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Quantum cloning by cellular automata

G. M. D’Ariano,* C. Macchiavello, and M. Rossi†

Dipartimento di Fisica and INFN-Sezione di Pavia, Via Bassi 6, 27100 Pavia, Italy
(Received 20 December 2012; published 29 March 2013)

We introduce a quantum cellular automaton that achieves approximate phase-covariant cloning of qubits. The
automaton is optimized for 1 → 2N economical cloning. The use of the automaton for cloning allows us to
exploit different foliations for improving the performance with given resources.
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I. INTRODUCTION

Quantum cellular automata (QCAs) have attracted consid-
erable interest in recent years [1,2] due to their versatility in
tackling several problems in quantum physics. Quantum au-
tomata describing single particles correspond to the so-called
quantum random walks [3], whose probability distributions
can be simulated with an optical setup [4,5]. Solid-state and
atom-optics systems, such as spin chains, optical lattices, or ion
chains, can be viewed as implementations of QCAs, although
in a Hamiltonian description. Recently, QCAs have also been
considered as a model of quantum field theory at the Planck
scale [6,7].

In this scenario, general coordinate transformations cor-
respond to foliations, such as those introduced in Ref. [8]
for operational structures, e.g., the digital equivalent of the
relativistic boost is given by a uniform foliation over the
automaton [9]. Besides the link with fundamental research, the
possibility of foliations makes the QCA particularly interesting
also for implementing quantum information tasks. In this paper
we will explore such a potentiality for the case of quantum
cloning as a sample protocol. We will show how economical
cloning can be implemented by a quantum automaton and how
the foliations can be optimized and exploited for improving
the efficiency of the protocol.

The work is organized as follows. In Sec. II we remind some
concepts related to either phase-covariant cloning and QCAs,
in Sec. III we report and explain the main achieved results
concerning quantum cloning by QCAs, and we eventually
summarized them in Sec. IV.

II. PRELIMINARIES

It is well known that quantum cloning of nonorthogonal
states violates unitarity [10] or linearity [11] of quantum
theory, and it is equivalent to the impossibility of measuring
the wave function of a single system [12]. However, one
can achieve quantum cloning approximately for a given prior
distribution over input quantum states. For uniform Haar
distribution of pure states the optimal protocol has been
derived in Ref. [13], whereas for equatorial states it has
been given in Refs. [14,15]. In the present paper we consider
specifically this second protocol, corresponding to the clone
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of the two-dimensional equatorial states:

|φ〉 = 1√
2

(|0〉 + eiφ|1〉). (1)

The cloning is phase covariant in the sense that its performance
is independent of φ; i.e., the fidelity is the same for all
states |φ〉. For certain numbers of input and output copies
it was shown that the optimal fidelity can be achieved by
a transformation acting only on the input and blank qubits,
without extra ancillae [16,17]. Since these transformations
act only on the minimal number of qubits, they are called
“economical.” The unitary operation Upcc realizing the optimal
1 → 2 economical phase-covariant cloning is given by [16]

Upcc|0〉|0〉 = |0〉|0〉,
(2)

Upcc|1〉|0〉 = 1√
2

(|0〉|1〉 + |1〉|0〉),

where the first qubit is the one we want to clone, while the
second is the blank qubit initialized to input state |0〉. In
Ref. [17] the economical map performing the optimal N → M

phase-covariant cloning for equatorial states of dimension d is
explicitly derived for M = kd + N with integer k.

In order to analyse a QCA implementation of the eco-
nomical quantum cloning, we now recall the reader some
properties of QCAs we are considering here. Our automaton
is one-dimensional, and a single time step corresponds to a
unitary shift-invariant transformation achieved by two arrays
of identical two-qubit gates in the two-layer Margolus scheme
[1] reported in Fig. 1. Notice that this is the most general one-
dimensional automaton with next-nearest-neighbor interacting
minimal cells. Due to the locality of interactions, information
about a qubit cannot be transmitted faster than two systems
per time step, and this corresponds to the cell (qubit) “light
cone” made of cells that are causally connected to the first. No
event outside the cone can be influenced by what happened in
the first cell; thus the quantum computation of the evolution
of localized qubits is finite for finite numbers of time steps.

We now recall the concept of foliation on the gate structure
of the QCA [9]. Usually, in a quantum circuit, drawn from
the bottom to the top as the direction of input-output,
one considers all gates with the same horizontal coordinate
as simultaneous transformations. A foliation on the circuit
corresponds to stretching the wires (namely, without changing
the connections) and considering as simultaneous all the
gates that lie on the same horizontal line after the stretching.
Such a horizontal line can be regarded as a leaf of the
foliation on the circuit before the stretching transformation.
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FIG. 1. (Color online) Realization of a one-dimensional quantum
cellular automaton with a structure composed of two layers of gates,
A and B. This is the most general one-dimensional automaton with
next-nearest-neighbor interacting minimal cells.

Therefore, a foliation corresponds to a specific choice of
simultaneity of transformations (the “events”); namely, it
represents an observer or a reference frame. Examples of
different foliations are given in Fig. 2. Upon considering
the quantum state at a specific leaf as the state at a given
time (at the output of simultaneous gates), different foliations
correspond to different state evolutions achieved with the same
circuit. Therefore, in practice we can achieve a specific state
belonging to one of the different evolutions by simply cutting
the circuit along a leaf and tapping the quantum state from
the resulting output wires (the operation of “stretching” wires
should be achieved by remembering that by convention the
wires represent identical evolutions, not “free” evolutions).

III. PHASE-COVARIANT CLONING BY QCAs

We will now show how to perform a 1 → 2N phase-
covariant cloning of the equatorial states (1) with a QCA of N

layers, with all gates identical, performing the unitary transfor-
mation denoted by A, acting on two qubits. Due to causality,
we can restrict our treatment to the light cone centered in the
state to be cloned |φ〉 and initialize all blank qubits to |0〉,
as shown in Fig. 3. By requiring phase covariance for the
cloning transformation, the unitary operator A must commute
with every transformation of the form Pχ ⊗ Pχ , where Pχ is
the general phase-shift operator Pχ = exp[ i

2 (1 −σz)χ ] for a
single qubit, with σz being the Pauli matrix along z. Therefore,
we impose the condition

[A,Pχ ⊗ Pχ ] = 0, ∀χ . (3)

This implies that the matrix A must be of the form A =
diag(1,V ,1), where V is a 2 × 2 unitary matrix. Notice that the
transformation A then acts nontrivially only on the subspace

FIG. 2. (Color online) Foliations over the automaton. Two leaves
of two different uniform foliations are depicted with dashed lines in
different colors (the complete foliation is obtained upon repeating
the leaf vertically). The systems along each leaf are taken as
simultaneous. The red “cut” is usually referred to as the rest-frame
foliation.

FIG. 3. (Color online) Cone of gates which contribute to the
phase-covariant cloning, given the input state |φ〉 at site N .

spanned by the two states {|01〉,|10〉}, and it is completely
specified by fixing V .

In order to derive the optimal cloning transformation based
on this kind of QCA we will now maximize the average single-
site fidelity of the 2N -qubit output state with respect to the
unitary operator A. In order to achieve this, we write the initial
state of 2N qubits in the following compact form:

|�0〉 = 1√
2

(|�〉 + eiφ|N〉), (4)

where we define |�〉 = |0 · · · 0〉 as the “vacuum state” with all
qubits in the state down and |k〉 = |0 · · · 01k0 · · · 0〉 as the state
with the qubit up in the position k and all other qubits in the
state down. Without loss of generality in the above notation
the qubit to be cloned is supposed to be placed at position N ,
and it is initially in the state |φ〉. Since gate A preserves the
number of qubits up [18], the evolved state through each layer
will belong to the Hilbert space spanned by the vacuum state
and the 2N states with one qubit up. The whole dynamics
of the QCA can then be fully described in a Hilbert space
of dimension 2N + 1. The output state can thus be generally
written as

|�2N 〉 = 1√
2

(
|�〉 + eiφ

2N∑
k=1

αk|k〉
)

, (5)

where the amplitudes αk of the excited states depend only on
the explicit form of the gate A.

The reduced density matrix ρk of the qubit at site k can then
be derived from the output state (5) as

ρk = Trk̄[|�2N 〉〈�2N |]

= 1

2

⎡
⎣

⎛
⎝1 +

∑
j �=k

|αj |2
⎞
⎠ |0〉〈0 | + e−iφα∗

k |0〉〈1 |

+ eiφαk|1〉〈0 | + |αk|2|1〉〈1 |
⎤
⎦ , (6)

where Trk̄ denotes the trace on all qubits except qubit k. The
local fidelity of the qubit at site k with respect to the input state
|φ〉 then takes the simple form

Fk = 〈φ |ρk|φ〉 = 1
2 (1 + Re{αk}). (7)
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FIG. 4. (Color online) Chromatic map of the local fidelities in
terms of the considered qubit and the layer. The orange color
is brighter for increasing local fidelity. The simulation involves a
number of layers N = 40, while the total number of qubits is 2N

since it doubles at each layer.

As we can see, Fk depends only on the amplitude αk of the
state with a single qubit up exactly at k. Since gate A is
generally not invariant under an exchange of the two qubits,
the fidelities at different sites will be, in general, different.
We will then consider the average fidelity F̄ = 1

2N

∑2N
k=1 Fk

as a figure of merit to evaluate the performance of the
phase-covariant cloning implemented by QCA. Notice that the
whole procedure corresponds to a unitary transformation on
the 2N -qubit system, without introducing auxiliary systems;
namely, it is an economical cloning transformation.

The calculation of the amplitudes αk was performed
numerically by updating at each layer the coefficients of state
(5). Notice that the amplitude of layer j and site k influences
only the amplitudes of the subsequent layer j + 1 and either
sites k − 1,k or k,k + 1, depending on whether state |1〉 enters
the right or left wire of A. The action of A on qubits j and
j + 1 is given by

A(j,j + 1)|k〉 =

⎧⎪⎨
⎪⎩

v22|j 〉 + v12|j + 1〉 if k = j,

v21|j 〉 + v11|j + 1〉 if k = j + 1,

|k〉 otherwise,

(8)

where vij are the entries of operator V in the basis {|01〉,|10〉}.
Notice that the vacuum state |�〉 is invariant under the action
of A. The iteration of Eq. (8) for each layer then leads to the
amplitudes of output state (5).

A. Performances in the rest frame

As a first explicit example we will consider a QCA
employing the optimal 1 → 2 phase-covariant cloning (2). In
this case gate A must implement the unitary transformation
(2). The nontrivial part V of gate A can then be chosen to be

V = 1√
2

(
1 1

−1 1

)
, (9)

where all coefficients are real. The corresponding local
fidelities at every layer are reported in Fig. 4. As we can see,
Fig. 4 exhibits fringes of light and dark color. Moreover, the
light cone defined by causality can be clearly seen: outside
this cone no information about the initial state can arrive; thus
every system has the same fidelity of 1/2. Notice that there is a
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FIG. 5. (Color online) The average 1 → 2N phase-covariant
cloning fidelity achieved by the QCA in the rest frame (see Fig. 2).
Comparison with the optimal economical phase-covariant cloning in
Ref. [15]. The purple dots represents the QCA cloning optimized over
the unitary gate A. The blue lower dots correspond to the use of gate
A to achieve the optimal 1 → 2 cloning Upcc in Eq. (2). The yellow
upper dots represent the unrestricted optimal economical cloning.

sort of line, approaching the right top corner, along which the
fidelity is quite high. Regarding the local fidelities of the final
states, they are, in general, quite different from each other and
can vary very quickly even between two neighboring qubits.
The average fidelity is reported in Fig. 5 as a function of
the number of layers. Notice that the average fidelity of the
optimal economical phase-covariant quantum cloning (without
the constraint of automaton structure) approaches the value 3/4
for a large number of output copies [15].

In order to improve the average fidelity we then maximized
it with respect to the four parameters defining the unitary
operator V . Numerical results achieved up to N = 20 show
that the optimal cloning performed in this case is not much
better than the one given by the iteration of (9). Eventually,
the latter turns out to be outperformed only when the number
of layers composing the automaton is odd, as shown in Fig. 5.

Further numerical results show that no gain can be achieved
if the automaton is composed of layers of two different gates
A and B. Actually, in this case it surprisingly turns out that
the optimal choice corresponds to B = A; namely, we do not
exceed the average fidelity obtained by employing a single
type of gate. As a result, since all one-dimensional QCA with
next-nearest-neighbor interacting cells with two qubits can be
implemented by a two-layered structure, we have then derived
the optimal phase-covariant cloning transformation achievable
by the minimal one-dimensional QCA.

B. Performances exploiting different foliations

We will now show that the average fidelity in the case
of a single-gate automaton can be improved by considering
different foliations. Suppose that we are given a fixed number
M of identical gates A to implement a QCA. We are then
allowed to place the gates in any way such that the causal
structure of the considered automaton is not violated. What
configuration, i.e., the foliation, performs the optimal phase-
covariant cloning for fixed M? In this framework we have to
maximize not only over the parameters that define V but also
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FIG. 6. (Color online) Illustration of the classification of foli-
ations. A possible foliation with M = 6 gates is given. From the
correspondence between the gates lying under the cut and the rotated
dots on the right, we identify this foliation with the partition {4,1,1}.

over all possible foliations. Thus, the M fixed gates play the
role of computational resources, and the optimality is then
defined in terms of both the parameters characterizing the
single gate A and the disposition of the gates in the network.
As a first example, suppose that we are given M = 3 gates.
In this case there are three inequivalent foliations: one for the
rest frame (see Fig. 2) and two along the straight lines defining
the light cone. As expected, for increasing M the counting of
foliations becomes more complicated, and the problem is how
to choose and efficiently investigate each possible foliation. It
turns out that the problem of identifying all possible foliations
of a QCA of the form illustrated in Fig. 3 for a fixed number
of gates M is related to the partitions of the integer number
M itself (by partition we mean a way of writing M as a
sum of positive integers, a well known concept in number
theory [19]). Two sums that differ only in the order of
their addends are considered to be the same partition. For
instance, the partitions of M = 3 are exactly 3 and are given
by {3}, {2,1}, and {1,1,1}, while the partitions of M = 6,
corresponding to a three-layer setting in the rest frame, are
11 and are given by {6}, {5,1}, {4,2}, {4,1,1}, {3,3}, {3,2,1},
{3,1,1,1}, {2,2,2},{2,2,1,1}, {2,1,1,1,1}, and {1,1,1,1,1,1}.
The link between foliations and partitions is illustrated in
Fig. 6, which shows how partitions can be exploited to
identify foliations. For a fixed number of gates M the number
of foliations is then automatically fixed, and each foliation
corresponds to a single partition. The correspondence is
obtained as follows. Each addend represents the number of
gates along parallel diagonal lines, starting from the vertex of
the light cone, as shown in Fig. 6 for the particular case of
M = 6.

TABLE I. Results of the maximization over foliations up to
M = 28, i.e., QCA composed of up to seven layers.

M(Layers) F̄rest F̄ Optimal foliation

1 (1) 0.853 0.853 {1}
3 (2) 0.676 0.693 {3}
6 (3) 0.617 0.679 {2,2,2}
10 (4) 0.588 0.670 {4,3,3}
15 (5) 0.570 0.653 {4,4,4,3}
21 (6) 0.558 0.614 {4,3,2,2,2,2,2,2,2}
28 (7) 0.550 0.603 {6,6,6,5,5}

Based on this correspondence, we can investigate the
performance of the phase-covariant cloning as follows. For
any fixed foliation, we first maximize the average fidelity
with respect to the four parameters of the unitary V , defining
gate A. Then we choose the highest average fidelity that we
have obtained by varying the foliation. We worked out this
procedure numerically for M = 1,3,6,10,15,21,28, i.e., the
number of gates composing the QCA with N = 1,2,3,4,5,6,7
layers, respectively. Our results are shown in Table I, where the
maximization in the rest frame is also reported for comparison.
As we can see, exploiting different foliations leads to a
substantial improvement of the average fidelity.

IV. CONCLUSIONS

In summary, we have introduced a way of achieving
quantum cloning through QCAs. We have derived the optimal
automaton achieving economical phase-covariant cloning for
qubits. We have shown how the fidelity of cloning can be
improved by varying the foliation over the QCA, with a
fixed total number of gates used. By developing an efficient
method to identify and classify foliations by means of number
theory, we have optimized the performance of the QCA
phase-covariant cloning for a given fixed number of gates and
have obtained in this way the most efficient foliation.
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