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Effect of losses on the visibility of mesoscopic entanglement
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The effect of losses on the visibility of mesoscopic entanglement states is analyzed on the basis of a recently
proposed generation scheme which amplifieguantum seedhrough stimulated down-conversion. The vis-
ibility of the entanglement is shown with the amplifier working above threshold, for short interaction times.
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[. INTRODUCTION at the output. This leads to the generation of a mesoscopic
superposition that is quite robust against decoherence.

The recent developments in quantum optics and light ma- In Sec. Il we briefly review the generation scheme in the
nipulation of atoms and ions have renewed interest in th@bsence of losses. There, we also suggest a feasible measure-
basic laws of quantum mechanics, with the main focus on théent to reveal the output mesoscopic superposition. The re-
superposition principle and the existence of nonlocal corre@listic amplification process is analyzed in Sec. lll, taking
lations among separate systems, the so-called “entanglé;mo accqunt the effects of losses. The whole statg gene_ratlon
ment.” The superposition principle and the entanglement—!S numerically studied by means of Monte Carlo S|mulat|qns.
the two inherent quantum features that are the basis of thEh€ appearance of mesoscopically entangled superpositions
quantum information technolodjt]—have been extensively at the output, and thelr robustness against dgcoherence are
studied both theoretically and experimentd), leading to dem_onstrated. Section IV closes the paper with some con-
the new concept of “quantum teleportation” that has beencluding remarks.
recently demonstrated in several experimdis These re-
search lines motivated the search for methods of preparation
and measurement of quantum stdiés While quantum to-
mography{5] certainly represents a solution to the measure- In this section we briefly review the scheme of Refs.
ment problem, the state-preparation issue is still under way11,12 for generating mesoscopic entanglement through
For entangled “twin beams” of radiation, parametric down- stimulated down-conversion of a quantum seed. The seed is
conversion represents the ideal state-preparatiof®ochnd  obtained as a result of state reduction on a down-converted
these states have been used in a series of quantum mechapéir of photons by a triggering photodetector. In addition, an
cal tests, including Bell's inequalitid¥] and secure key dis- effective measurement scheme is suggested to reveal the me-
tribution [8]. However, both problems of generation and soscopic quantum superposition at the output.
measurement become very difficult when the superposition/
entanglement involves “mesoscopic” states—the issue of
the Schrdinger-cat states—because such superpositions are
very fragile to any kind of noise. In Ref9] a scheme has A nondegenerate optical parametric amplifiddOPA)
been proposed for generating mesoscopic entangled superpmsnsists of ay®’ nonlinear optical crystal cut for type-l
sitions, based on quantum injection into a non-degeneratghase matching. The crystal couples two modes with the
parametric amplifier operating in an entangled configurationsame polarization according to the effective Hamiltonian
This scheme has been analyzed in the case of parametric .
oscillations, with nonlinear crystals placed in optical cavities H.=ixk(a'b’—ab), Q)
[10]. The scheme has been improved in REf4., 17, where

the dynamics of the amplifier is restricted to two modes h is the effecti i i d
only—the signal and the idler—that share the entanglemerw ere x represents the efiective noniinéar coupling, an

on their wave vectors, with theeedphoton injected in a way andb denote mOd%S WLth V\iave*vectors satisfying the phase-
that makes signal and idler paths indistinguishable. Since thigatching conditiork, +k, =K, ky being the wave vector of
improved scheme is very promising, in principle, for the gen-theé pump. For weak pumping and short interaction time
eration of mesoscopic entanglement, the crucial effect othe state exiting the NOPA by spontaneous down-conversion
noise in the measurement stage needs to be analyzed. Hef8PDQ is approximated by

in this paper, we study the effect of losses on the visibility of

such mesoscopic entanglement, and show that a realistic am- 1

plification process preserves the path indistinguishability Wy= ———[|0)+ k7| 1)4|1)],
while enhancing to mesoscopic scale the number of photons ) V1+(k7)? 10) Dl

Il. THE IDEAL DYNAMICS

A. Generation of the seed state

(2
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FIG. 1. Schematic diagram of the setup for the generation of mesoscopically entangled quantum superpositions by parametric amplifi-
cation of a single photon state prepared in a way that makes signal and idler paths indistinguishable. In the first part a single-photon state is
prepared by a conditional measurement on a spontaneously down-coni&®?@ed beam. The input state for the second crystal is thus
given by|®)=(1/1/2){|1),|0).+€'%|0),|1).}. This quantum injection triggers a stimulated down-conversion pra&E&8C) which leads
to the desired mesoscopic quantum superposition. Both spontaneous and stimulated down-conversion take place in nondegenerate optica
amplifiers(NOPA) consisting of nonlineag(® crystals cut for type-l phase matching. In the last stage of the setup the output beams from
the second crystal are mixed in a beam splitB$) and then detected. The mean value of the difference photocurrent gives the second-order
correlation functionC(® defined in Eq.(11) of the text.

where|0) denotes the vacuum state amd; the state witm The use of the balanced beam splitter before the second
photons in théth mode. Let us now consider the conditional crystal is a relevant point of the method. On one hand, it
measurement scheme depicted in the left part of Fig. 1. Onellows us to restrict the relevant NOPA dynamics to two
of the down-converted beams is probed by the photodetecterodes only; on the other hand, it is the key ingredient to
D, and after reductiorfon successful photodetectiorthe  make the two paths for the photon indistinguishable, thus
modeb enters a 50/50 beam splittéBS), so that the result-  |eading to the initial quantum seed described in &}. No-
ing state can be written dsee Fig. 1 tice that in the schemes of Ref®,10] four modes are in-
volved in the amplification stage. The presence of many
1 s modes makes the effect of losses more detrimental, thus
@)= E{|1>b|0>c+e 10)6|1)c}, (3 leading to a more stringent decoherence. For this reason, the
schemes of Ref$11,12 and the present one should be more

where § is a tunable phase shift which results from the dif- effective in generating mesoscopic quantum superpositions.

ference in the optical paths of modesndc. Notice thatthe ~ 1he amplifier described by Hamiltonia#, is character-
BS scatters the impinging photon into two directions withiZ€d by the gairg, which is given bygG= COSH(KT)'_ 7being
equal probability amplitude, thus making the two possiblethe interaction time. In the case of ideal amplificatigro
paths of the photon indistinguishable. As shown in the fol-l0Sse$, the state at the output writes

lowing, such path indistinguishability plays the role of a o

n/2
quantum seedwhich makes the parametric amplification of o - i (E) J1+ +1
the state(3) a source of mesoscopically entangled quantum [®oun) V26 nZO g e Ll
superpositions. +e'9n)yln+ 1)} 4
o}

B. From path indistinguishability to mesoscopic entanglement

In the following we analyze the parametric amplification The state in Eq(4) describes two highly correlated and spa-
which takes place in the second crystal of the scheme in Figially separated beams. For large enough gain it represents a
1. For this crystal the input signal is not the e.m. vacuum, bukind of mesoscopically entangled quantum superposition,
the single-photon state of E(B). Therefore, we are dealing whose mean photon number is given by
with a kind ofstimulateddown-conversion process. After the
beam splitter, the two modes of E@) can be directed to the
second crystal with the proper wave vectors in order to sat- (Dourl bTb+ CTC|q)OUT>:4g_3- (5
isfy phase-matching conditions. In such a way, the relevant
dynamics in the second crystal involves modtesnd ¢, ac-

cording to the NOPA interaction Hamiltonidt, =ix(b'c’  We now evaluate the two-mode Wigner function, which is
—bc) defined as follows:
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W(X1,Y1:%2,Y2)
= fdﬂlfd ylfdMZJ'dyzeZi(lerlLlYl*V2X2*M2Y2)

XTr{eDc(p1+iv1)Dp(mativy)}. (6)

In Eq. (6) the variablesX;,y;) and (X,,Yy>) pErtain to modes
c andb, respectively, and,(z) =exgza —za] denotes the

displacement operator for mode For @ =|®our)(Poyr]
one obtains

WT(Xl !yl ;X2 ,Y2)
8
= —ex —(4G—2) G +x5+yi+y5) —8VG(G—1)
ar
X (XXo+Y1yp)][e7 2 7(X1—Xp)?
+e 2(Y1—yp)? - 3], (7)

where

X1=X; €C0SS+Yy;Siné,

8

Y= —Xq Sind+Yy, CcOSé.

As can be easily checked, the Wigner function in Ed. FIG. 2. The two-mode photon distributid®(n,m) for two dif-
shows negative values in a sizable region of the phase spaderent values of the gaifi, G=2 on the left andj=5 on the right.
thus revealing the genuine nonclassical nature of the state

resulting from stimulated down-conversi{®,12]. The high As a measurement scheme to check the generation of the

degree of entanglement ¢ 1) is revealed also by the mesoscopic superpositig 1), we suggest the detection
two-mode photon number distribution, which, for any valueof the second-order correlation function

of the phase shiff, reads as follows:

1
P(n,m)=|(nlp(m[@oypP=——

2G?

(g_l)n—l C@=Tr{o(b'c+bch)}, (11)
g

which can be accomplished by the following interference

experiment. The output beams from the amplifier are mixed
in a 50/50 balanced BS, and then the difference photocurrent

is detected, as in a customary homodyne detection scheme
where gy, denotes the Kronecker delta. The two-mode num+see Fig. 1 Using Eq.(4) it results

ber probabilityP(n,m) is reported in Fig. 2 for two different

values of the gaing. The high degree of correlations in

P(n,m) is apparent. Notice that the location of the peaks C(Z):<®OUT|bTC+bCqu)OUT>:1(8g_ 5)coss,
linearly increases with the gai@. It should be emphasized 2

that the distributions in Fig. 2 are very different from the (12
corresponding distribution of the so-called twin-beam state

X n5m,nfl+(n+l)75m,n+l

)

o that is, one has interference fringes with amplitude and
g;) InY|n) (10 modulation that depend on the amplification gain and on the
g JelMe. optical paths of the input beams, respectively. It is worth
noticing that without quantum injection, i.e., for the twin-
which results from spontaneous down-conversion. In thdeam state, there is no interference effect, and one has
case of the twin beam state the number distribufgn, m)
is just a two-mode thermal distributionP(n,m)
=8mnG 1 "(G—1)", and the quantum correlation involves
only the photon number fluctuations, which are amplified by
the down-conversion process. Actually, the Wigner functionThe effect of nonunit quantum efficiency of the photodetec-
of the twin beam(i.e., the output state without the quantum tors is simply a rescaling of the output photocurréﬁf)
injection) is positive over the whole phase space. =5C2),

)

1
|Prwe) = N nZO

CP=(Drygbc+bc'|Pryg=0. (13
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Il. DYNAMICS OF THE STIMULATED DOWN- the superoperators in Eq19) the corresponding Fokker-
CONVERSION PROCESS Planck equation reads as follows:

In the previous section we analyzed the stimulated downg \y/’ :
. . . P . T r(xlvyl!x21y2)
conversion process in the ideal case of perfect amplification,

namely without taking into account the effects of losses.  =[1(92 +52 +02 +02 )+ y.(dy X1+ 3y Vo)
Here, we consider a more realistic situation and study P Y e Yt T Y2
whether the staté® 1) of Eq. (4) can be actually ap- +7—(c7x2X2+ f9y1y1)]W;(X1,y1;Xz,Yz), (20)

proached when losses unavoidably introduce decoherence ef-
fects. The realistic amplification process is described inyherer denotes the rescaled time=T't, and the drift terms

terms of the two-mode Master equation v+ andy_ are given by
dét . . . R 1 2k
53¢ =Lew=—i[Hced+T(LlclectLlbley, (14 ve=5|1EF /. (22)

where@,=0(t), H, is the NOPA interaction Hamiltonian, Notice the asymmetric drift terms in E(20), which account
' denotes the damping rate, ahfiO] is the Lindblad su- for the squeezing terms in the Master equaid8).

peroperator The solution of Eq(20) can be written as
PN DU W2(X1,Y1:%2,Y2)
L[O]e,=0¢0"-50"00,~50,0'0,
=[x [ [ avi [ ays
which describes the effect of losses.

The HamiltoniarH . in the Master equatiofil4) strongly XWo(X1,Y13%2,Y2) G (X1 X1) G (X2 X5) G A(ya]y1)
correlates the two modes. However, the unitary transforma- ,
tion X GT( y2| y2)! (22)
. o whereWy(X1,Y1;X5,Y2) is the Wigner function at=0, and
V:eXD[Zwa—CbT)} (15 the Green function$ (x;|x|) are given by
. e 12ym2
“disentangles” the HamiltoniarH . into two single-mode G.(x|x!)= oxd — (xj—xje =17
squeezing Hamiltonians, namely, T 2me? 207 ’
i Kk 3 1 (23
0 Ut et a2y Lyt 2 o
VHKV 2 (c c9) 2 (b b?). (16) 0]2:4-_y(1_e Yj )
j

At the same time, the sum of the Lindblad terms is left un-

Remarkably, the diffusion coefficients? remains positive
changed 13] by the transformatiori15), namely, y s CIents, NS PoSHY

for all times, both below (2<I') and above (2>T)
threshold. However, from the physical point of view, Eq.

VIL[C]+L[bV =L cb +L btc (20) provides a good description of the amplifier above
J2 J2 threshold only for short times, namely when saturation ef-
fects can be neglected. Of course, E2) admits a station-
=L[c]+L[b]. (17) ary solution only below threshold: such a solution can be
. easily derived from Egqg21) and(22) and, independently on
Therefore, the solutiop, of Eq. (14) can be written as the initial state, it has the Gaussian form
0.=VTo'V, 18 , 16y, v-
emve 19 Wi X1.Y11%,Y2) = ———exil =4y, (x{ +y3)
ét’ being the solution of the “disentangled” Master equation y
. —4y_(X3+yD], (24
do R R . . :
ﬁz(ﬁcﬂ— Lp)e, = 5[(;TZ— c?,0/] corresponding to théfactorized squeezed thermal density
dt 2 matrix given by
~ K ~ ~ ~, -~ -~
+I'Lc]e{— 5 [b"™=b%0{]+TL[ble{. (19) 0 étar=l Se(N) VeRSHN1®[Sp(— 1 vorSH(—1)]. (25

& ()= t2_ 2
The master equatiofL9) can be transformed into a Fokker- !n EQ. (29) Sy(r)=exd(r/2)(a’"~a _)] denotes.the squeez-
Planck equation for the two-mode Wigner function ing operator for mode, whereas,y is the density matrix of
W, (X1,Y1:X2,Y5). Using the differential representation of a thermal state wittN thermal photons
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+

. 1 N |\?°
—) . (26)

Von——— —
N AN 14N

Both the squeezing parameteand the thermal photon num-

berN in Eq. (25) only depend on the ratio betweemn 2nd
I', in formula

L N+ 1ot T 27)
r==In—, == :
4 - 2y y-

The stationary solutio@ ., for the original Master equation
(14) can be obtained through E(L6), and it is given by

0.03
Ostar=exH 2 (c'b"—cb) ][ ven® voi]
x exd —2r(c’b’—cb)]. (28)
. . . o P(n, m)
Let us now consider the more interesting case of amplifica- 0.01

tion above threshold. The Wigner functiofi.(X1,Y1;X>,Y5)
corresponding to the evolved density maté'); can be ob-
tained fromW_(X1,Y1;X2,Y») by noticing that the unitary
transformatiorV in Eq. (15) just corresponds, at all times, to
a rotation in the four-dimensional space for the Wigner func-
tion. More explicitly

XptXy YitY2 Xo—X; Y2_Y1)

WT(leyl;XZ!yZ):W;( \/2, \/E’ \/E ) \/E

FIG. 3. The two-mode photon distributid®(n,m) for §=0 and

(29 for 2k/T"=30. The corresponding interaction time is given by

=0.1. We report two views of the distribution. In comparison with

The recipe to solve the dynamics of the amplifier is thus thehe ideal case of Fig. 2 the main effect of losses is the appearance of
following: starting from the Wigner function of the initial subdiagonal terms, however, without affecting the high correlation
state Wy(X1,Y1;X2,Y2) one evaluatedV)(Xy,y1;X2,y») by  between the modes.
the inverse rotation of that of EGR9), namely,
we report the two-mode number probabil®¢n,m) which,

X1—Xo Y1— Y2 XotX; Yoty; in terms of the Wigner function, reads

W(S(leyl;x21y2):WO( \/E ’ \/E ’ \/E ’ \/E

4
(30 P(n,m)=—2(—1)n+mj J f dx;dy;dx.dy,
. m RJRJRJIR
Then, one make®V)(X1,Y1;X2,Y,) evolve according to Eq.
(22), and finally recover§V_(x;,Y1:X,,Y,) by means of Eq. XWXy, V11X, Yp)e 20THYiT5+Y))
(29). Following this recipe we have numerically simulated . .
the whole evolution, starting from the Wigner function of the XLa[4(x1+yD)ILm[4(X1+YD], (32

state(3), namely,
L,[x] being thenth Laguerre polynomial. The plot is ob-

8 5 o o o tained for a threshold ratio &I'=30, and for6=0. The
Wo(X1,Y1;X2,Y2) = —exd —2(X3+ X3+ y1+y3)] effectiveness of the amplification process above threshold is
Tr apparent. We have chosen a short interaction time in order to
X[ (X,€088+Yy;Sin6—X,)? have saturation effects negligible. Notice that the main effect
of losses is the appearance of additional subdiagonal terms,
+(y10085—X15iN6—y,)?— 3], however, as compared to Fig. 2, without affecting the high

(31) correlation between the two modes. On the other hand, the

amplification below threshold cannot stem the detrimental

The input state is nonclassical and exhibits negative values igffect of losses, and the field state rapidly approaches the
the Wigner function. The Green evolution can be performedhermal-squeezed state of E@5). By varying the optical
by standard Monte Carlo techniques, by evolving separatelpaths of the input beams, namely the valuespfwe have
the positive and negative parts of the Wigner function, whichalso evaluated the correlation functi@{? defined in Eq.
are not mixed by the Fokker-Planck equati@9). In Fig. 3  (11). In Fig. 4 we reportC®® for different values of the
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proposed in Ref{11]. The setup relies on feeding a nonde-
generate parametric amplifier by a quantum seed, which is a
single-photon state with indistinguishable signal and idler
paths. At the output of the amplifier we have an entangled
state, with the entanglement shared by a couple of spatially
separated field modes. In the experiment currently running in
the Quantum Optics Laboratory of the University of Roma
(adopting a 0.5 W Ti: sapphire MIRA coherent lgséne
value of the gain ranges from 0.01 to 0.1 depending on the
state of focalization of the uv pump beam. After the adoption
(in the near futurgof an additional regenerative parametric
FIG. 4. The correlation functio€® as a function of the ratio amplifier, the value of the gain will be further multiplied by
2k7/T and the phase shifé. Compare Eq(12) for the lossless a factor of about 20. We analyzed the full amplification pro-
case. cess taking into account the effects of losses. We have shown
that the preparation of mesoscopic entanglement works ef-

effective gain &I'/r. By inspecting the dependence®f)  fectively with the amplifier above threshold, for short inter-
on the phase shiff in Fig. 4 one immediately argues that in action times. The resulting superposition i.s robgst against
a wide range of working regimes the effects of losses doed€coherence and can be revealed by a simple interference
not wash out the interference fringe. measurement.
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