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Phase-covariant quantum cloning
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We consider anN→M quantum cloning transformation acting on pure two-level states lying on the equator
of the Bloch sphere. An upper bound for its fidelity is presented, by establishing a connection between optimal
phase-covariant cloning and phase estimation. We give the explicit form of a cloning transformation that
achieves the bound for the caseN51, M52, and find a link between this case and optimal eavesdropping in
the quantum cryptographic scheme BB84.

PACS number~s!: 03.67.Dd, 03.65.2w
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I. INTRODUCTION

Perfect quantum cloning of a set of input states that c
tains at least two nonorthogonal states is impossible@1#.
However, it is interesting to study how well we can appro
mate a perfect cloning procedure. We can expect differ
results depending on the set of input states considered
particular, we expect that the smaller the set of inputs,
the more information about the input is given, the better o
can clone each of its states.

We analyze the case of pure qubits, i.e., vectors of a t
dimensional Hilbert spaceH.C2. Optimal N→M cloning
transformations~i.e., transformations which act onN identi-
cal inputs and createM outputs! for the largest set of inpu
qubits, namely, for qubits belonging to the whole Hilbe
space, have been recently proposed@2–4#. Since a crucial
requirement for such transformations is that their efficien
is the same for all input states, they were called unive
cloning transformations.

In this paper we will analyze cloning transformations th
are optimal for a restricted set of input states, namely, p
states of the form

ucf&5
1

A2
@ u 0&1eifu 1&], ~1!

wherefP@0,2p) and $u 0&,u 1&% represent a basis for a qu
bit. We call the qubits of this form ‘‘equatorial’’ because th
z component of their Bloch vector is zero, i.e., the Blo
vector is restricted to the intersection of thex-y plane with
the Bloch sphere. The parameterf is the angle between th
Bloch vector and thex axis.

Studying the restriction of the input set to the equator
motivated by physical implementations of quantum comm
nication ideas~all existing quantum cryptographic exper
ments are using states that are on the equator, rather
states that span the whole Bloch sphere! as well as by fun-
damental questions in quantum information processing.
we will show in this paper, restricting to equatorial stat
makes the cloning problem related to phase estimation. T
connection can be exploited in order to derive bounds for
optimal cloning fidelity. As expected, restriction of the clo
ing symmetry improves the cloning performance.
1050-2947/2000/62~1!/012302~7!/$15.00 62 0123
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The paper is organized as follows. In Sec. II we descr
the general operation of a phase-covariant cloning trans
mation. In Sec. III we establish the connection betwe
phase-covariant cloning and phase estimation, and prov
upper bound on the fidelity of anN→M phase-covariant
cloner acting on equatorial qubits. In Sec. IV we derive t
explicit form of the 1→2 cloning transformation for equato
rial qubits that saturates the bound, and point out a conn
tion to eavesdropping in quantum cryptography.

II. PHASE-COVARIANT CLONING TRANSFORMATIONS

In this section we consider cloning transformations w
the requirement that the fidelity is the same for any equa
rial qubit, i.e., it does not depend on the value of the ph
f. We call such cloners ‘‘phase-covariant cloners’’~pcc!.

We describe the action of anN→M phase-covariant
cloner on theN input qubits by means of a completely pos
tive ~CP! map TNM @5#. We will consider only pure input
states of the formu cf&^cf u ^ N, namely, product states mad
of N identical copies. The output of the map is generally
mixed staterM of theM output qubits. In order to guarante
that all the output copies are described by the same den
operator we require thatrM is supported on the symmetri
subspace of the total Hilbert space of theM output qubits
~the symmetric subspace is defined as the space spanne
all pure states which are invariant under any permutation
the constituent qubits!. The density operator describing th
state of each output qubit is given by

rout5R@TNM~ u cf&^cf u ^ N!#, ~2!

where R denotes the partial trace over all but one outp
qubits. The phase-covariance condition corresponds to
posing the following requirement on the operation of t
cloning map:

UxroutUx
†5R@TNM~Ux

^ Nu c&^c u ^ NUx
†^ N!# ~3!

for any pure stateu c& and all unitary phase-shift operato
Ux5 exp@2i/2(sz21)x#, where xP@0,2p) and sz is the
Pauli operator diag$1,21%.

We define the quality of the cloning transformation
terms of the fidelity between the reduced density operato
each output copy and the input stateu cf&
©2000 The American Physical Society02-1
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F5^cf uroutu cf&. ~4!

In the Appendix we show that without loss of generality a
phase-covariant cloning transformation can be comple
described in terms of two shrinking factorshxy(N,M ) and
hz(N,M ). The former describes the shrinking of the comp
nent of the Bloch vector lying in thex-y plane of the Bloch
sphere, the latter the shrinking of the component along thz
direction, namely, the state of each output copy is

rout5
1

2
@11hxy~N,M !~sxsx1sysy!1hz~N,M !szsz#,

~5!

wheresi are the components of the Bloch vector of the init
stateu c& of each of theN input copies. Therefore, for equa
torial qubits, the cloner leads to an isotropic shrinkin
namely, the density operator of each output copy~2! is given
by

rout5hxy~N,M !u cf&^cf u1
1

2
@12hxy~N,M !#1, ~6!

where1 is the identity operator. Thus, for equatorial qub
the action of a phase-covariant cloner is completely speci
in terms of the equatorial shrinking factorhxy(N,M ) and the
fidelity is Fpcc(N,M )5@11hxy(N,M )#/2.

III. OPTIMAL CLONING OF EQUATORIAL QUBITS

In this section we derive an upper bound for the shrink
factor hxy(N,M ) of a phase-covariant cloner for equator
qubits. Our derivation is similar to the one of universal clo
ers @3#. It is based on the concatenation property of pha
covariant cloners and on the link to phase estimation,
shown in the following.

A. Concatenation of phase-covariant cloners

We concatenate two phase-covariant cloners as follo
The first is anN→M cloner acting onN equatorial qubits,
the second one acts on the output staterM of the M output
qubits of the first cloner and givesL output copies. We show
in the following that the sequence of these two cloning tra
formations is a phase covariant cloner with a shrinking fac
hxy for thex-y plane that is the multiplication of the shrink
ing factorshxy of the two separate cloners, namely,

hxy~N,L !5hxy~N,M !hxy~M ,L !. ~7!

In order to prove the above property we exploit the deco
position of a density operator supported on the symme
subspace@4#,

rM5(
i

b i u c i&^c i u ^ M, ~8!

with b iPR ~not necessarily positive! and( ib i51.
Using the shrinking character of the phase covariant cl

ing transformation described in the previous section and
linearity of the cloning map we can write the following co
01230
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ditions for the output of theN→M cloner acting onN pure
qubits in the generic pure stateu c& with ~unit-length! Bloch
vectorsW:

(
i

b isxi5hxy~N,M !sx ,

(
i

b isyi5hxy~N,M !sy , ~9!

(
i

b iszi5hz~N,M !sz ,

wheresxi denotes thex component of the Bloch vector o
stateu c i&^c i u, and accordingly fory,z.

The reduced density operator describing each of thL
copies at the output of the second cloner is given by

R@TML~rM !#5(
i

b iR@TML~ u c i&^c i u ^ M !#

5(
i

b i H 1

2
@11hxy~M ,L !~sxisx1syisy!

1hz~M ,L !szisz#J . ~10!

By using Eqs.~9! the above expression takes the form

R@TML„TNM~ u c&^c u ^ N!…#5
1

2
@11hxy~N,M !hxy~M ,L !

3~sxsx1sysy!

1hz~N,M !hz~M ,L !szsz#,

~11!

namely the concatenation property holds. For input qub
from the equator the Bloch vector of each copy at the out
of the two cloners is simply shrunk in thex-y plane by the
factor hxy(N,M )hxy(M ,L).

B. Phase-covariant cloning and phase estimation

We will now prove the following connection betwee
phase-covariant cloners and phase estimation of equat
qubits:

hxy
opt~N,`!5h̄pe

opt~N!. ~12!

The quantityhxy
opt(N,M ) is the shrinking factor in thex-y

plane of the optimalN→M phase-covariant cloner, while
h̄pe

opt(N) is the shrinking factor of the reconstructed reduc
density operator after performing phase estimation~pe! on N
equatorial qubits.

The aim of phase estimation is to find the optimal strate
to estimate the value of the phasef @6#. This is described in
terms of a positive-operator valued measure~POVM!,
namely,dm(f* ), wheref* is the estimated value of th
2-2
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PHASE-COVARIANT QUANTUM CLONING PHYSICAL REVIEW A62 012302
phase,dm(f* )>0, and *(df* /2p)dm(f* )51. The out-
come of each instance of measurement provides, with p
ability p(fuf* )5Tr@dm(f* )ucf&^cfu#, the ‘‘candidate’’
ucf* & for ucf&. The fidelity of phase estimation can be ca
culated from the outcomes of the measurement as

F̄pe~N!5E df*
2p

p~fuf* !u^cfucf
*
&u25^cfu%̄fucf&,

~13!

where %̄f5*(df* /2p)p(fuf* )ucf
*
&^cf

*
u is the recon-

structed density operator. For covariant phase estimation
fidelity does not depend onf, thus for the optimal procedur
%̄f can also be written as

%̄f5h̄pe~N!ucf&^cfu1
1

2
@12h̄pe~N!#1, ~14!

namely, the input state is shrunk by the factorh̄pe(N)
52F̄pe(N)21.

The fidelity for optimal covariant phase estimation
equatorial qubits, derived in Ref.@7#, takes the form

F̄pe
opt~N!5

1

2
1

1

2N11 (
l 50

N21 AS N
l D S N

l 11D . ~15!

In order to prove Eq.~12! we first notice that after perform
ing optimal phase estimation onN equatorial qubits all in
stateu cf& we can prepare a state ofL qubits, supported on
the symmetric subspace, where each qubit is describe
the reduced density operator~14!. This procedure can be
viewed as a phase covariant cloner and therefore it ca
perform better than the optimalN→L phase covariant clon
ing transformation. Thus we can write the inequality

h̄pe
opt~N!<hxy

opt~N,L !, ~16!

which holds for any value ofL, and in particular forL→`.
We will now prove the opposite inequality~which holds

for L→` only!: we concatenate a phase-covariantN→L
cloner, acting on equatorial qubits, with a subsequent o
mal stateestimation~se! procedure~note that state estima
tion on qubits includes also an estimate of their phase!. The
whole procedure can be seen as aphaseestimation per-
formed on the inputu cf&^cf u ^ N, with fidelity

F̄pe~N!5^cfuLL~rL!ucf&,

LL~rL!5(
m

Tr@PmrL#ucm&^cmu,

whererL is the output of the cloner andLL(rL) is the CP
map of the state estimation ofL qubits,$Pm% represents the
set of optimal POVM’s for state estimation ofL qubits@8,7#
andu cm& denotes the candidate foru c& when performing the
measurementPm . SincerL is supported on the symmetri
subspace, we use again the decompositionrL
5( ib i u c i&^c i u ^ L and obtain
01230
b-

he
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F̄pe~N!5(
i

^cfub iLL~ u c i&^c i u! ^ Lucf&

5(
i

^cfub iF h̄se
opt~L !u c i&^c i u

1
1

2
@12h̄se

opt~L !#1G ucf& ~17!

where the optimal shrinking factor for state estimation
given by h̄se

opt(L)5@2F̄se
opt(L)21#5L/(L12) @8#. Taking

the limit of Eq. ~17! for L→` we have

F̄pe~N! →
L→`

(
i

^cfub i u c i&^c i ucf&5
1

2
@hxy~N,`!11#.

~18!

The concatenation of a phase-covariant cloner with a s
estimation cannot perform better than the optimal phase
timation, thus we can write

hxy
opt~N,`!<h̄pe

opt~N!. ~19!

The inequalities~16! and ~19! prove the equality~12!.

C. Bound for optimal phase-covariant cloning

We now prove an upper bound for the fidelity of anN
→M phase-covariant cloning transformation acting on eq
torial qubits. We consider a phase-covariant clonerTN` that
results from concatenating the two phase-covariant clon
TNM and TM` . In this way we cannot obtain anN→`
cloner that works better than the optimal one. Thus, by us
the concatenation property of phase-covariant cloners pro
above we can write

hxy~N,M !hxy~M ,`!<hxy
opt~N,`!. ~20!

In the sequence of the two cloners we take theM→` as the
optimal one in order to find the tightest upper bound for t
equatorial shrinking factor of a phase covariantN→M clon-
ing transformation. We rewrite Eq.~20! as follows:

hxy
opt~N,M !<

hxy
opt~N,`!

hxy
opt~M ,`!

. ~21!

By exploiting the connection to phase estimation in Eq.~12!,
proven above, this bound takes the form

hxy
opt~N,M !<h̃pcc~N,M !5

h̄pe
opt~N!

h̄pe
opt~M !

52(M2N)

(
l 50

N21 AS N
l D S N

l 11D
(
j 50

M21 AS M
j D S M

j 11D . ~22!
2-3
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In Fig. 1 we show the upper bound for the fidelity of phas
covariant cloning and the optimal fidelity for a univers
cloner. The two quantities are shown as a function ofM for
fixed N51. By varying N it is possible to see that

h̃pcc~N,M !.huniv
opt ~N,M ! ;N,M , ~23!

as expected. Note that while in the case of universal clon
the explicit form of the CP map which achieves the bound
known @2#, in the case of phase-covariant cloners acting
equatorial qubits we do not know whether the bound~22!
can be achieved for general values ofN andM. In the next
section we present the cloning transformation wh
achieves the bound in the particular caseN51, M52.

IV. OPTIMAL 1 \2 CLONING OF EQUATORIAL QUBITS

In this section we present constructive proof for the b
1→2 cloning transformation acting on equatorial qubits. F
convenience we choose the equator in thex-z plane instead
of the x-y equator.~Note that optimality of the fidelity mus
be independent from the choice of a particular basis.! Hence
we consider equatorial states with real coefficients of
form

u c&5au 0&1bu 1& witha,b real, a21b251. ~24!

Our notation and method is inspired by Ref.@9#. We proceed
as follows: first we derive the optimal cloner that takes o
the four BB84 states as input. Here we use the acron
BB84 for the quantum cryptographic protocol described
Ref. @10#. Remember that the four BB84 states are given

u 0&, u 1&, u 0̄&5A1
2 ~ u 0&1u 1&),

~25!

u 1̄&5A1
2 ~ u 0&2u 1&).

FIG. 1. Upper bound for the fidelity in phase-covariant cloni
compared with the optimal fidelity for universal cloning of qubit
Both sets of points are shown for a fixed number of inputs,N51, as
a function ofM, the number of outputs. For the limitM→` one

finds from the formulas given in the text thatF̃pcc(1,̀ )53/4 and
Funiv

opt (1,̀ )52/3.
01230
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Then we will show that this transformation leads to the sa
fidelity for any input from the equator. Therefore we hav
also found the best transformation that takes all states f
the equator as input.~If we could find a better one on th
whole equator it would have to be better than the optimal o
for the BB84 states.!

We start from a general symmetric ansatz for the unit
transformation on the input qubit, blank qubit, and ancil
written in this order:

Uu 0&u 0&u X&5au 00&u A&1b~ u 01&1u 10&)u B&1cu 11&u C&,

Uu 1&u 0&u X&5ãu 11&u Ã&1b̃~ u 10&1u 01&)u B̃&1 c̃u 00&u C̃&.
~26!

For convenience we include all phases in Eq.~26! into the
ancilla states, so that the coefficientsa,b,c,ã,b̃, and c̃ are
real and positive. Furthermore, the transformation should
change under renaming the basis, i.e., exchange ofu 0& and
u 1&—therefore we havea5ã, b5b̃, andc5 c̃.

The normalization and unitarity conditions for Eq.~26!
read

a212b21c251,
~27!

ac^C̃ uA&12b2^B̃ uB&1ac^Ã uC&50.

Now we have to determine the free parameters in t
transformation~coefficients and scalar products of ancilla!
such that the fidelityF5^c uroutu c&, where u c& is one of
the four BB84 states, is constant and optimal. Hererout is
the reduced density matrix of the first or second bit at
output of the cloner.

It is straightforward to calculate the fidelities correspon
ing to the reduced output density matrices for the four BB
states. From their equality we find the following constrain

F5a21b2, ~28!

F5 1
2 ~11ab Re@^Ã uB&1^B̃ uA&#

1bc Re@^B̃ uC&1^C̃ uB&#!, ~29!

05ab Re@^Ã uB̃&1^B uA&#1bc Re@^B̃ uC̃&1^C uB&#.
~30!

As the scalar products of ancillas are independent parame
the real part of which varies between -1 and11, we can
maximize the fidelity in Eq.~29! to

F5 1
2 @112b~a1c!# ~31!

by an appropriate choice of ancillas. Similarly, we can
ways fulfill Eq. ~30! by the right choice of ancillas. So, ou
task reduces to finding the maximum of the function

F5 1
2 ~11a22c2!, ~32!

with the constraint

F5 1
2 1A 1

2 ~12a22c2!~a1c!. ~33!
2-4
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This can be done analytically with the help of Lagrange m
tipliers. The solution for the optimum is

a5 1
2 1A 1

8 ,

b5A 1
8 , ~34!

c5 1
2 2A 1

8 .

This solution corresponds to an optimal fidelity of

Fopt~1,2!5 1
2 1A 1

8 50.854, ~35!

which reaches the boundF̃pcc(1,2)5 1
2 @h̃pcc(1,2)11#, given

by Eq. ~22!.
The optimal cloning transformation for the BB84 stat

can be written explicitly as follows~we see that a two-
dimensional ancilla is sufficient!:

Uu 0&u 0&u X&5~ 1
2 1A 1

8 !u 00&u 0&1A1
8 ~ u 01&1u 10&)u 1&

1~ 1
2 2A 1

8 !u 11&u 0&,
~36!

Uu 1&u 0&u X&5~ 1
2 1A 1

8 !u 11&u 1&1A1
8 ~ u 10&1u 01&)u 0&

1~ 1
2 2A 1

8 !u 00&u 1&.

We still have to show that this transformation leads to
same fidelity foranypure input state taken from the equato
In fact, any unitary transformation of the kind

Uu 0&u 0&u X&5au 00&u 0&1b~ u 01&1u 10&)u 1&1cu 11&u 0&,

Uu 1&u 0&u X&5au 11&u 1&1b~ u 10&1u 01&)u 0&1cu 00&u 1&,
~37!

that leads to the same fidelity for the BB84 states has
property. This can be seen by calculating the fidelity wh
applying the transformation~37! to the state given in Eq
~24!. We find

F~a!5~a41b4!a21b21a2b22c214a2b2b~a1c!,
~38!

which at first glance does not look like a constant, but can
shown easily to be independent ofa by inserting Eq.~31!
and the constraints from unitarity, given in Eq.~27!. Thus we
have shown that apart from the four BB84 states our clo
@Eq. ~36!# is optimal forany state from the equator.

It is worth pointing out that there is a link between op
mal cloning of equatorial qubits and optimal eavesdropp
in the BB84 scheme, see Ref.@11#: the intersection of the
curve for the mutual information between Alice and Bob a
the curve for the optimal mutual information between Ali
and Eve occurs at a disturbanceD512F which corresponds
to our optimal equatorial cloning fidelity. If Eve performs
symmetric attack where she gets as much information
Bob, she cannot find a better strategy than applying the
cloner. We could have actually proved an upper bound
01230
-

e
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is
n

e

r

g

s
st
r

our cloner from a contradiction: let us assume the clo
could have a higher fidelity than the one indicated by
intersection of the information curves. Then Eve could us
to eavesdrop and would have found a better spying de
than the optimal one. Therefore, the best cloner cannot h
a higher fidelity than the best symmetric eavesdropping
tack. In this section we have shown a constructive proof
the corresponding optimal cloning transformation.

V. CONCLUSIONS

In this paper we have pointed out a connection betw
optimal cloning of equatorial qubits and phase estimati
We exploited this connection to establish an upper bound
the fidelity of a phase covariantN→M cloning transforma-
tion acting on equatorial qubits. Our results for this restric
set of inputs are qualitatively similar to the ones for univer
cloning, in the sense that in both cases the concatena
property holds. Quantitatively our upper bound is higher th
the one for universal cloning, as expected. The bound
phase-covariant cloning was shown to be reached foN
51,M52 by constructing the optimal cloning transform
tion explicitly. In this particular case we also found a lin
between phase-covariant cloning and optimal eavesdrop
strategies in the quantum cryptographic scheme BB84. F
ing the explicit optimal phase-covariant cloning transform
tion for generalN andM remains to be achieved.
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APPENDIX: MAP OF THE PHASE COVARIANT CLONER

We use the Kraus decomposition@5# of a CP map@the
mapRTN,M in Eq. ~2! is CP since it is the partial trace of th
CP mapTN,M]

R@TN,M~ u c&^c u ^ N!#5(
k

Aku c&^c uAk
† , ~A1!

whereAk are operators onH depending onN andM, satis-
fying the condition

(
k

Ak
†Ak51. ~A2!

By introducing the following basis for theC algebra of the
operators onH

s05
1

2
~sx1 isy!, s15

1

2
~sx2 isy!, ~A3!

s25
1

2
~11sz!, s35

1

2
~12sz!, ~A4!
2-5
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we can write in general

Ak5 (
a50

3

ck
asa , ~A5!

with ck
aPC. It follows that

R@TN,M~ u c&^c u ^ N!#5(
k

(
a,b50

3

ck
ack

b* sau c&^c usb
†

5 (
a,b50

3

GabSab~ u c&^c u!, ~A6!

with Sab(u c&^c u)[sau c&^c usb
† andGab[(kck

ack
b* .

Imposing the phase-covariance condition~3! to the above
CP map and using Eq.~A6! we find

(
a,b

GabSab~Uxu c&^c uUx* !5(
a,b

GabUxSab~ u c&^c u!Ux* .

~A7!

Writing down explicitly each term of Eq.~A7! and imposing
that the equality holds;xP@0,2p) we obtain the following
constraints on the coefficientsGab:

G015G025G0350,

G105G125G1350,
bi

tri

rs

01230
G205G2150,
~A8!

G305G3150.

In order to obtain Eq.~A8! we have written a general densit
matrix in H as

%5S d g

g* 12d D ~A9!

with dP@0,1# andgPC. Condition~A2! takes the form

(
a,b50

3

Gbasa
†sb51, ~A10!

which gives

G11512G22, G00512G33. ~A11!

Note thatGaa5(kuck
au2>0 ;a and Gab5(Gba)* . Using

Eq. ~A11! we have 0<Gaa<1 anduck
au<1;a, from which

we obtain

uG32u25U(
k

ck
3ck

2* U2

<(
k

uck
3ck

2* u2<G22G33<1.

~A12!

Using conditions~A8! and~A11! we can now write Eq.~A6!
in matrix form as follows:
R@TN,M~ u c&^c u ^ N!#5S ~12G33!~12d!1G22d gG32

g* ~G32!* ~12G22!d1G33~12d!D . ~A13!
ing

an
i-
Let us now use the notationhxy[uG32u, w[arg(G32) and
hz5(G331G2221). Note that 0<hxy<1, 21<hz<1, and
hxy,z5hxy,z(N,M ): the dependence onN andM is included
in the coefficientsck

a .
Comparing the Bloch vector of an input generic qu

sW in5@2ugucosf,22ugusinf,2d21) where f5arg(g) with
the Bloch vector of the one-particle reduced density ma
of the output sWout5(2hpccugucos(f1w),22hpccugusin(f
1w),sz

inhz1(G222G33)#, we notice that for

w50 and G225G33 ~A14!

the map TN,M is completely determined by the facto
hxy(N,M ) andhz(N,M ): hxy(N,M ) describes the shrinking
of the Bloch vector in thex-y plane, whilehz gives the
shrinking along thez axis. For initial equatorial qubits (d
51/2, g5eif/2) we find with the conditions~A14!:

R@T~ u cf&^cf u ^ N!#5
1

2 S 1 hxy~N,M !eif

hxy~N,M !e2 if 1 D
~A15!
t

x

5hxy~N,M !u cf&^cf u1
1

2
@12hxy~N,M !#1, ~A16!

i.e., the action of of the phase-covariant clonerTN,M on
equatorial qubits is completely determined by the shrink
factor hxy(N,M ) in the x-y plane.

Let us now show that without loss of generality we c
impose the conditions~A14! to describe the map of an opt
mal phase-covariant cloner for equatorial qubits. ForwÞ0
the fidelity for equatorial qubits is given by

Fpcc~N,M !5u^cfuR@TN,M~ u cf&^cf u ^ N!#ucf&u2

5
1

2
@11hxy~N,M !cosw#. ~A17!

By definition the optimal clonerTN,M is the one which maxi-
mizesFpcc(N,M ). From Eq.~A17! we see that maximizing
Fpcc(N,M ) is equivalent to settingw50 and maximizing
2-6
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hxy(N,M ), which is independent ofw.
Let us now analyze the conditionG225G33. Let us sup-

pose that we can find an optimal phase-covariant clonerTN,M

with hxy
opt(N,M ) andG22ÞG33. From the explicit form ofs2

and s3, given in Eq.~A4!, one can see that renaming th
basis~i.e., exchangingu 0&↔u 1&) is equivalent to exchang
ing s2↔s3 and s0↔s1, while leaving the basis vector
unchanged. The exchange 2↔3 leaves hxy(N,M ) and
hz(N,M ) invariant. Now consider a clonerT̂N,M such that its
m

01230
single-particle reduced density operator is the ma
R@TN,M(u cf&^cf u ^ N)# written in the form ~A6! with the
exchange 2↔3. The mapT̂N,M must also be optimal: in fact
optimality of TN,M cannot depend on the particular choice
the basis, and the fidelity~A17! is invariant under the ex-
change 2↔3. Now consider the cloner described by the m
Ts5

1
2 (TN,M1T̂N,M). This cloner has the same shrinking fa

tor hxy
opt(N,M ) for equatorial qubits. Therefore we can a

ways construct an optimal cloner withG225G33.
o,
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