
October 2013

EPL, 104 (2013) 20006 www.epljournal.org

doi: 10.1209/0295-5075/104/20006

Universality of computation in real quantum theory

A. Belenchia1, G. M. D’Ariano2,3 and P. Perinotti2,3

1 SISSA - via Bonomea 265, 34136 Trieste, Italy
2 QUIT Group, Dipartimento di Fisica, Università di Pavia - via Bassi 6, 27100 Pavia, Italy
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Abstract – Recently de la Torre et al. (Phys. Rev. Lett., 109 (2012) 090403) reconstructed Quan-
tum Theory from its local structure on the basis of local discriminability and the existence of a
one-parameter group of bipartite transformations containing an entangling gate. This result relies
on universality of any entangling gate for quantum computation. Here we prove universality of
C-NOT with local gates for Real Quantum Theory (RQT), showing that the universality require-
ment would not be sufficient for the result, whereas local discriminability and the local qubit
structure play a crucial role. For reversible computation, generally an extra rebit is needed for
RQT. As a by-product we also provide a short proof of universality of C-NOT for CQT.

Copyright c⃝ EPLA, 2013

Introduction. – In recent years quantum information
has spawned an unprecedented revival of interest in quan-
tum foundations, providing original lines of research based
on the surprising power of quantum theory as a model for
information processing. This has led many authors to be-
lieve that “information” is the key to the solution of the
mystery of quantum mechanics [1,2]. Along these lines the
seminal work of Hardy [3] has opened the way to the new
axiomatization program [4–7], including the derivation of
the theory from information-theoretical principles [8,9].
Some of the attempts at an informational axiomatiza-

tion explored the possibility of deriving the bipartite cor-
relations of the theory from the local qubit structure [10],
however this approach in the absence of further restric-
tions lead to the inclusion of spurious correlations for more
than two systems. Reference [11] has then reconstructed
quantum theory in this way, with the addition of local dis-
criminability and the existence of a one-parameter group
of bipartite transformations containing an entangling gate.
For the derivation of this result the universality of en-
tangling gates for quantum computation [12,13] plays a
crucial role.
The existence of a universal gate set with a single bi-

partite gate is characteristic of quantum computation, as
opposed to the classical one [14–16]. Since universality of
a bipartite gate plays a crucial role in the result of ref. [11],
one may wonder if it is specific only of quantum theory, or

it holds instead also for other probabilistic theories, in the
absence of the requirements of local discriminability and
the local qubit structure, as is the case, e.g., of RQT. Local
discriminability, in particular, plays an important role in
the classification of probabilistic theories (for a thorough
exploration of local tomography, which is an equivalent
formulation of local discriminability, see ref. [17]).
In the present letter we will prove that universality of

C-NOT with local gates holds indeed also for RQT. Dif-
ferently from Complex Quantum Theory (CQT), for RQT
generally an extra rebit is needed for reversible computa-
tion. We formulate universal computation with a single
bipartite gate as an informational axiom in the context of
general probabilistic theories, then focusing on CQT and
RQT only, and providing simple proofs of universality for
both theories. The simplified proof is useful also in the
complex case, since it provides a much shorter derivation
than the original ones [13–16]. In the real case, an inter-
esting feature pops up, which is the requirement of a single
overhead rebit for the circuit implementation of arbitrary
orthogonal (i.e. real unitary) transformations. The extra
qubit is needed in order to make the determinant positive
for all the orthogonal matrices representing circuits on the
input register.
The presence of an extra qubit is relevant also in the

comparison of quantum computation with complex and
real qubits, as in ref. [18], where the equivalence of the two
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models is established. Interestingly, the extra real qubit in
this context is needed in order to account for the real and
imaginary part of the state of the simulated complex input
registers, which is unrelated to the positive determinant
issue of the present letter. Moreover, in ref. [18] a notion
of universality is introduced, in terms of the possibility of
simulating CQT through RQT circuits. However, this no-
tion is different from the universality property used here,
which is based on the decomposition of circuits of RQT.

Universal gate sets. – We say that a general proba-
bilistic theory admits computation with a strongly univer-
sal bipartite gate if every reversible transformation of N
elementary systems (i.e. bits, qubits, rebits, etc.) can be
perfectly simulated by a circuit of N elementary systems
made only of local reversible transformations and suffi-
ciently many uses of the bipartite gate. We say that the
theory admits a weakly universal bipartite gate if every
reversible transformation of N elementary systems can be
perfectly simulated by a circuit of N + p(N) elementary
systems made only of local reversible transformations and
sufficiently many uses of a single bipartite gate, discard-
ing the auxiliary p(N) systems, where p(x) is a polynomial
in x.

Strong universality in complex quantum theory. We
provide now a simplified proof that the C-NOT is strongly
universal for computation in CQT.

The elementary system in quantum computation is the
qubit. The Hilbert space for a register of N qubits is
C2N , and its reversible transformations form the Lie group
SU(2N).
Every element of SU(2N) is the exponential of an anti-

Hermitian operator. For a single qubit the group SU(2)
has the following generators:

X :=

(

0 1
1 0

)

, Z :=

(

1 0
0 −1

)

, Y :=

(

0 −i

i 0

)

.

(1)
We also introduce the bipartite C-NOT gate V = V † in
SU(4),

V |i⟩|j⟩ := |i⟩|i⊕ j⟩, (2)

where |i⟩ is an element of the computational basis
{|0⟩, |1⟩} ⊂ C2, while ⊕ denotes the sum modulo 2. The
qubit on the left is named control and the qubit on the
right is named target. Speaking about universality, one
may think that the gate V̄ with the target and the control
exchanged, is different from the gate V ; however, in this
spirit, one can also notice that V̄ is obtained from V using
local gates as follows:

V̄ := (H ⊗H)V (H ⊗H), (3)

where H is the Hadamard gate,

H =
1√
2

(

1 1
1 −1

)

. (4)
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Fig. 1: Relization of the multipartite unitary transformation
U = exp(itX ⊗ I ⊗Z ⊗ Y ) using only C-NOTs and local gates
corresponding to rotations of ±π/2 around the Y and Z axes.

The bipartite swap gate P |φ⟩|ψ⟩ = |ψ⟩|φ⟩ can be obtained
from the C-NOT gate V as P = V V̄ V .
When multiple qubits are involved in the computation,

we will denote by Vij the C-NOT where the i-th qubit is
the control and the j-th qubit is the target.
In the following we will denote by L the basis for the

Lie algebra su(2N ) of the group SU(2N ):

LN := {L1 ⊗ L2 ⊗ · · ·⊗ LN}\{I⊗N}, Lj ∈ {I,X, Y, Z}.
(5)

The special case in which only one Lj for fixed j is differ-
ent from the identity corresponds to the basis for the Lie
algebra of the local gates of the j-th qubit.
We now prove some preliminary lemmas which are

needed for the main theorem.

Lemma 1. Starting from the element XN := I⊗(N−1)⊗X
one can generate the whole basis LN only conjugating with
C-NOTs and local gates.

Proof. Using the following trivial identity

V (I ⊗X)V † = X ⊗X, P (I ⊗X)P † = X ⊗ I, (6)

we can generate all strings in LN with Lj ∈ {I,X} by con-
jugating XN with a string of C-NOTs VjN . Conjugating
with local gates we can then generate the whole LN .!
As an example of realization of gate according to

Lemma 1 is given in fig. 1.
We thus proved that with local gates and the two-bit

entangling gate C-NOT we can obtain all gates of the
form exp(itΛ), with Λ ∈ LN . By repeated applications of
such gates for varying t and Λ we generate the subgroup
H ⊆ SU(2N ).
We now have the following lemma.

Lemma 2. The subgroup H ⊆ SU(2N ) is dense in
SU(2N ).

Proof. The statement is an immediate consequence of
the Lie-Trotter formula,

eaΛ1+bΛ2 = lim
n→∞

(

e
aΛ1
n e

bΛ2
n

)n

, (7)

where convergence is to be considered in the strong
topology [19].!
The last lemma that we need is the following.
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Lemma 3 (Brylinski [13]). Let G be a compact Lie
group. If H1, . . . , Hk are closed connected subgroups
and they generate a dense subgroup of G, then they
generate G.

We now have all elements for proving our first main
theorem.

Theorem 1 (strong universality of C-NOT).
The C-NOT gate is strongly universal for quantum
computation.

Proof. We observe that for each Λ ∈ L the one-parameter
subgroup of SU(2N )

{

eiΛt, t ∈ [0, 2π)
}

is closed and con-
nected. Then we apply Lemma 3 where the groups Hk are
the one-parameter Lie groups obtained by exponentiating
each element of LN . !

Weak universality in real quantum theory. We now
prove universality for RQT. This theory shares a lot of
features with CQT, and in some sense it is “contained”
in it. Nevertheless, it has also some important differences
from CQT, the main one consisting in the failure of local
discriminability, which must be replaced in the case of
RQT by bilocal discriminability [17,20].

The group of reversible transformations on R2N , i.e.
transformations that preserve the norm of vectors, is the
ortogonal group O(2N ) that is a compact not connected
Lie group. Now we want to prove that the C-NOT (which
is an ortogonal operator) and local gates are sufficient to
generate all the gates in SO(2N ).
Notice that the V̄ gate can still be obtained from the

C-NOT with local SO(2) gates as follows:

V̄ = (Ỹ H̃ ⊗ H̃)V (H̃Ỹ ⊗ H̃), (8)

where

Ỹ :=

(

0 1
−1 0

)

, H̃ :=
1
√
2

(

1 −1
1 1

)

∈ SO(2). (9)

Hence we also get the SWAP gate P = V V̄ V . We
now prove universality along lines analogous to the proof
for CQT. We will need to consider the transformations
of O(2N) with determinant equal to −1 separately, be-
cause these cannot be obtained via the exponential map
as before.

Let us start with the first task, i.e. obtaining all SO(2N )
from C-NOT and local gates. Since every orthogonal
matrix is the exponential of an antisymmetric matrix, a
basis L′

N
of so(2N ) can be taken as the set of strings

of Ỹ , X, Z, I, with the constraint that they are antisym-
metric. It is easy to verify that this amounts to require
that a string L1 ⊗ L2 ⊗ · · · ⊗ LN ∈ L′

N
must contain an

odd number of Li = Ỹ . We can now prove the following
lemma.

Lemma 4. Starting from local gates, one can generate the
whole basis L′

N
only conjugating with C-NOTs and local

gates.

Proof. The proof proceeds by induction. For the case of
two rebits, the generators of local gates are then I ⊗ Ỹ
and Ỹ ⊗ I. If we conjugate these generators with C-NOT
and SWAP we obtain

Z ⊗ Ỹ , Ỹ ⊗X, X ⊗ Ỹ , Ỹ ⊗ Z, (10)

namely we have the full set L′
2 of six generators of the

so(4) algebra. The induction hypothesis is now that start-
ing from I⊗(N−1) ⊗ Ỹ we can obtain an arbitrary string
in L′

N−1 conjugating with C-NOT and local gates, and
we have to prove that we can obtain an arbitrary string
in L′

N
only conjugating wiht C-NOT and local gates. By

hypotesis we then have the following generators:

I ⊗ Ỹ ⊗B, I ⊗X ⊗A, I ⊗ Z ⊗A,

where A is an arbitary string of length N − 2 with an odd
number of Ỹ and B is an arbitary string of length N − 2
with an even number of Ỹ . Acting on these operators with
C-NOT and SWAP we obtain

Z ⊗ Ỹ ⊗B, X ⊗X ⊗A.

Now we can replace Z with X and viceversa by acting
with the local gate H̃ modulo a sign on Z (the sign is not
relevant, since we are considering Lie-algebra elements).
Finally, acting with C-NOT on X ⊗ Z ⊗ A we obtain
Ỹ ⊗ Ỹ ⊗A. This concludes the induction proof.!
We can now easily prove the following theorem.

Theorem 2 (strong universality in SO(2N )). The
C-NOT gate is strongly universal for the group SO(2N)
in real quantum theory.

Proof. The whole group SO(2N) is generated by using
Lemma 3 in the same way as for theorem 1.!
Notice, however, that we can only generate the Lie

group SO(2N ), namely the connected component of the
orthogonal group containing the identity, but it is impos-
sible to obtain in this way a gate that has determinant
equal to −1. Indeed, if we start from a local gate with
determinant −1 or even the C-NOT gate, and take the
tensor product with the identity or another unit determi-
nant gate, we always obtain a gate with determinant +1.
This follows directly from the following property of the
Kronecker product: i.e. if A ∈ O(2N ) and B ∈ O(2M )
then

Det(A⊗B) = Det(A)2
M

Det(B)2
N

. (11)

The solution to this problem is given in the proof of the
following theorem.

Theorem 3 (weak universality of C-NOT in RQT).
The C-NOT gate is weakly universal for real quantum
computation.

Proof. We already proved universality for gates in
SO(2N) in theorem 2. Suppose now that one wants to
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construct an N -rebits gate S with determinant −1. In
this case, he can instead use an ancillary rebit and con-
sider the (N + 1)-rebits gate I ⊗ S. Since by eq. (11) the
determinant of I ⊗ S is 1, by theorem 2 this gate can be
obtained from a local one using C-NOT and local gates.
We have thus proved the weak universality of local gates
and C-NOT for RQT.!

Conclusion. – In this letter we have seen that in RQT
local gates and C-NOT, are universal for reversible com-
putation, as in CQT, but an additional ancillary rebit is
needed for universality of RQT. Using a similar line of
proof we have also provided a very simple and short proof
of universality for CQT. We conjecture that RQT has a
weak-universality property due to the fact that it does not
satisfy local discriminability. An interesting question for
future developments is whether the universality property
is a good axiom for CQT in the presence of causality and
local discriminability.
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