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Tomographic Measurement of Joint Photon Statistics of the Twin-Beam Quantum State
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We report the first measurement of the joint photon-number probability distribution for a two-mode
quantum state created by a nondegenerate optical parametric amplifier. The measured distributions ex-
hibit up to 1.9 dB of quantum correlation between the signal and idler photon numbers, whereas the
marginal distributions are thermal as expected for parametric fluorescence.

PACS numbers: 42.50.Ar, 42.50.Dv, 42.65.Yj
The quantum correlation between the modes of elec-
tromagnetic radiation has served as a testbed for mod-
ern physics by providing an elegant means for verifying
the foundations of the quantum theory. Experimentally
generated in the process of parametric down-conversion,
wherein one pump photon produces a pair of correlated
signal and idler photons, such correlation has been used to
show the EPR paradox, to test violation of Bell’s inequali-
ties, to demonstrate quantum-state teleportation, etc. [1]
The realization of three-mode quantum correlation, as ex-
hibited by the Greenberger-Horne-Zeilinger state, empha-
sizes the difference between the quantum and the classical
worlds even more strongly [2]. Therefore, the develop-
ment of theoretical and experimental tools for studying,
measuring, and, ultimately, utilizing the quantum state of
a multimode field is an important task in quantum physics.
Although the state of a single quantum system cannot be
measured, it can be inferred from a set of repeated mea-
surements performed on an ensemble of identically pre-
pared systems [3].

The simplest of the measurement tools in quantum
optics, direct detection, allows one to obtain the degree of
photon-number correlation between the modes by register-
ing either the coincidence count rate [1] or the difference-
photocurrent noise produced by photodetectors measuring
the various light beams [4]. In most cases, however,
this method does not allow one to measure the quantum
statistics of the light modes beyond the knowledge of
the first few moments. Since the quantum states of
various modes become more sensitive to losses with
their increasing mean photon numbers, the observation
of inherently quantum features, such as the even-odd
oscillations of the photon-number distribution [5], calls
for single-photon detection capability. Direct detectors
with such capability have serious drawbacks: they either
have low quantum efficiencies (as is the case with pho-
tomultipliers) or cannot distinguish between registrations
of one and more photons (as in avalanche photodiodes).
Even more importantly, all direct detectors have poor
mode selectivity. By accepting photons from many spatial,
temporal, and polarization modes, they provide no means
for measuring the photon statistics of a single radia-
tion mode.
4 0031-9007�00�84(11)�2354(4)$15.00
A powerful alternative to direct detection that allows
a complete measurement of the quantum state of any
radiation mode is provided by the method of optical
homodyne tomography (OHT), developed over the past
decade [6–10]. This method is based on the fact that
the knowledge of the field-quadrature probability distri-
butions X̂f � X̂ cosf 1 Ŷ sinf for all f allows one to
reconstruct the Wigner function (joint quasiprobability dis-
tribution) W�X, Y � that completely describes the quantum
state, and is equivalent to knowledge of the full density
matrix. Here, X̂f � �â exp�2if� 1 ây exp�if���2 is the
quadrature operator at phase f, X̂ � �â 1 ây��2, Ŷ �
�â 2 ây��2i, and â and ây are the creation and annihila-
tion operators of the mode of interest. The reconstruction
procedure is given by the inverse Radon transform [6,7].
The issue of numerical instability of this method has
recently been resolved by the advent of an improved
reconstruction algorithm called “direct sampling.” In
this procedure, measurement of the density-matrix ele-
ments rnm in photon-number representation is reduced
to averaging certain “pattern functions” Fnm�Xf, f� �
fnm�Xf� exp�i�n 2 m�f� over the experimental quadra-
ture outcomes Xf, obtained by balanced-homodyne
detection, and over the local-oscillator (LO) phases f [8].
The direct sampling procedure is greatly simplified if one
is interested only in the diagonal elements of the density
matrix, which give the photon-number distribution of the
quantum state [9]. This is because the pattern functions
for the diagonal elements rnn are independent of f;
they can be averaged over quadrature outcomes taken at
random LO phases, which simplifies the experiment by
eliminating the need for phase locking.

As noted above, the quadrature measurement is practi-
cally implemented in OHT by means of balanced homo-
dyne detection, wherein a strong coherent-state LO selects
a single mode of the field corresponding to its spatial, tem-
poral, and polarization profiles. Moreover, because the
strong LO power overcomes both Johnson and dark-current
noise, fast p-i-n photodiodes having high quantum effi-
ciency can be employed. The issue of high quantum ef-
ficiency is extremely important in studies of the states
of light that possess inherently quantum features. These
features wash out very rapidly with degradation of the
© 2000 The American Physical Society
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quantum efficiency from unity. Therefore, single-mode
selectivity, single-photon resolution, and high quantum
efficiency provided by the OHT method have become an
indispensable asset for researchers in the quest for quan-
tum features in photon-number distributions.

Successes in measurements of single-mode states have
prompted the application of OHT to studies of multimode
quantum states. The theoretical basis for multimode OHT
has recently been developed [11,12]. In the case of several
modes that cannot be easily separated, direct sampling
can be done by employing a single LO scanning across all
possible superpositions of the modes [13]. On the other
hand, for the modes that can be separated and detected by
use of independent random-phase LOs, the multimode di-
rect sampling of the joint photon-number distribution is as
simple as averaging a product of the pattern functions for
each mode over the simultaneously taken quadrature data:
P�n1, n2, . . .� � � fn1n1 �X

f1

1 �fn2n2�X
f2

2 � . . .�X
f1
1 ,f1,X

f2
2 ,f2,...

.
An experimental application of OHT to the measurement
of the two-time correlation function of the classical field
emitted by a semiconductor laser has recently been demon-
strated [14]. In this paper, we report the first, to the best
of our knowledge, application of OHT to the measurement
of the joint photon-number distribution of a two-mode
quantum state, viz., the twin-beam state emerging from
a nondegenerate optical parametric amplifier (NOPA).
Our measurement clearly demonstrates the presence of
inherently quantum features in such a two-mode state.

The quantum correlation is imposed onto the twin
(signal and idler) beams by the nature of the parametric
scattering process in the NOPA, wherein one pump
photon down-converts into a pair of photons that belong
to two different modes. This corresponds to the creation
of the following two-mode state: jC� � �n̄ 1 1�21�2 3P`

n�0 �n̄��n̄ 1 1��n�2jn, n�, where n̄ � g 2 1 is the
average number of photons in each mode with g being
the gain of the parametric amplifier. The total photon
number in the two modes is always even because of the
pairwise nature of the photon creation process. Hence,
the probability distribution for the total photon number
exhibits even-odd oscillations similar to those for a
squeezed-vacuum state [5,10]. Although the photons in
the signal and idler modes are perfectly correlated, their
statistics in each mode alone are thermal, yielding the
following joint probability distribution:

P�n, m� � j�n, m jC�j2 �
dnm

n̄ 1 1

µ
n̄

n̄ 1 1

∂n

, (1)

which has zero probabilities everywhere, except along
the main diagonal. We have previously demonstrated the
thermal character of the photon statistics of either of the
twin beams alone [15]. In order to overcome the mode
mismatch between the LO and the amplified field, whose
spatiotemporal profile is modified during the pulsed
traveling-wave amplification process, we employed a
self-generated matched LO (self-homodyne tomogra-
phy). This approach, however, is not suitable for a joint
measurement of the twin beams because it renders the
NOPA phase sensitive, which distorts the self-generated
LO, making the matching of the LO with the mode of
the quantum state of interest inefficient. Hence, our
observation of quantum features in the joint distribution
relies on matching, to the best possible extent, an external
LO to the NOPA output.

A schematic of our experimental setup is shown in
Fig. 1. The NOPA, consisting of a 5-mm-long KTiOPO4
(KTP) crystal, is pumped by the second harmonic of a
Q-switched and mode-locked Nd:YAG laser. The laser
produces a 100-MHz train of 120-ps duration pulses at
1064 nm (85 ps for the second harmonic at 532 nm) with
a 205-ns wide Q-switch envelope (145 ns for 532 nm)
having a 1-kHz repetition rate. The 1064-nm orthogo-
nally polarized twin beams emitted by the KTP crystal
NOPA are detected separately by two balanced-homodyne
detection setups using two independent LOs derived
from the same laser [16]. Low- and high-frequency parts
of the resulting photocurrents are separated. The peak
amplitudes of the 5-MHz low-pass-filtered photocurrents
from the photodiodes in the signal and the idler arms
are monitored by an oscilloscope. A 10-MHz-wide
band of radio frequencies near V�2p � 40 MHz is
selected in each arm by means of a bandpass filter
and amplified with a low-noise amplifier (the level of
electronic noise in our setup is about 8 dB below the
shot-noise level). The amplified noise photocurrent is
then down-converted to the near-dc region by use of an
rf mixer and sampled by a boxcar integrator (signal arm,
by channel 2; idler arm, by channel 1). The outputs
of the boxcar channels are a measure of the quadrature
amplitudes X

f
S and X

c
I of the signal and idler modes

Â
�jS �
S � �âS�v 1 V�e2ijS 1 âS�v 2 V�eijS ��

p
2 and

Â
�jI �
I � �âI �v 1 V�e2ijI 1 âI �v 2 V�eijI ��

p
2, re-

spectively. Here v�2p is the optical frequency, f �c� is
the phase of the signal (idler) LO, and jS �jI � is the cor-
responding phase of the rf LO driving the mixer. The joint
photon-number probability distribution P�n, m� of the
twin beams is then obtained by averaging the two-mode
pattern function fnn�Xf

S �fmm�Xc
I � over the quadrature

FIG. 1. A schematic of the experimental setup. NOPA, non-
degenerate optical parametric amplifier; LOs, local oscillators;
PBS, polarizing beam splitter; LPFs, low-pass filters; BPF, band-
pass filter; G, electronic amplifier. Electronics in the two chan-
nels are identical.
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samples X
f
S and X

c
I , and over the independently randomly

varying LO phases f and c . In our experiment, we vary
�f 1 c� by moving a piezoelectric transducer in the pump
path, and vary �f 2 c� by use of an electro-optic phase
modulator in the LO path.

The quantum efficiency in our experiment is determined
by two factors: (i) the detection and propagation losses
and (ii) the efficiency of the homodyne overlap. The for-
mer factor is estimated to be about 0.7, which includes the
detection and propagation efficiency of 0.85 as well as the
effect of nonideal splitting by the polarizing beam-splitting
cubes. Estimation of the factor in (ii) above is more diffi-
cult because of the evolution of the spatiotemporal beam
profile in the process of pulsed traveling-wave parametric
amplification [15,17]. In contrast to the case of an OPA
in a cavity, where the generated parametric beams have
a single-mode Gaussian structure, the beams generated
in our OPA are inherently multimode. This brings up the
issue of matched LOs for optimizing the correlation be-
tween the measured signal and idler photocurrents. In the
simplest approximation, our OPA amplifies the input fields
at every spatiotemporal point independently, with the gain
determined by the pump intensity at that point. Therefore,
the twin beams exhibit 100% point-to-point correlation,
and the matched LOs are two orthogonally polarized
delta-function modes corresponding to the same spa-
tiotemporal point. However, the effects of beam walk-off
owing to critical phase matching in the KTP crystal, gain-
induced diffraction [17], and limited spatial bandwidth of
the NOPA [18] complicate the amplification mechanism,
leading to spreading of the correlation within some finite
radius. While the theoretical problem of finding a matched
LO in this complex case has not yet been solved, we
chose the focusing arrangement of the pump and LO
beams in our experiment in such a way as to optimize the
amount of observed correlation for a given crystal length
and pump power. An IR seed signal beam at the input of
the NOPA was used for alignment purposes. In this case,
the homodyne-overlap efficiency between the LO and the
amplified signal beam was measured to be 0.73, and that
between the LO and the generated idler varied between
0.55 and 0.60 for the data presented in this paper. The
efficiency between the idler and the LO approximates that
for homodyning of the quantum noise of twin beams from
the unseeded NOPA, at least at low gains [19].

The measured joint photon-number distributions are
shown in Fig. 2 (left) for three different values of the
pump power (or parametric gain). The less-than-unity
quantum efficiency results in the spreading of the distribu-
tion around the main diagonal n � m, whereas a deltalike
correlation is expected for 100% efficiency. The typical
marginal distributions for the signal or the idler beam
alone are shown in Fig. 3. They indicate good agreement
with the theoretically predicted thermal distributions for
the same mean photon numbers.

To show the quantum character of the measured distri-
bution, we used it to find the photon-number correlation
2356
FIG. 2. Left: Measured joint photon-number probability dis-
tributions for the twin-beam state. Right: Difference photon-
number distributions corresponding to the left graphs (filled
circles, experimental data; solid lines, theoretical predictions;
dashed lines, difference photon-number distributions for two
independent coherent states with the same total mean number
of photons and n̄ � m̄). (a) 400 000 samples, n̄ � m̄ � 1.5,
N � 10; (b) 240 000 samples, n̄ � 3.2, m̄ � 3.0, N � 18;
(c) 640 000 samples, n̄ � 4.7, m̄ � 4.6, N � 16.

d�Dn� between the two modes [12]:

d�Dn� �
NX

k�max�2Dn,0�
P�k 1 Dn, k� , (2)

which is shown in Fig. 2 (right). The number N is deter-
mined by the size of our reconstructed distribution. In the
limit of N ! `, d�Dn� is the probability of finding the
difference between the signal and the idler photon numbers
to be Dn. In the case of ideal homodyne detection, d�Dn�
is expected to be the Kronecker dDn0. For a less-than-unity
quantum efficiency, however, the correlation d�Dn� is
no longer a delta function; it spreads around Dn � 0.
Nevertheless, it can be narrower than the correlation
function for two independent coherent-state beams having
the same total mean photon number as the twin beams.
The latter represents the standard quantum limit for
photon-number correlation between classical states. In
Fig. 2 (right) we compare the photon-number correla-
tion observed in our measurements (filled circles) with
the standard quantum limit (dashed lines). The mea-
sured twin-beam correlation function is narrower than
the coherent-state correlation function, indicating the
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FIG. 3. Marginal distributions for the signal and idler beams
reconstructed from the same data as the distribution in Fig. 2(a).
Theoretical distributions for the same mean photon numbers are
also shown.

inherently quantum character of the twin-beam state. For
substantial deviations jDnj from the main diagonal, d�Dn�
becomes randomly oscillating due to the increasingly large
contribution of the statistical errors in the measurement of
the joint distribution. We also show the correlation func-
tions (solid lines) reconstructed from the theoretical joint
quadrature distributions [12], where the overall quantum
efficiency h is used as a fitting parameter, and the contri-
bution of the electronic noise is taken into account. We
can see that our experimental data agree well with the the-
ory for (a) h � 0.35, (b) h � 0.16, and (c) h � 0.15.
The value h � 0.35 is also close to our previous esti-
mate of 0.38–0.42 for the overall quantum efficiency. In
the case of higher parametric gains [as in (b) and (c)],
the discrepancy between the best-fitting h and the esti-
mate based on homodyne overlap between the LO and
the idler mean field increases. This is mainly because,
at the NOPA output, an imperfect overlap can mix ther-
mal-state rather than vacuum-state noise into the photocur-
rent, which enhances the detrimental effect of the mis-
match, especially at high gains, and leads to an effectively
higher degradation of the quantum efficiency from unity.
We note here that the degradation of quantum efficiency
at high gains can be avoided by employing a matched LO
generated by the use of a second identical OPA [19].

To quantify the amount of measured nonclassical cor-
relation between the twin beams, we find the difference
photon-number noise normalized to the shot-noise level
F � var�n 2 m���n̄ 1 m̄� by averaging appropriate pat-
tern functions over the two-mode quadrature data [20],
while subtracting the contribution of the electronic noise.
We obtain F � 0.65 �21.9 dB�, F � 0.85 �20.71 dB�,
and F � 0.86 �20.66 dB� for the data used in reconstruc-
tions of Figs. 2(a), 2(b), and 2(c), respectively. These
clearly satisfy the sufficient condition for nonclassicality of
the two-mode correlation, i.e., F , 1 [20]. Note that the
measured nonclassicality factors F are in excellent agree-
ment with the theoretical limits of 1 2 h for all three
values of the parametric gain.
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