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We study the statistical errors in hemodyne tomography of radiation density
matrix in the photon number representation. We give an asymptotic estimate for
large matrix indexes at different values of the guantum efficiency n of homodyne
detectors, We show that for fixed 7 the errors increase exponentially as functions
of the matrix index.

INTRODUCTION

Optical homodyne tomography is by now a well assessed method to measure the
quentum state of radiation. The density operator f is measured in some representation
by averaging the so—called kernel functions (or pattern functions) over homodyne data;
in particular, the matrix element between seneric states [p) and [4f) is evaluated under
the following integral 2
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in Equation (1) py{z,¢) is the probability distribution of the field quadrature ; =
(afe' +ae~*?) /2 for overall efficiency 7 of the homodyue detector (¢ is the phase of the
field mode with respect to the local escillator, al and a are the creation and annihilation
operators of the mode). The kernel function | Ky{x — E4)|10) is determined by the
operator
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The hehavior of the kernel function depends both on the particular chosen representa-
tion (i.e. ) and [)) and on the value of . The boundedness of the averaged kernel in
Equation (1) sets the validity limits of the tomographic reconstruction. In a previous
work! the most used representations were considered, eorresponding to number, coher-
ent, squeezed, and quadrature states. The bounds for 7 were established, below which
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the matrix elements cannot be measured: the coherent and the Foek representations
turned out to be the best choice, with bound 7 =45,

It is not clear if the bound = 0.5 is the minimum for any representation, and “ex-
otic” representations having some lower bound would be very interesting for fomogra-
phy. Here we just mention that also unusnal representations, such as the multi-photon
reprosentation. have the same bound n = 0.5, whereas for the eigenvectors of the
squeeze operator® A = —[/2{a? — u.fgj the bound is y = I, as for the eigenvectors of the
quadrature. On the other hand. representations based on eigenveetors of polynomials
in o and al with degree larger than 2 are not analvtical on the Fock space.”

The aim of this paper is to analvse the statistical errors in the measurement of the
density operator in the Fock representation. We give an a priori asvmptotic estimate
of the error o(n, m) for large indexes n and m of the matrix element {n|plm). We show
that for 0.5 < p < 1 the error increasoes exponentially as functions of the matrix index.
For 7 = 0.5 the errors diverge. Although this estimate is obtained afrer neglecting
the correlations betwesn different marrix elements, the asymptotic formula compares
tavorably with exact numerical evaluations. In the end, we give an analvtic estimate
of such correlations.

ACCURACY OF THE MEASU REMENT

Recently the statistical errors of the tomographic measurement of the density ma-
irix in the number representation were numerically evaluated® on che basis of Equation
(1). In the same paper it was also shown that for unit overall efficiency n of the ho-
modyne detector the errors on the diagonal of the matrix saturate to a fixed value,
independent of the radiation state. Now, in order to calculate the errors analytically,
we exploit the inversion of the Bernoulli convolution,” that gives
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I Equation (8) plr, é: ) is the homadyne probabilitv distribition corresponding to
the “dressed” state p,. that is related to the “bare” state 2 by the Liouvillian transtor-
rmation®
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Al a priori estimation of the measurement error is obtained by calculating the
variances of the real and the imaginary part of the series (3). The variance of the real

“A discussion about the measurement of dressod srates by homodyne tamagraphy for non unit quantuim
afficiency at detectors has been recently reporned ®
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The variance of the imaginary part of(n,m) is defined in analogous way. For a number
of measurements /V, the experimental error on the density matrix element (n|g|m) is
given by o(n,m)//N, with

o(n,m) = \/-J%.(ﬂ., m) + o3 (n,m). (9)

Upon neglecting the statistical correlations for j # [ in Eq. (8), one obtains
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where
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For large indexes n,m the quantity An.;mey saturates to the fixed value /2 for any
4. In this case the series in Equation (10) can be summed and the error behaves as
follows: ' ' et
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where ®(a, ;7;2) is the customary hypergeometric function. The estimate (12) is
independent of the radiation state for sufficiently large n and m. Notice that the
convergence radius of the hypergeometric series in (12) is (1 —5~')? < 1, that means
n > 0.5. Therefore, the errors diverge for g = 0.5, as also previously shown.?

For the diagonal errors, we can use a very good asymptotic approximation of the
hypergeometric function ®[n+ 1,n +1; 1; (1 — p~')?] leading, for n 3> (27 = 1)/(1 —n),
to the following asymptotic expression
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The estimate (13) shows the exponential growth of the error ¢(n, n) versus n, with rate
—In(2n — 1).

In Fig. 1 we report the asymptotic expressions for the diagonal errors obtained
from Eqgs. (12) and (13) for tomography of a coherent state, in comparison to the exact
numerical evaluation obtained from Eq. (1). The growth rate versus the matrix index
is quite correctly reproduced. The difference between the asymptotic errors and the
actual ones is due to the statistical correlations between different matrix elements.

Now we estimate the correlations that contribute to the diagonal errors. Since for
large index n we have f,_; .. = 0, the contribution of the correlations is
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Figure 1. Diagonal statistical errors o(n,n) for a coherent state with 10 photons and 5 = 0.95

{log-linear scale). Solid line: actual errors; dashed line: estimate given by (12}; dot-dashed line:

estimate given by {13).

If we consider the asymptotic approximation for the kernel functions
S G (=1)"*2 cos(knt;2) (15)

(with &nyj o< 2+ J), Eq. (14) becomes
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where we neglected the fast oscillating part in f,,_+3‘,.,+,j,-(I]f,l.mu.‘r{{z) and we defined
8kn(4,1) = kni; — Knoo Thus, the integration is easily performed and we have
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where L,(#) denote the Laguerre polvnormials,

Let us give few examples. For highly excited states, if the photon probability
distribution is considered approximately constant, the sum over s is zero. This is the
only case where the correlations give a null contribution. For coherent states with
average number of photons lel? we have

A, ) = 2 51O )G 0) 00, (leP SR G E) (1)
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where Jo(z) dencte the zeroth—order Bessel function. For thermal states with average
number of photons 7 the correlations are given by _
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From the definition {4) we see that in this case the correlations always give a positive
contribution. Thus, for thermal states the expression in Eq. (12) is not only an asymp-
totic estimate, but also an asymptotic lower bound for the actual errors expected in
homodyne measurement of the density matrix.

t\We remind that the diagonal kernel functions are ir.dependent of ¢.
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CONCLUSIONS

We obtained an asymptotic analytical expression for the a priori estimated exper-

imental errors in homodyne tomograpay of the density operator in the Fock represen-
tation. For fixed overall efficiency at homodyne detectors n, the diagonal errors are
exponentially growing as functions of the matrix index, with rate — In(2n — 1}. In the
end, we estimated the contribution to the errors of the statistical correlations between
different matrix elements.
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