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Abstract. We review the ‘adaptive tomography’ technique, and study its application to the
measurement of the field intensity and correlations, and to the reconstruction of the Wigner
function of a single-mode radiation field. In both cases, this method strongly reduces
statistical errors, thus making homodyne tomography a kind of low-noise universal detector.
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1. Introduction

Quantum homodyne tomography (QHT) is the most
successful technique for the measurement of the quantum
state of radiation. In QHT, in fact, the signal mode
is amplified by the local oscillator, thus avoiding the
need for single-photon resolving photodetectors, and hence
providing the possibility of achieving very high quantum
efficiency by linear photodiodes [4]. Moreover, QHT is
efficient and statistically reliable, and can be used on-line
with the experiment. Indeed, among other proposed state
reconstruction methods, QHT is the only one which has been
implemented in quantum optical experiments [1, 2].

Applications of QHT range from the measurement of
photon correlations on a sub-picosecond timescale [1] to
the characterization of squeezing properties [2], photon
statistics in parametric fluorescence [3], quantum correlations
in down-conversion [4], nonclassicality of states [5], and
the measurement of Hamiltonians of nonlinear optical
devices [6].

Actually, QHT can be used to estimate the expectation
value of any operator of the field [7], which makes the method
a kind of universal detector for radiation. On the other hand,
the price to pay for such universality is the occurrence of large
statistical errors, and indeed the tomographic determination
of relevant field observables are generally more noisy than the
corresponding direct detection [8]. However, in view of the
wide range of applications of QHT, it is desirable to reduce the
tomographic noise, in order to extract the maximum amount
of information from the homodyne data sample.

Recently, we have developed an adaptive optimization
technique to improve the precision of quantum homodyne
tomography [9]. The method is based on the existence of
so-called null functions, which have a zero average for an
arbitrary state of radiation. The addition of null functions to
the tomographic kernels does not affect their mean values, but
changes statistical errors, which can then be reduced by an
optimization method that ‘adapts’ kernels to homodyne data.

In this paper, we review the adaptive tomography method and
study its application to the measurement of the field intensity
and correlations. In addition, as a further development in
comparison with [9], we apply the adaptive method to the
reconstruction of the Wigner function, which provides a clear
picture of the quantum state as a whole. As we will see, this
method strongly reduces the noise coming from statistical
fluctuations, thus making homodyne tomography a low-noise
universal detector. Moreover, in this paper, the evaluation
of the density matrix and the reconstruction of the Wigner
function have been improved in comparison with [9], since
we also exploit unitary transformations of the state, such
as displacement and squeezing, which reduces the average
number of photons of the state, and take advantage of the
adaptive method, which is more effective for low photon
numbers.

In section 2 we review QHT and the adaptive method in
order to reduce statistical fluctuations. In section 3 we apply
adaptive tomography to the measurement of the field intensity
and of intensity correlations, whereas in section 4 we consider
the reconstruction of the Wigner function. Section 5 closes
the paper with some concluding remarks.

2. Adaptive tomography

Quantum tomography of a single-mode radiation field
consists of a set of repeated measurements of the field-
quadrature x̂φ = 1

2 (ae−iφ + a†eiφ) at different values of
the reference phase φ. The expectation value of a generic
operator can be obtained by averaging a suitable kernel
function R[Ô](x, φ) as follows [7]:

〈Ô〉 .= Tr{
̂Ô} =
∫ π

0

dφ

π

∫ ∞

−∞
dxp(x, φ)R[Ô](x, φ), (1)

where p(x, φ) denotes the probability distribution of the
outcomes x for the quadrature x̂φ , and R[Ô](x, φ) is given

1464-4266/00/020113+05$30.00 © 2000 IOP Publishing Ltd 113



G M D’Ariano and M G A Paris

by

R[Ô](x, φ) = 1
4

∫ ∞

0
dr Tr{Ô cos[

√
r(x − x̂φ)]}. (2)

From identity (1), it follows that the ensemble average 〈Ô〉
can be experimentally obtained by averaging R[Ô](x, φ)

over the set of homodyne data, namely

〈Ô〉 = R[Ô]
.= 1

N

N∑
i=1

R[Ô](xi, φi), (3)

where N is the total number of measurements of the sample.
The statistical error of the tomographic measurement in
equation (3) can be easily evaluated provided that the
corresponding kernel function satisfies the hypothesis of the
central limit theorem, which assures that the partial average
over a block of data is Gaussian distributed around the global
average over all data. In this case, the error is obtained
by dividing the ensemble of data into subensembles, and
calculating the rms deviation of each subensemble mean
value with respect to the global average. The estimated value
of such a confidence interval is given by

δO = 1√
N

{�R2[Ô]}1/2, (4)

where �R2[Ô] is the variance of the kernel over the
tomographic probability

�R2[Ô] =
∫ π

0

dφ

π

∫ ∞

−∞
dxp(x, φ)R2[Ô](x, φ)

−
{ ∫ π

0

dφ

π

∫ ∞

−∞
dxp(x, φ)R[Ô](x, φ)

}2

. (5)

The crucial point of the adaptive tomography method is that
the tomographic kernel R[Ô](x, φ) is not unique, since a
large class of null functions [9,10] F(x, φ) exists that have a
zero tomographic average for an arbitrary state, namely

F =
∫ π

0

dφ

π

∫ ∞

−∞
dxp(x, φ)F (x, φ) ≡ 0. (6)

Therefore, the addition of null functions to a generic kernel
gives a new kernel with the same tomographic average, hence
equivalent for the estimation of the same ensemble average
〈Ô〉. On the other hand, adding null functions would modify
the kernel variance, whence the statistical error is over data.
The adaptive tomography method thus consists in optimizing
the kernel in the equivalence class, in order to minimize the
statistical errors.

A general expression for the null functions of (6) is given
by

G+
n(x, φ) = ei(1+n)2φg+(xeiφ)

G−
n (x, φ) = e−i(1+n)2φg−(xe−iφ).

(7)

In equations (7) n � 0 and g±(z) are analytic functions
of z. The set G of null functions defined in equations (7)
forms a vector space over C, and each class G± = {G±

n }
separately is closed under multiplication (without inverse).
In the following we will focus attention on null functions

obtained from equations (7) by choosingn = 0 andg(z) ≡ zk

for a given k. This will be denoted by Fk(x, φ), namely

Fk(x, φ) = xkei(k+2)φ k = 0, 1, . . . . (8)

Let us now consider a generic real kernel R[Ô](x, φ). By
adding M null functions keeping the kernel as real, we have
the new kernel K[Ô](x, φ)

K[Ô](x, φ) = R[Ô](x, φ) +
M−1∑
k=0

µkFk(x, φ)

+
M−1∑
k=0

µ∗
kF

∗
k (x, φ), (9)

where Fk(x, φ) ∈ G+, F ∗
k (x, φ) ∈ G−, and µk are complex

coefficients. By definition we have K[Ô] = R[Ô], whereas
the variance of the new kernel K[Ô](x, φ) is given by

�K2[Ô] = �R2[Ô]

+ 2

{ M−1∑
k,l=0

µkµ
∗
l FkF

∗
l

+
M−1∑
k=0

µkR[Ô]Fk +
M−1∑
k=0

µ∗
kR[Ô]F ∗

k

}
. (10)

In deriving the above formula we use the fact that both G+

and G− are closed under multiplication.
The variance of the modified kernel function in

equation (10) can be minimized with respect to the
coefficients µk , leading to the linear set of equations∑

l

µlFkF
∗
l = −R[Ô]F ∗

k . (11)

It is convenient to rewrite the optimization equations (11) in
matrix form as follows:

Aµ = b (12)

where A is the Hermitian M × M matrix

Akl = FkF
∗
l =

∫ π

0

dφ

π

∫ ∞

−∞
dxp(x, φ)Fk(x, φ)F ∗

l (x, φ),

(13)
and b is the complex vector

bk = −R[Ô]F ∗
k

= −
∫ π

0

dφ

π

∫ ∞

−∞
dxp(x, φ)R[Ô](x, φ)F ∗

k (x, φ). (14)

Notice that the vector b depends on both the kernel R[Ô] and
the state 
̂ under examination, whereas the matrix A depends
on the state only.

By substituting equation (11) in (10) and inverting (12)
we obtain

�2[Ô]
.= �R2[Ô] − �K2[Ô] = 2

M−1∑
k,l=0

µkAklµ
∗
l

= 2
M−1∑
k,l=0

bk(A
−1)klb

∗
l � 0, (15)

which expresses the variance decrease in terms of A and b.

114



Noise reduction in quantum tomography

g(2
)

g(2
)

(a) (b)

(c) (d)

Figure 1. Monte Carlo simulation of tomographic measurement of the intensity 〈a†a〉 and of the second-order correlation function
g(2) = 〈a†2a2〉/〈a†a〉2 on coherent states. (a),(c) The determination by usual tomography as a function of the average photon number |α|2 of
the coherent state. (b),(d) The determination after the adaptive optimization of the kernel functions. Simulated experiments have been
performed using 5000 random-phase homodyne data, divided into ten blocks in order to evaluate statistical errors.

The optimization procedure for the kernel R[Ô](x, φ)

can be summarized as follows: after collecting an ensemble
of N tomographic data, the quantities A and b are evaluated
as tomographic experimental averages. Then, by solving
the linear system (12) one obtains the coefficients µk which
are used to build the optimized kernel K[Ô](x, φ). At this
point, the same data set is used to average K[Ô](x, φ) and,
upon dividing the set into subensembles, the experimental
error is evaluated, whose square now is reduced by the
quantity �2[Ô]/N . The actual precision improvement of the
tomographic measurement depends both on the state under
examination (which affects b and A) and on the operator Ô,
whose kernel enters only in the expression of b.

3. Field intensity and intensity correlations

In this section we apply the adaptive tomography method
to the detection of the field intensity I = 〈a†a〉 and the
second-order correlation function g(2) = 〈a†2a2〉/〈a†a〉2. As
a starting point for the present optimization procedure we take
the Richter form of the tomographic kernel for the normally
ordered moment [11]

R[a†nam](x;φ) = ei(m−n)φ Hn+m(
√

2x)√
2n+m

(
n+m
n

) , (16)

whereHn(x) is the Hermite polynomial of ordern. In the case
of tomographic detection of intensity, equation (16) provides

the kernel
R[a†a](x) = 2x2 − 1

2 , (17)

whereas the vector b needed to optimize the kernel is given
by

bk = −R[a†a]F ∗
k = 2xk+2e−i(k+2)φ = 〈a†(k+2)〉

21+k
. (18)

We solved the optimization equation (12) analytically for
coherent states, squeezed vacuum and the ‘cat’ superposition
of coherent states |ψ〉 = [2(1+exp{−2|α|2)]−1/2(|α〉+|−α〉)
up to M = 10 null functions. For all the states considered
here, it turns out that only the null function F0(φ) is needed,
namely one has

µ0 = b0 µk = 0, ∀k � 1. (19)

The corresponding reduction of variance is given by

�2[a†a] = 1
2 〈a†2〉〈a2〉, (20)

and can compensate the leading term of the variance of the
original Richter kernel

�R2[a†a] = 〈�̂n2〉 + 1
2 [〈a†2a2〉 + 2〈a†a〉 + 1], (21)

so that �K2[a†a] becomes much closer to the intrinsic
intensity fluctuations 〈�̂n2〉 than the original noise
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�R2[a†a]. The noise reduction obtained by adding the
single null function F0(φ) can also be easily evaluated for
the generic diagonal moment 〈a†nan〉, using the formula

ei2φR[a†nan](x) = n

n + 1
R[a†(n+1)an−1](x), (22)

which leads to

b0 = −R[a†nan]ei2φ = − n

n + 1
〈a†(n+1)an−1〉, (23)

namely �2[a†nan] = 2|b0|2. Of course, the case n = 2
is of interest to measure the correlation function g(2). In
figure 1 we show the results from a Monte Carlo simulation
of the tomographic detection of intensity and correlations on
coherent states: the noise reduction obtained by using the
modified kernel is apparent.

4. Reconstruction of the Wigner function

Adaptive tomography can also be applied to the measurement
of the density matrix element 
nm = 〈m|
̂|n〉 of the quantum
state of the field. Indeed, in [9] the method has been analysed
in detail for coherent states, Fock states, squeezed vacuum,
and ‘Schrödinger-cat’ states. With the exception of Fock
states, the method generally provides a sizeable reduction
of statistical errors. For coherent states the improvement
mainly concerns matrix elements with small index, whereas
for squeezed vacuum and cat states generic off-diagonal
elements are also improved. In order to see the effectiveness
of the method in the reconstruction of the quantum state as a
whole, here we consider the application to the reconstruction
of the Wigner function of the field, which is defined as
follows:

W(z) = 2

π
Tr{
̂D̂(2z)(−)a

†a}, (24)

and can be expressed in terms of the matrix elements as

W(z) = Re
∞∑

d=0

eidφ
∞∑
n=0

'(n, d; |z|2)ρn,n+d (25)

where

'(n, d; |z|2)

= (−)n2(2 − δd0)|2z|d
√

n!

(n + d)!
e−2|z|2Ld

n(|2z|2), (26)

and where Ld
n(x) denotes the Laguerre polynomials. Of

course, the series in equation (25) should be truncated
at some point, and therefore the Wigner function can be
reconstructed only at some finite resolution. Remarkably,
adaptive tomography largely improves the precision of
the reconstruction at fixed truncation dimension. Since
the adaptive method is more effective for low photon
numbers, we can improve it through the following
steps: (i) the homodyne data are first used to adaptively
estimate the complex field amplitude and the squeezing
parameter; (ii) these values are used to perform unitary
transformations on the data sample, by unsqueezing and
displacing data towards the origin of the phase space, where
adaptive tomography is more effective; (iii) the inverse

Figure 2. Monte Carlo simulation of the tomographic
reconstruction of the Wigner function of a squeezed state. From
top to bottom: the ideal Wigner function, the reconstruction by
usual tomography, and the reconstruction obtained by the adaptive
tomography method assisted by unitary displacement and
unsqueezing of homodyne data (see text). Simulated experiments
have been performed using ten blocks of 100 phases and 50 data
each (for a total number of data equal to 50 000).

transformations (displacement and squeezing) are performed
on the reconstructed state. We applied this procedure to
a large variety of states, and the results indicate that the
method allows us to reconstruct the Wigner function also
starting from a small sample of homodyne data collected
by low-efficiency detectors. In figure 2 we illustrate the
application of adaptive tomography to the reconstruction of
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the Wigner function of a squeezed state |α, r〉 with average
photon number 〈a†a〉 = |α| + sinh2 r = 1, and squeezing
fraction sinh2 r/〈a†a〉 = 1

2 . The simulated sample of figure 2
consists of 50 000 data coming from detectors with quantum
efficiency η = 75%. The improvement in the reconstruction
is apparent.

5. Conclusion

In this paper, we have applied the adaptive tomography tech-
nique to the measurement of the field intensity and cor-
relations, and to the reconstruction of the Wigner func-
tion of a single-mode of the radiation field. In both
cases, the new technique strongly reduces statistical er-
rors, thus providing a precise quantum state measurement.
The method works equally well for nonunit quantum ef-
ficiency, and for a wide class of field observables [10],

thus making homodyne tomography a low-noise universal
detector.
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