instrument can be realized as a deterministic quantum strategy
followed by a POVM on an ancillary Hilbert space, i.e.,

0

C1

1 2

C2

3 2N − 2

CN

2N − 1

A1 A2
· · ·
AN−1 E

P

.

(14)

A generalized instrument such that dim(H0) = dim(H2N+1) =
1 is called a tester and can be interpreted as the quantum
strategy analog of a POVM. Specializing Eq. (14), we have
that a tester can be realized as a quantum strategy whose first
step is a state preparation and whose last step is a POVM:

ρ

1 2

C2

3 2N − 2

PA1 A2
· · ·
AN−1 .

(15)

Since a quantum strategy is a map from multiple input
spaces to multiple output spaces, we can imagine connecting
two quantum strategiesR(N) and S (M) by linking some outputs
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of R(N) (S (M)) with some inputs of S (M) (R(N)), for example,

R(2) ∗ S(2) =

R(2)

C2

C1

C1

C2

S(2)

.

We adopt the convention that if wire i ∈ R(N) is connected
with wire j ∈ S (M) they are identified by the same label, i.e.,
i = j . Again, if we want such a composition to form a valid
quantum strategy R(L)

3 we need to require that the graph of the
connections in the composite strategy does not contain closed
loops. By applying Proposition Proposition 1, it is possible to
prove that the comb of the composite network is given by the
link product of R(N) and S(M), i.e., T (L) = R(N) ∗ S(M).

Consider now the problem of discriminating between two
deterministic quantum strategies R(N)

0 and R(N)
1 given with

prior probability 1
2 . A possible way could be to (i) prepare a

multipartite input state, possibly entangled with some ancillary
degrees of freedom, (ii) send it as input through the free input
wires of the unknown strategy, and, eventually, (iii) perform
a two-outcome POVM on the output state. However, it is
possible to exploit the causal order of the quantum strategy
so that the input at step k can depend on the previous outputs
at steps j < k, i.e.,

ρ D P

C1 C2

.

(16)

The most general way for the discrimination of two deter-
ministic quantum strategies R(N)

0 and R(N)
1 is then described

by a two-outcome tester T (N+1) = {T (N+1)
0 ,T (N+1)

1 } and the
probability of error pe as a function of R(N)

0 , R(N)
1 , and T (N+1)

is given by

pe

(
R(N)

1 ,R(N)
0 ,T (N+1)

)
= 1

2

(
R

(N)
1 ∗ T

(N+1)
0 + R

(N)
0 ∗ T

(N+1)
1

)
. (17)

This leads to an operational notion of distance between
quantum strategies [15].

Definition 2. Let R(N)
0 and R(N)

1 be two deterministic
quantum strategies. The distance between R(N)

0 and R(N)
1 is

given by
∥∥R(N)

0 − R(N)
1

∥∥
op

:= 1 − 2 max
T (N+1)

pe

(
R(N)

1 ,R(N)
0 ,T (N+1)

)
, (18)

where T (N+1) = {T (N+1)
0 ,T (N+1)

1 } is a tester and pe is defined
according to Eq. (17).

It is easy to prove that when R(N)
0 and R(N)

1 are channels,
Eq. (18) leads to the usual distance of the norm of the complete
boundedness.

IV. MEMORY COST OF QUANTUM
STRATEGIES

The main achievement of the general theory of quantum
combs is that arbitrarily complex quantum strategies can
always be represented by positive operators subjected to linear
constraints. This result is extremely relevant for applications.
Suppose we fix an information-processing task and we look
for the quantum strategy that achieves the best performances
allowed by quantum theory. Thanks to Theorem 2 this search
is reduced to an optimization problem over a (convex) set of
suitably normalized positive operators. Such a procedure is
much more efficient than separately optimizing each element
of the strategy.

However, once the optimal Choi operator has been found,
one has to find an actual realization of the quantum strategy.
Since a single quantum strategy can be realized in many
different ways one could be interested in finding the one that
best fits some requirements. For example, a reasonable request
is to minimize the usage of some resource, such as the number
of controlled-NOT gates. Another resource which is valuable
and hard to realize in present-day quantum technology is
quantum memory. One would benefit a lot from knowing how
much quantum memory is needed in order to realize a given
quantum strategy and whether it is possible to replace some
quantum memory with classical memory.

In this section we provide an algebraic characterization of
the amount of quantum memory which is employed in the
realization of a given quantum strategy. As we pointed out in
the previous section, if C is a realization of a deterministic
quantum strategy R(N), the amount of memory which one
has to preserve from step i to step i + 1 can be quantified
by the dimension of the Hilbert space Ai . Since we are
interested in quantifying the amount of quantum memory,
we need to introduce a formalism that enables a distinction
between quantum memory and classical memory. To this end,
it is convenient to model a classical memory as quantum
system whose states must stay diagonal with respect to a
fixed orthonormal basis {|i〉}. We then suppose that each Ai is
split as Ai := A(c)

i ⊗ A(q)
i , where A(q)

i is the quantum memory
and A(c)

i is the Hilbert space that can carry only classical
information [16]. With this definition, Eq. (8) becomes

R(N) =

0

C1

1 2

C2

3 2N − 2

CN

2N − 1

Aq
1 Aq

2
. . .
Aq

N−1

Ac
1 Ac

2
. . .
Ac

N−1

,

(19)

where the classical memories are denoted by double wires.
For the purpose of introducing the next two definitions, let

R(N) be a deterministic quantum network, S = {1, . . . ,N} be
its set of steps, and J be a subset of S. We say that R(N) can
be realized with d := {dk}-dimensional quantum memories at
steps J if and only if there exists a realization C of R(N) such
that dim(A(q)

k ) � dk for all k ∈ J.
Definition 3. The zero-error memory cost at steps J of a

deterministic quantum strategy R(N) is defined as

MJ(R(N),0) := min
C

max
k∈J

log2

[
dim

(
Aq

k

)]
, (20)

032333-4



MEMORY COST OF QUANTUM PROTOCOLS PHYSICAL REVIEW A 85, 032333 (2012)

where the minimum is taken over all the possible realizations
C of R(N).

For any ε � 0 it is possible to introduce the following
notion.

Definition 4. The ε-tolerant memory cost at steps J of R(N)

is defined as

MJ(R(N),ε) := min
S (N)∈Bop(R(N),ε)

MI(S (N),0), (21)

where Bop(R(N),ε) is the set of quantum strategies that are
ε-close to R(N) in the operational norm, i.e.,

Bop(R(N),ε) := {S (N)s.t‖S (N) − R(N)‖op � ε},
where S (N) is a deterministic quantum strategy.

Equation (20) quantifies the minimum amount of quantum
memory that one needs in order to realize a given a quantum
strategy R(N). In the case of a two-step deterministic
quantum strategy whose entanglement cost is zero we recover
the notion of one-way local operations and classical communi-
cation (LOCC). More generally, one could wonder how much
quantum memory is needed in the realization of a strategy
S (N) which is similar to a target one R(N): this intuition is
formalized by Eq. (21).

The following result [3] provides the least upper bound
to the amount of quantum memory which is required in
the realization of any deterministic quantum strategy where
coherence is preserved until the last step.

Proposition 2. Any deterministic quantum strategy RN can
be realized with d := {dk}-dimensional quantum memories at
steps S, where dk = Rnk(R(k)).

The main result of this section is a necessary and sufficient
condition for a deterministic quantum strategy to be realized
with d := {dk}-dimensional quantum memories at steps J. We
first consider the case in which the set J = {k} contains just
a single step k, and then we generalize the result to arbitrary
sets. Let us start with the following technical definition.

Definition 5. A quantum strategy Q(N) ∈
L(L(Hin),L(Hout))is deterministic after the kth step if
Q(N) satisfies

Tr2l−1[Q(l)] = I2l−2 ⊗ Q(l−1), l = k + 1, . . . ,N,

Q(k) � R(k), (22)

where R ∈ L(
⊗2k−1

i=0 Hi) is a deterministic quantum comb.
Notice that Eq. (22) has the following simple operational
interpretation: A quantum strategy Q(N) that is deterministic
after the kth step can be viewed as an element of a generalized
instrument {Q(N),R(N) − Q(N)}, where also R(N) − Q(N) is
deterministic after the kth step. The deterministic strategy
R(N) is not unique, and it can be represented, e.g., by any
deterministic comb of the form R(N) := Q(N) + S ⊗ (R(k) −
Q(k)), where S ∈ L(

⊗2N−1
i=2k Hi) is any deterministic quantum

comb. The generalized instrument {Q(N),R(N) − Q(N)} can be
realized by a generalized instrument with k steps followed by
a conditional deterministic comb with N − k steps for each of
the two outcomes. In particular, the conditional comb for the
outcome corresponding to Q(N) is Q(k)− 1

2 Q(N)Q(k)− 1
2 . We are

now ready to prove the following proposition.
Proposition 3. A deterministic quantum strategy R(N) ∈

L(L(Hin),L(Hout)) can be realized with a d-dimensional
quantum memory at step k if and only if there exists a set

{Q(N)
j } of quantum strategies deterministic after the kth step

such that R(N) = ∑
j Q

(N)
j and Rnk(Q(k)

j ) � d.
Proof. First we suppose that R(N) is realizable with a

d-dimensional quantum memory at step k. Then there exists
a set of channels {Ci |Ci : L(H2i−2 ⊗ Ai−1) → L(H2i−1 ⊗
Ai)} such that C1 ∗ · · · ∗ Ck ∗ Ck+1 ∗ · · · ∗ CN = R(N) and
Ak := A(q)

k ⊗ A(c)
k with dim(A(q)

k ) = d. If we introduce the
notation S := C1 ∗ · · · ∗ Ck [S ∈ L(

⊗2k−1
i=0 Hi ⊗ Ak)], T :=

Ck+1 ∗ · · · ∗ CN [T ∈ L(
⊗N

i=2k Hi ⊗ Ak)] we have S ∗ T =
R(N). Let now D : L(A(c)

k ) → L(A(c)
k ) be the measure-and-

reprepare channel on the classical system, whose Choi operator
is D = ∑

i |i〉〈i| ⊗ |i〉〈i|. Since the classical information is not
affected by the action of D we have

R =
i

Ck Ck+1. . . . . .

. . . i i . . .

R(N) = S ∗ T = S ∗ D ∗ T = S ∗
∑

i

|i〉〈i| ⊗ |i〉〈i| ∗ T

=
∑

i

Si ∗ Ti, (23)

where Si = S ∗ |i〉〈i| and Ti = T ∗ |i〉〈i|. We have that the
set {Si} defines a generalized instrument while Ti defines a
deterministic quantum strategy for each i. Let us now consider
the spectral decompositions of the operators Si ,

Si =
∑
j∈Ji

Xj,i , Xj,i := |ψj,i〉〈ψj,i |, (24)

where Ji are disjoint sets. Notice that the set {Xj,i} defines
a generalized instrument from which {Si} can be obtained by
coarse graining. Let us now define Q

(N)
j,i := Xj,i ∗ Ti . One can

verify that Q
(N)
j,i is deterministic after the kth step for all j,i.

Since Q
(k)
j,i = TrA(q)

k
(Xj,i) = TrA(q)

k
(|ψj,i〉〈ψj,i |) the dimension

of A(q)
k is an upper bound for the Schmidt rank of |ψj,i〉

with respect the bipartition (
⊗2k−1

i=0 Hi) ⊗ A(q)
k , which conse-

quently implies that the rank of Q
(k)
j,i is at most d. Combining

Eqs. (23) and (24) we have
∑

ij Q
(N)
i,j = ∑

i(
∑

j Xj,i) ∗ Ti =∑
i Si ∗ Ti = R(N) and the thesis is proved.
We now prove sufficiency of the condition. By hypoth-

esis we have R(N) = ∑
j Q

(N)
j , where the {Q(N)

j } are de-
terministic after the kth step. Let us introduce the opera-

tors |Q(k) 1
2

j 〉〉〈〈Q(k) 1
2

j | ⊗ |j 〉〈j | ∈ L(
⊗2k−1

i=0 Hi ⊗ A(q)
k,j ⊗ A(c)

k ),

whereA(q)
k,j := Supp(Q(k)

j ) andA(c)
k is an Hilbert space carrying

classical information encoded into the orthonormal basis |j 〉.
Since Rnk(Q(k)

j ) � d for each j we can without loss of

generality consider an isometric embedding of each A(q)
k,j into

a d-dimensional Hilbert space A(q)
k . One can easily check that

S := ∑
j |Q(k) 1

2
j 〉〉〈〈Q(k) 1

2
j | ⊗ |j 〉〈j | satisfies the normalization

(10) and then Theorem 2 implies that there exists a realiza-
tion S = C1 ∗ · · · ∗ Ck , where Ck ∈ L(Ak−1 ⊗ H2k−2 ⊗ Ak ⊗
H2k−1).
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We now introduce the operator T := ∑
j |j 〉〈j | ⊗

Q
(k)− 1

2
j Q

(N)
j Q

(k)− 1
2

j ∈ L(A(c)
k ⊗ A(q)

k ⊗ ⊗2N−1
i=2k Hi) (where

also in this case we assumed the embedding A(q)
k,j ↪→ A(q)

k ).
One can prove that T is a well-defined deterministic quantum
comb. There exists then a realization T = Ck+1 ∗ . . . ∗ CN ,
where Ck+1 ∈ L(Ak ⊗ H2k ⊗ Ak+1 ⊗ H2k+1). It is easy
to verify that S ∗ T = R(N), which in turns implies that
C1 ∗ . . . ∗ Ck ∗ Ck+1 ∗ . . . ∗ CN is a realization of R(N) with
dimA(q)

k = d. �
The result of Proposition 3 can be extended to the case of

multiple steps.
Theorem 3. Let R(N) be a deterministic quantum strategy

and let J be a set of steps. For each k ∈ J we introduce an
index ik . The following two statements are equivalent:

(a) R(N) is realizable with d := {dk}-dimensional quantum
memories at steps J.

(b) There exists a set Q
(N)
i , i = ikmin, . . . ,ikmax , such that

R(N) =
∑

i

Q
(N)
i , Rnk

(
Q

(k)
ikmin ,...,ik

)
� dk,

Q
(N)
ikmin ,...,ik

are deterministic after the kth step,

where we defined

Q
(N)
ikmin ,...,ik

:=
∑
ik′

Q
(N)
ikmin ,...,ik′ .

with k′ denoting the element following k in J.
Proof. The result follows by iterating the proof of Proposi-

tion 3. �
One could wonder whether the existence of a realization

of a quantum strategy R(N) with memory dk at step k and
of a realization with memory dl at step l implies that there
exists a realization of R(N) with {dk,dl}-dimensional quantum
memories at steps {k,l}. This would imply the equality
MJ∪I(R(N),0) = max{MJ(R(N),0),MI(R(N),0)} for any two
sets of steps J,I ⊆ S. If this were true, a global minimization
of the quantum memory would reduce to N − 1 independent
minimizations, one at each step. Unfortunately, this is not the
case, as shown by the following counterexample.

Bennett et al. [17] introduced a state ρ ∈ L(H0 ⊗ H1 ⊗
H2) which is two-way separable but not three-way separable;
i.e., we have ρ = ∑

i σ
[01]
i ⊗ τ

[2]
i = ∑

j ρ̃
[0]
j ⊗ τ̃

[12]
j for some

choice of unnormalized states σ
[01]
i , τ

[2]
i , ρ̃

[0]
j , and τ̃

[12]
j , but

we cannot have ρ = ∑
i α

[0]
i ⊗ β

[1]
i ⊗ γ

[2]
i for any choice of

unnormalized states α
[0]
i , β[1]

i , and γ
[2]
i [18]. Every normalized

quantum state can be interpreted as a quantum strategy with
trivial input spaces, and thus we have

ρ = or ρ = ,

but ρ = .

The fact that ρ is two-way separable but not three-way
separable means that the three-step quantum strategy ρ is
realizable with one-dimensional quantum memory either at
step 1 or at step 2 but it cannot be realized with one-
dimensional quantum memory at both steps, i.e.,

M{1,2}(ρ,0) > max{M{1}(ρ,0),M{2}(ρ,0)}. (25)

Moreover, we notice that it is possible to build a whole class
of three-step quantum strategies with the property (25) by
linking an isometric channel to each subsystem of ρ, i.e.,

S(3) =

V1 V2 V3

ρ

M{1,2}(S(3), 0) = 1, M{1}(S(3), 0) = M{2}(S(3), 0) = 0.

V. EXAMPLES AND APPLICATIONS

It is in general a hard task to verify whether a deterministic
quantum strategy can be realized with a given amount of
quantum memory and to calculate its memory cost. Never-
theless, some properties of the quantum comb may imply
nontrivial bounds on the quantum memory which is needed
in the realization.

A. Memory requirements in the presence of symmetry

In this section we show that if a quantum strategy enjoys
some symmetries, then the amount of quantum memory
needed in the realization can be efficiently bounded. The
following proposition provides the main tool we will use to
prove such a bound.

Proposition 4. Let R(N) ∈ L(L(Hin),L(Hout)) be a deter-
ministic quantum strategy and {Pi,Pi ∈ L(

⊗2k−1
i=0 Hi)} be a set

of orthogonal projectors such that
∑

i Pi = I0,...,2k−1, where
I0,...,2k−1 is the identity on

⊗2k−1
i=0 Hi . Suppose that R(N) =∑

i PiR
(N)Pi . Then R(N) is realizable with dk-dimensional

memory at step k, where dk := maxi Tr[Pi]. Moreover, if
R(N) is realizable with dl-dimensional memory at step l with
l > k, then R(N) is also realizable with {dk,dl} -dimensional
memories at steps {k,l}.

Proof. Let us define Q
(N)
i := PiR

(N)Pi . They satisfy the
hypothesis of Proposition 3 with Rnk(Q(k)

i ) � dk .
Consider now the case in which R(N) is realizable with dl

memory at step l > k. Then there exists a set of operators Q̃
(N)
j

satisfying the hypothesis of Proposition 3 with Rnk(Q̃(l)
j ) �

dl . Let us now define Q
(N)
i,j := PiQ̃

(l)
j Pi . One can verify that

they satisfy the hypothesis of Theorem 3 with Rnk(Q(N)
i ) � dk

(where we recall that Q
(N)
i := ∑

j Q
(N)
i,j ). �

Before considering the case of quantum strategies with
symmetries let us now introduce some preliminary notions
of group representation theory. If U (g) ∈ L(H) is a unitary
representation of a compact Lie group, then it is decomposable
into a direct sum of irreducible representations U (g) =⊕

ν Uν(g) ⊗ Imν
, where Uν(g) ∈ L(Hν) and H = ⊕

ν Hν ⊗
Cmν . The spaces Hν are customarily called representation
spaces while the Cmν ’s are called multiplicity spaces. We are
now ready to prove the main result of this section.

Proposition 5. Let R(N) ∈ L(
⊗N

i=0 Hi) be a determinis-
tic quantum strategy and let U (g) ∈ L(

⊗2k−1
i=0 Hi),U (g) =⊕

ν Uν(g) ⊗ Imν
, be a unitary representation of a compact
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Lie group G. If the commutation

[R(N),I2N−1...2k ⊗ U (g)] = 0 ∀ g ∈ G (26)

holds, then R(N) is realizable with dk-dimensional quantum
memory at step k, where dk is the dimension of the largest
multiplicity space, i.e., dk := maxν mν .

Proof. Equation (26) and Schur’s lemmas imply the decom-
position

R(N) =
∑

ν

Pν ⊗ rν. (27)

Let {|ψj
ν 〉} be an orthonormal basis for Hν and let Pmν

denote the projectors on the multiplicity spaces Cmν . We
now define the projectors Pν,j := |ψj

ν 〉〈ψj
ν | ⊗ Pmν

. Since
we have

∑
ν,j Pν,j = I0...2k−1 and Eq. (27) implies R(N) :=∑

ν,j Pν,jR
(N)Pν,j , the conditions of Proposition 4 are satisfied

with dk := maxν,j Tr[Pν,j ] = maxν mν . �
The optimal cloning of a unitary transformation for any

dimension d � 2 [19] provides an example of a quantum
strategy R(2) that enjoys the property (26), with maxν mν =
2. We therefore conclude that any covariant protocol for
cloning unitary channels has a memory cost of one qubit,
independently of the dimension.

B. Memory cost of quantum channels

The aim of this section is to specialize the notion of memory
cost to the case of channels and to provide examples that
allow for an easy calculation. From Eq. (9), we have that a
quantum channel C : L(L(Hin),L(Hout)) can be represented
as a two-step deterministic quantum comb. This corresponds
to interpreting C as if it was decomposed into an encoding
channel C1 : L(L(Hin),L(Aq ⊗ Ac)) and a decoding channel
C2 : L(L(Aq ⊗ Ac),L(Hout)):

in
C

out
=

in

C1

out

Aq

Ac
C2 .

(28)

Applying Definition 3, we say that a quantum channel C is real-
izable with d-dimensional quantum memory when there exist
an encoding channel channel C1 : L(L(Hin),L(Aq ⊗ Ac)) and
a decoding channel C2 : L(L(Aq ⊗ Ac),L(Hout)) such that
dim(Aq) � d and C = C1 ∗ C2. Thanks to Proposition 3, this
holds true if and only if there exists a set of operators {Qi} such
that C = ∑

i Qi and Rnk(Trout[Qi]) � d. It is easy to verify
that there is no loss of generality if we assume Rnk(Qi) =
1. We have then that a quantum channel C is realizable
with d-dimensional quantum memory when there exists a
decomposition C = ∑

i |Ki〉〉〈〈Ki | such that Rnk(K†
i Ki) � d.

Equivalently, a quantum channel C is realizable with d-
dimensional quantum memory when there exists a Kraus
representation C(ρ) = ∑

i KiρK
†
i such that Rnk(K†

i Ki) � d.
The zero-error memory cost M(C,0) is equivalent to the
zero-error entanglement cost of the quantum state d−1

in C [20].
A similar notion of memory cost of a quantum channel,

E (C), has been recently introduced in Ref. [4] and can be

rephrased within our framework as follows

E (C) = lim
ε→0

lim
n→∞

1

n
M(C⊗n,ε). (29)

In Ref. [4] the authors proved that the quantity E (C) can be
expressed in terms of the entanglement of formation and they
discuss the relation between E (C) and the quantum channel
capacity of C.

In the previous section we discussed the relation between
symmetry properties and quantum memory. We now consider
two particular classes of covariant channels which allow for
an easy calculation of the zero-error memory cost. This is the
case of covariant channels C ∈ L(L(H),L(H)) satisfying the
constraints

C(UρU †) = UC(ρ)U †, (30)

C(U ∗ρUT ) = UC(ρ)U †. (31)

One can prove that condition (30) implies the following form
for the Choi operator:

Cα : = α
1

d
|I 〉〉〈〈I | + β

(
I − 1

d
|I 〉〉〈〈I |

)
, (32)

where α + (d2 − 1)β = d. On the other hand, Eq. (31) implies

Cγ := γP+ + δP−, (33)

where P± = 1
2 (I ± E) are the projections on the symmetric

and antisymmetric space ofH ⊗ H, respectively, E is the swap
operator, E|ϕ〉|ψ〉 = |ψ〉|ϕ〉, and (d + 1)γ + (d − 1)δ = 2.

In the case of a symmetry as in Eq. (32), the zero-error
entanglement cost of states 1/dCα was evaluated in Ref. [21].
This result implies that M(Cα,0) = log2(�α�), where �α�
denotes the ceiling of α.

As regards the case of Eq. (33), one realizes that the
Cγ are rescaled Werner states [22] by a factor d. Thus, for
1/(d + 1) � γ � 2/(d + 1), Cγ is a separable operator and
consequently M(Cγ ,0) = 0. Since P± can be decomposed
as the sum of rank-one projections on the states |m〉|m〉
and (1/

√
2)(|m〉|n〉 ± |n〉|m〉), whose partial trace 1

2 (|m〉〈m| +
|n〉〈n|) has rank 2, we always have M(Cα,0) = 1, when
0 � γ � 1/(d + 1), irrespective of the dimension d.

VI. CONCLUSIONS

In conclusion, we defined the notion of memory cost for
a quantum strategy that captures the minimal dimension of
ancillary systems that need to be kept coherent during an
algorithm specified by the comb representing the strategy.
The realization of the strategy using minimal global ancillary
dimension can be algebraically characterized by Theorem 3,
representing our main result.

We also showed by an example that the optimization of the
memory required between two steps of the computation is in
general not compatible with the optimization of the memory
required between two different steps.

We notice that the algebraic condition provided by Theo-
rem 3 does not allow for an easy evaluation of the memory
cost for a given strategy. For this reason, providing a nontrivial
bound on the memory requirement is a hard problem. In this pa-
per we showed that symmetry arguments can help to calculate
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BISIO, D’ARIANO, PERINOTTI, AND SEDLÁK PHYSICAL REVIEW A 85, 032333 (2012)

the memory cost of some particular channels and strategies,
such as, e.g., the covariant cloning of unitary transformation.

A natural extension of this line of research consists in
looking for new conditions under which similar bounds for
the memory cost can be provided.
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