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The present paper is both a review on the Feynman problem, and an original research
presentation on the relations between Fermionic theories and qubits theories, both
regarded in the novel framework of operational probabilistic theories. The most relevant
results about the Feynman problem of simulating Fermions with qubits are reviewed,

and in the light of the new original results, the problem is solved. The answer is twofold.
On the computational side, the two theories are equivalent, as shown by Bravyi and
Kitaev [S. B. Bravyi and A. Y. Kitaev, Ann. Phys. 298, 210 (2002)]. On the operational
side, the quantum theory of qubits and the quantum theory of Fermions are different,
mostly in the notion of locality, with striking consequences on entanglement. Thus the
emulation does not respect locality, as it was suspected by Feynman [R. Feynman, Int.
J. Theor. Phys. 21, 467 (1982)].
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1. Introduction

In the last three decades, the relation between Fermionic systems and other quan-

tum systems has been throughly investigated from both the computational and

the physical point of view. In particular the puzzling anticommuting nature of the

Fermionic systems casts a shadow on the possibility of simulating the physical evo-

lution of a bunch of Fermionic systems by means of commuting quantum systems —

say qubits. This issue was raised by Feynman in 1982,2 when in his seminal work on

physical computation, he wondered about the possibility of simulating Fermions by

local quantum systems in interaction — what we would call nowadays a quantum

computer :

Could we imitate every quantum mechanical system which is discrete and

has a finite number of degrees of freedom? I know, almost certainly, that

we could do that for any quantum mechanical system which involves Bose

particles. I’m not sure whether Fermi particles could be described by such

a system. So I leave that open.

The problem is that of encoding the evolution of Fermionic fields onto localized

quantum systems. A well-known encoding of N Fermionic systems into N qubits

is given by the Jordan–Wigner transform (jwt).3 Such an encoding, based on the

identification between the Fock space of N Fermions and the Hilbert space of N

qubits, provides a ∗ -algebra isomorphism between the Fermionic anticommuting

algebra and the commuting algebra of qubits. Such a correspondence has been a

valuable instrument in modern solid state physics for solving the one-dimensional

xy spin-chains4,5 and then for the understanding of superconductivity and quantum
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Hall effect. Moreover, a time-adaptive jwt has been introduced in Ref. 6, which

allows to contract Fermionic unitary circuits with the same complexity as for the

corresponding spin model. In quantum information science the jwt has been used

to extend to the Fermionic case notions as entanglement,7 entropic area law,8

and universal computation.1 More recently, the jwt which originally regards one-

dimensional chains of spin- 12 systems, has been generalized to any spin9 and lattice10

dimension.

Despite its computational power, the jwt fails to solve completely the issue

established by Feynman: physically local Fermionic operations are mapped into

nonlocal quantum ones and vice versa. As noticed by many authors, this can lead

to ambiguities in defining the partial trace,11–14 and in assessing the local nature

of operations.15

Independently on the jwt, the Fermionic systems are usually assumed to obey

the Wigner superselection rule. Based on the simple argument of the impossibility

of discriminating a 2π rotation from the identity,16,17 this superselection rule corre-

sponds to an inhibition to the superposition rule and forbids superpositions among

states with an odd number and an even number of Fermionic excitations. Such a con-

straint on the admitted states for a set of Fermionic systems avoids the ambiguities

connected to the jwt,7 but it has never been shown to promote the Jordan–Wigner

isomorphism to a “physical isomorphism” — i.e. preserving some sort of locality of

the Fermionic operations through the encoding.

In this paper, we tackle the issue of retaining locality of Fermionic operations

through a qubit simulation in a novel way, namely considering the Fermionic modes

as the elementary systems of an operational probabilistic theory (opt). The con-

text of opts provides a unified framework for studying and comparing properties

of different probabilistic models, such as locality. Well-known examples of opts

are: (i) quantum theory (qt) (recently axiomatized within the operational frame-

work18–20), (ii) the classical information theory,20 (iii) the box-world21 and (iv) the

real quantum theory (rqt).22,23 In Sec. 2, we review the operational framework

and present the recent results of Ref. 24, where the superselection rule has been

formalized in the general context of opts.

In Sec. 3, we build up the largest opt corresponding to the Fermionic compu-

tation. We write all possible events (states, transformations, effects) of the theory

achieved with the anticommuting algebra of the Fermionic field and assuming oper-

ations involving fields on some Fermionic modes to be local on those modes. Locality

here is meant in the operational sense, namely operations on systems that are not

causally connected must commute. The derivation leads naturally to the Wigner

superselection rule. Since there is not a unique opt respecting such a superselection

rule, we then look for the largest theory compatible with the locality of Fermionic

operations, here denoted Fermionic quantum theory (fqt).

In the second part of the paper (see Sec. 4), we study the operational con-

sequences of superselection. Unlike qt, fqt does not satisfy local tomography,

i.e. the possibility of discriminating between two nonlocal states using only local
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measurements. After proving the correspondence between Fermionic and qubit local

operations with classical communication (locc), we study the emerging notion of

entanglement for Fermionic systems, an issue addressed in Ref. 7 for the first time.

Here we will identify nonseparability as the unique notion of entanglement in fqt.

Upon defining the Fermionic entanglement of formation and concurrence, we see

that in fqt, there are states with maximal entanglement of formation that are

mixed and that Fermionic entanglement does not satisfy monogamy, i.e. the limi-

tation on the sharing of entanglement between many parties. Moreover, the notion

of maximally entangled state must be replaced with the one of maximally entangled

set (mes)25 also in the bipartite case, unlike qt. Interestingly, while in qt, a simple

linear criterion for full separability of states is lacking we will see that fqt allows

for it.

It is worth mentioning that fqt is only a special example of superselected

qt, while the notion of superselection of Ref. 24 allows for many other theories.

Among them, we will discuss briefly the case of rqt — which also lacks local

tomography23 and monogamy of entanglement26 — and the theory with number

superselection —which only admits superposition of states having the same particle

occupation number.

A computational model based on Fermionic systems has already been proposed

by Bravyi and Kitaev in Ref. 1. They showed that such a model supports universal

computation and that it is equivalent to the qubit computational one. The compu-

tational model of Ref. 1 is just the fqt with the additional constraint given by the

conservation of parity; as a consequence the resulting sets of transformations are

strictly included in the fqt’s ones. In Subsec. 4.4, we compare qt and fqt from

the point of view of computational complexity, and exploiting the results of Bravyi

and Kitaev1 (here reviewed), we show the equivalence of the two theories and that

even fqt supports universal computation.

2. Operational Probabilistic Theories

Before starting we need to review the basic definitions and notations for Opera-

tional Probabilistic Theories (opt). For a detailed discussion, see Ref. 19. The fun-

damental notion in the operational framework is that of test, which is the abstract

element of the framework corresponding to a (single use) of a physical device. In

more details, a test A = {Ai}i∈η describes an elementary operation that usually

produces an outcome i belonging to the set η of all the possible outcomes. The

readout of the outcome i specifies the occurrence of the physical circumstance iden-

tified by the event Ai. Tests are also specified by an input and an output label —

e.g. A, B — that identify the system types (systems, for short). The test A and its

building events Ai ∈ A can also be represented in the following pictorial way:

A ≡ A
A

B , Ai ≡ A Ai
B .

If an event A belongs to a singleton test A — i.e. A = {A} — we say that A is

deterministic.
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Physical devices can be connected in sequence, as long as the output system

type of each device is the same as the input system type of the next one. So do

tests: two tests A = {Ai}i∈η, B = {Bj}j∈χ can be connected in sequence as long as

the output wire of the first one in the sequence (say A) is of the same type as that

of the input wire of the last one (say B), thus giving the sequential composition

B ◦A := {Bj ◦ Ai}(i,j)∈η×χ; pictorially

A
A

B
B

C , A Ai
B Bj

C .

The labels of the input and output systems provide rules for connecting tests in

sequences. Notice that the input/output relation has no causal connotation, and it

does not entail an underlying “time arrow.” As we will see shortly, only in a causal

opt it is possible to understand the input/output relation as a time direction.

For every system A, there exists a unique singleton test {IA} such that IB◦A =

A ◦ IA for every event A with input A and output B. For every couple of systems

A, B, we can form the composite system C := AB, on which we can perform tests

A⊗B with events Ai ⊗ Bj in parallel composition, represented as follows

A

Ai ⊗ Bj

B

C D
=

A Ai
B

C Bj
D

,

and satisfying the condition

A Ai
B Bj

C

D Ck E Dl
F

=

A Bj ◦ Ai
C

E Dl ◦ Ck F
,

in formulae (Bj⊗Dl)◦ (Ai⊗Ck) = (Bj ◦Ai)⊗ (Dl ◦Ck). Notice that the symbol ⊗ is

just a formal way to identify the parallel composition among tests (and events), and

it is not the usual tensor product of linear spaces. Moreover, the previous property

implies commutation of tests on different systems, i.e. for every couple of events

Ai, Bj it is

A Ai
B

C Bj
D

=

A Ai
B I B

C I C Bj
D

=

A I A Ai
B

C Bj
D I D

. (1)

There is a special system type I, the trivial system, such that AI = IA = A.

The tests with input system I and output A are called preparation-tests of A,

while the tests with input system A and output I are called observation-tests of A.

Preparation-events of A are denoted by the symbols |ρ)A or  '!&ρ A , and observation-

events by (c|A or A ����c .

An arbitrary complex test obtained by parallel and/or sequential composition

of “elementary tests” is called circuit. An operational theory is a collection of sys-

tems closed under composition, and a collection of tests closed under parallel and
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Fig. 1. The closed circuit in the figure represents the joint probability Pr[i1, i2, . . . , i8|Ψ,

A, . . . ,G] of outcomes i1, i2, . . . , i8 conditioned by the choice of tests Ψ,A, . . . ,G. Since the
output of the event Ai2 is connected to the input of the event Di5 through the system F, the
event Ai2 immediately precedes the event Di5 (Ai2 ≺1 Di5). Similarly, since between the event
Bi3 and the event Ei6 , there is Di5 such that Bi3 ≺1 Di5 ≺1 Ei6 , the event Bi3 precedes the event
Ei6 (Bi3 ≺ Ei6 ). If the closed circuit of the figure belongs to a causal theory, we have that the
marginal probability of the event Di5 ∈ D cannot depend on the choice of any test X such that
X 6≺ D, i.e. Pr[i5|Ψ,A,B,C,D,E,F ,G] = Pr[i5|Ψ,A,B].

sequential composition, i.e. every circuit belongs to the theory. Given a circuit, we

say that an event H is immediately connected to the input of K, and write H ≺1 K,

if there is an output system of H that is connected with an input system of K;

e.g. in Fig. 1, Ai2 ≺1 Di5 . Moreover, we can introduce the transitive closure ≺ of

the relation ≺1, and we say that H is connected to the input of K if H ≺ K (e.g.

Bi3 ≺ Ei6). The two relations ≺1 and ≺ can be extended to tests trivially.

A circuit is closed if its overall input and output systems are the trivial ones.

Figure 1 is an example of a closed circuit. An opt is an operational theory

where every closed circuit represents a probability distribution; e.g. the closed cir-

cuit in Fig. 1 represents the probability Pr[i1, i2, . . . , i8|Ψ,A, . . . ,G] of outcomes

i1, i2, . . . , i8 conditioned by the choice of tests Ψ,A, . . . ,G. In probabilistic theo-

ries, we can quotient the set of preparation-events of A by the equivalence relation

|ρ)A ∼ |σ)A ⇔ the probability of preparing |ρ)A and measuring (c|A is the same

as that of preparing |σ)A and measuring (c|A for every observation-event (c|A of

A (and similarly for observation-events). The equivalence classes of preparation-

events and observation-events of A will be denoted by the same symbols as their

elements |ρ)A and (c|A, respectively, and will be called state |ρ)A for system A,

and effect (c|A for system A. For every system A, we will denote by St(A), Eff(A)

the sets of states and effects, respectively. States are real-valued functionals over

the effects, and vice versa; thus they can be embedded respectively in the real

vector spaces StR(A), EffR(A). StR(A) is the dual space of EffR(A), and vice versa

since the dimension DA := dimEffR(A) is assumed to be finite. The application

of the effect (ci|A on the state |ρ)A is written as (ci|ρ)A and corresponds to the

closed circuit  '!&ρ A "%#$ci , denoting therefore the probability of the ith outcome of

the observation-test c = {(ci|A}i∈η performed on the state ρ of system A, i.e.

(ci|ρ)A := Pr[ci|ρ, c].
Any event with input system A and output system B induces a collection of

linear mappings from StR(AC) to StR(BC), for varying system C. Such a collection
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is called transformation from A to B. The set of transformations from A to B will

be denoted by Transf(A,B), and its linear span by TransfR(A,B). The symbols A
and A A B denoting the event A will be also used to represent the corresponding

transformation.

One usually requires that an experimentalist can randomize the choice of the

devices in an experiment with arbitrary probabilities. This implies that, for every

system, all the set of states, effects, and transformations of an opt are convex.

The extremal points of the convex set of the deterministic states (and similarly for

effects and transformations) correspond to the so-called atomic states, also known as

pure states since they cannot be seen as convex combinations of other deterministic

states.

An opt can satisfy many different properties;20 among the most important ones

there is the property of causality.

Definition 2.1. An opt is causal if for every preparation-test ρ = {|ρi)}i∈η and

any two observation-tests a = {(aj |}j∈χ and b = {(bj |}j∈ξ, one has
∑

j∈χ(aj |ρi) =∑
k∈ξ(bk|ρi), ∀i ∈ η, namely the probability of the preparation is independent of

the choice of observation.

Causality is equivalent to the so-called no-backward signaling,27 namely within a

closed circuit, the marginal probabilities of the outcomes of an arbitrary test H do

not depend on the choice of any test K 6≺ H. For example, in the circuit of Fig. 1

causality implies

Pr[i5|Ψ,A,B,C,D,E,F ,G] = Pr[i5|Ψ,A,B] .

The present notion of causality is a rigorous definition in the operational framework

of the so-called Einstein causality. Indeed, a corollary of no-backward signaling is

the no-signaling without interaction.19 In an opt, a condition equivalent to causality

is that of uniqueness of the deterministic effect19 (usually denoted by (e|). Notice
that given a bipartite state |ρ)AB, the deterministic effects (e|B and (e|A allow one

to evaluate the marginal states (e.g. partial trace in qt) on the component systems

A and B

 '!&ρ A = ρ
?>
89

A

B "%#$eB
, ����σ B = ρ

?>
89

A "%#$eA

B
.

Another property is the so-called no-restriction hypothesis. We say that a linear

map A ∈ TransfR(A,B) is admissible if it locally preserves the set of states St(AC)

for every ancillary system C; namely

ρ
?>
89

A

C
∈ St(AC) =⇒ ρ

?>
89

A A B

C I C
∈ St(BC) ∀C .
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The no-restriction hypothesis requires that every admissible map in TransfR(A,B)

actually belongs to Transf(A,B).a Notice that an opt satisfying the no-restriction

hypothesis is completely determined by its systems and the respective set of states,

since even the effects — being particular kind of transformations — are all the

admissible ones. We can therefore say that a no-restricted opt is simply the collec-

tion Θ := {(X, St(X))}X∈η for varying system X.

2.1. Local, bilocal, . . . , n-local tomography

A common assumption in the literature of probabilistic theories is the so-called

local tomography (also called by some authors local discriminability or local distin-

guishability); namely the possibility of distinguishing two different bipartite states,

by means of local devices.

Definition 2.2. A theory enjoys local tomography if for any |ρ), |σ) ∈ St(AB),

we have

|ρ) 6= |σ) =⇒ ∃(a| ∈ Eff(A) ,

(b| ∈ Eff(B) such that ρ
?>
89

A ����a
B "%#$b

6= σ
?>
89

A ����a
B "%#$b

.

An opt with local tomography allows to perform tomography on multipartite

states with only local measurements. Indeed, in such a scenario every bipartite

effect (c|AB can be written as linear combination of product effects, therefore every

probability (c|ρ)AB can be computed as a linear combination of the probabilities

((a|A ⊗ (b|B)|ρ)AB arising from a finite set of product effects. In other words, we

have the property that the linear space of effects of a composite system is actually

the tensor product of the linear spaces of effects of the component systems, i.e.

EffR(AB) ≡ EffR(A) ⊗ EffR(B). Since StR(AB) = EffR(AB)
∗, we have that the

same result holds also for the linear space of states. Thus, in a local-tomographic

opt the parallel composition of two states (effects) denoted by the symbol ⊗ can

be in fact understood as a tensor product, moreover the following relation between

the dimension of the set of states/effects holds: DAB = DADB.

Remark 2.1. An important consequence of local tomography is that a transfor-

mation T ∈ Transf(A,B) is completely specified by its action on St(A):19

C|ρ) = C′|ρ) ∀|ρ) ∈ St(A) ⇒ C = C′ .

One can imagine to relax the property of local tomography in many different

ways; the most general scenario is given by the n-local tomography.23 First, we

aIn previous literature,19 the same nomenclature has been used for a different concept: for every
system A, the convex cone generated by Eff(A) coincides with the dual convex cone generated by
the set of states St(A).
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define an effect to be n-local , if it can be written as a conic combination of tensor

products of effects that are at most n-partite.

Definition 2.3. A theory enjoys n-local tomography if whenever two states |ρ),
|σ) are different, there is a n-local effect (a| such that (a|ρ) 6= (a|σ).

Clearly, local tomography is the particular case of n-local tomography with

n = 1. Given a n-local-tomographic theory with n > 1, for an arbitrary bipar-

tite system AB one has DAB ≥ DADB, since in general StR(AB) = StR(A) ⊗
StR(B) ⊕ StNL

R
(AB), where StNL

R
(AB) := (StR(A) ⊗ StR(B))

⊥ is the subspace

where the nonlocal components of the bipartite states live. By definition, a n-local-

tomographic theory is also (n + 1)-local-tomographic, since a n-local effect is also

(n+1)-local. We are interested in opts that are strictly n-local-tomographic, namely

n-local-tomographic opts that are not (n− 1)-local-tomographic.

Another case already studied in literature is bilocal tomography,23 namely two-

local tomography. In particular, for such a case we have that for every couple of

different tripartite states |ρ), |σ) ∈ St(ABC) there exist a two-local effect (x| ∈
Eff(ABC) such that

ρ

?>

89

A

x

=<

:;
B

C

6= σ

?>

89

A

x

=<

:;
B

C

.

Notice that, since (x| is two-local, it can be written as the following conic combi-

nation

A

x

=<

:;
B

C

=
∑

j

qj

A *-+,aj

B 2534bj

C *-+,cj

+ q′j

A

dj
=<
:;B

C *-+,ej

+ q′′j

A 2534fj

B

gj
=<
:;C

+ q′′′j

A

hj

=<

:;
C 2534ij

B

with qj , q
′
j , q

′′
j , q

′′′
j ≥ 0 and (dj | ∈ EffNL

R
(AB) (and similarly for (gj |, (hj |). For a

bilocal-tomographic theory, we have therefore

DAB ≥ DADB , (2)

DABC ≤ DADBDC +DAD̃BC +DBD̃AC +DCD̃BC , (3)

where dim(EffNL
R

(AB)) =: D̃AB = DAB − DADB. A strictly bilocal-tomographic

theory has the first bound tight, moreover if the upper bound is saturated, we say

that the opt is maximally bilocal-tomographic, since it requires all the two-local

effects to discriminate multipartite states.

2.2. Superselected operational probabilistic theories

A superselection rule σ on a theory Θ corresponds to a linear section of all sets

of transformations for each multipartite system, which under the no-restriction

1430025-9
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hypothesis reduces to sectioning linearly just the sets of states. We can give the

following formal definition of superselection rule:

Definition 2.4. A superselection rule σ is a map from an opt Θ to another opt Θ̄,

σ : Θ → Θ̄ , (A, St(A)) 7→ σ((A, St(A))) =: (Ā, St(Ā)) ,

such that, for every system A, St(Ā) is a linear section of St(A), i.e.

St(Ā) := {ρ ∈ St(A) | (sσi |ρ) = 0, i = 1, . . . , V σ
A } ,

where (sσi | ∈ EffR(A) are V
σ
A linear independent constraints.

For consistency, the superselection map σ must commute with system composi-

tion, forcing the definition of composition for the constrained theory as σ(A)σ(B) :=

σ(AB). Notice that, being linear σ preserves convexity of the theory, i.e. all the sets

St(Ā), Eff(Ā), Transf(Ā, B̄), for every system Ā, B̄ of the constrained theory are

convex. For instance, this means that in a qt with superselection, states from dif-

ferent sectors cannot be superimposed, but can be mixed. From the definition, it

follows immediately St(Ā) ⊆ St(A), Eff(Ā) ⊆ Eff(A), and DĀ = DA − V σ
A .

The number V σ
A of linearly independent constraints on a system A cannot be

arbitrary, for example consider the trivial bound V σ
A ≤ DA. In fact, one has other

more interesting bounds due to the system composition.

Proposition 2.1. Let Θ̄ be the superselected opt build from the opt Θ by means

of the superselection map σ. Then the following bounds hold :

V σ
AB ≥ DAV

σ
B +DBV

σ
A − 2V σ

AV
σ
B , (4)

V σ
AB ≤ DAV

σ
B +DBV

σ
A − V σ

A V
σ
B +DAB −DADB . (5)

Proof. The upper bound of Eq. (5) is easily proven upon noticing that for an

arbitrary opt it always happens that StR(AB) ⊇ StR(A)⊗StR(B), and thus DAB ≥
DADB. Hence, one has DĀB̄ ≥ DĀDB̄, and using DB̄ = DB − V σ

B and DB̄ =

DB − V σ
B , we get Eq. (5).

The lower bound of Eq. (4) is proved by showing that all the local constraints

on the component systems A and B are also constraints of the composite system

AB, namely for any (b| ∈ Eff(B̄) and any i = 1, . . . , V σ
A , one has that (sσi | ⊗ (b| ∈

EffR(AB) is a constraint for ĀB̄. Indeed, suppose by contradiction that (sσi ⊗b|ρ) 6= 0

for some ρ ∈ St(ĀB̄), and i ∈ {1, . . . , V σ
AB}. Since

|ρb) := ρ
?>
89

A

B "%#$b
is a valid state for the system Ā, we have (sσi |ρb) 6= 0 against the hypothesis. The

same argument holds reversing the roles of the subsystems Ā and B̄, so we conclude
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that V σ
AB shall be at least DĀV

σ
B +DB̄V

σ
A , which gives the lower bound of Eq. (4)

using DB̄ = DB − V σ
B and DB̄ = DB − V σ

B .

Given an opt Θ, one can build “bottom-up” a superselected theory Θ̄ by

defining the constraints only for the elementary systems (the ones that cannot be

obtained by composition of other systems) and taking the minimal number of linear

constraints (4) on the composite ones. We call such superselected opts minimally

superselected .

Definition 2.5. A superselected opt is minimally superselected if it saturates the

lower bound of Eq. (4).

In a minimally superselected opt the only constraints on bipartite systems are

(rσi | ⊗ (b| and (a| ⊗ (sσj |, with a ∈ Eff(Ā), b ∈ Eff(B̄), rσi ∈ EffR(A), r
σ
j ∈ EffR(B).

On the other hand, the saturation of the upper bound of Eq. (5) leads to a

maximally superselected opt:

Definition 2.6. A superselected opt is maximally superselected if it saturates the

upper bound of Eq. (5).

Since enforcing superselection constraints on a opt leads to a change of the

structure of the set of states, effects, and transformations, we shall expect a change

also in the properties satisfied by the resulting theory. Indeed, while a causal theory

retains causality once superselected, the converse is not true. Moreover, a local-

tomographic theory is in general no more local-tomographic upon superselection,

as the following proposition shows.

Proposition 2.2. Let Θ̄ be a superselection of a local-tomographic theory Θ. Then:

(i) Minimal superselection ⇒ Θ̄ maximally bilocal-tomographic,

(ii) Maximal superselection ⇒ Θ̄ local-tomographic.

Proof. Let us prove the first implication. The superselected theory Θ̄ is maximally

bilocal-tomographic if it saturates the bound of Eq. (3), namely

DĀB̄C̄ = DĀDB̄DC̄ +DĀD̃B̄C̄ +DB̄D̃ĀC̄ +DC̄D̃B̄C̄ .

We prove this equality evaluating the left-hand side (lhs) and the right-hand side

(rhs) of the equation and enforcing the minimal superselection given by the lower

bound of Eq. (4)

V σ
AB = DAV

σ
B +DBV

σ
A − 2V σ

AV
σ
B . (6)

lhs: we have DABC = DABC − V σ
ABC; taking the partition ĀB̄C̄ = Ā(B̄C̄), the

requirement of minimal superselection gives

DĀB̄C̄ = DABC −
(
DAV

σ
BC +DBCV

σ
A − 2V σ

AV
σ
BC

)
.
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Using again the minimal superselection requirement, we expand V σ
BC and V σ

BC

getting

DĀB̄C̄ = DADBDC −
(
DADBV

σ
C +DADCV

σ
B +DBDCV

σ
A

)

+ 2
(
DAV

σ
B V

σ
C +DAV

σ
C V

σ
B +DBV

σ
C V

σ
A

)
− 4V σ

AV
σ
B V

σ
C ,

where we used the identity DAB = DADB since the opt Θ is local-tomographic.

rhs: We use the identities D̃X̄Ȳ = DX̄Ȳ − DX̄DȲ, DX̄Ȳ = DXY − V σ
XY, and

the requirement of minimal superselection of Eq. (6). Finally, the local tomography

condition DXY = DXDY for the opt Θ gives the same expression of the lhs.

Let us now prove the second implication, namely that equality in Eq. (5) implies

DĀB̄ = DĀDB̄. ExpandingDĀB̄ asDAB−V σ
AB, using Eq. (5), and remembering that

the opt Θ is local-tomographic, we get DĀB̄ = DADB−DAVB −DBVA +V σ
A V

σ
B =

(DA − VA)(DB − VB) = DĀDB̄.

In general, in a bilocal-tomographic theory, two different states ρ and σ of the

four-partite system ABCD can be discriminated by the following classes of effects

A

a
=<
:;B

C

b
=<
:;D

,

A

c
=<
:;C

B

d
=<
:;D

,

A

f

=<

:;

B

g
=<
:;C

D

, (7)

where (a|, (b|, (c|, (d|, or (f | can also be local, e.g.

A

a
=<
:;B

=
A "%#$a1

B "%#$a2
. (8)

A remarkable feature of maximally bilocal-tomographic theories is given by the

following theorem, which reduces the number of the above classes.

Theorem 2.1. Let Θ be a maximally bilocal-tomographic theory. Then, for any

four-partite system ABCD, the following classes of effects is sufficient in order to

discriminate two different states ρ and σ

A

f

=<

:;

B "%#$g

C *-+,h

D

A "%#$i
B

j
=<
:;C

D *-+,k

A

l

=<

:;
B ����m

C

D ����n

A ����o
B

p

=<

:;
C "%#$q
D

A

r
=<
:;B

C

s
=<
:;D

(i) (ii) (iii) (iv) (v)

.
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Proof. First, notice that every class (i), (ii), (iii), (iv), (v) spans a linear space of

effects of dimension

DADDBDC DADBCDD DACDBDD DADBDDC DABDCD

(i) (ii) (iii) (iv) (v)
.

All such linear spaces have a common linear subspace identified by the local effects

belonging to the class (a|A ⊗ (b|B ⊗ (c|C ⊗ (d|D. Having this subspace dimension

DADBDCDD, we have that the span of all the classes (i)–(v) taken together is

DADDBDC +DADBCDD +DACDBDD +DADBDDC

+DABDCD − 4DADBDCDD . (9)

We recall here the definition of maximally bilocal-tomographic theory, given in

terms of the following dimensional relation

DABC = DADBDC +DAD̃BC +DBD̃AC +DCD̃AB . (10)

Let consider the tripartition (AB)CD. Applying the property of maximal bilocal-

tomography of Eq. (10), we have

DABCD = D(AB)CD = DABDCDD +DABD̃CD +DCD̃(AB)D +DDD̃(AB)C .

By definition, we have DAB = DADB + D̃AB, and by Eq. (10)

D̃(AB)C = DABC −DABDC = DAD̃BC +DBD̃AC .

Thus, we conclude

DABCD = DAB

(
DCDD + D̃CD

)
+DCD̃(AB)D +DDD̃(AB)C

= DABDCD +DADBDDC +DADDBDC

+DADBCDD +DACDBDD − 4DADBDCDD ,

namely the dimension given by Eq. (9).

As we will discuss later, the last theorem has important consequences on the notion

of entanglement for Fermionic computation.

2.3. Quantum theory as an operational probabilistic theory

It has been shown recently in Ref. 20 that qt (in finite dimension) can be regarded

as an opt satisfying six properties: the already mentioned causality and local tomo-

graphy, along with perfect distinguishability, pure conditioning, ideal compression,

and purification. Thus, all the operational notions introduced in Sec. 2, can be

specified in the case of qt. In details, a quantum system A is specified by a Hilbert

space HA with dimHA = dA < +∞; so HA = CdA . The deterministic states
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(usually called normalized states) of the system A are the positive semidefinite

operators over HA with trace 1. On the other hand, the linear set of states StR(A)

is the whole space Herm(HA) of Hermitian operators over HA with dimensionDA =

d2A. A nondeterministic preparation test ρ = {ρi}i∈η is a collection of deterministic

states {ρ̃i} along with a collection of probabilities {pi}i∈η such that ρi = piρ̃i and∑
i∈η Tr[ρi] = 1. A deterministic state of A is a rank one projector |ϕ〉〈ϕ| if it

is pure, while it is a full rank density matrix when it is completely mixed (e.g.

IA/dA with IA the identity operator on HA). Accordingly the whole set of states

St(A) of system A is the set of all unnormalized density matrices ρ, namely ρ ≥ 0,

Tr[ρ] ≤ 1.

Since the effects on A are linear functionals over the set of states we have that the

linear space of effects EffR(A) is the space Herm(HA) of Hermitian operators over

HA. The actual set of effects Eff(A) is made of the positive semidefinite operators

bounded from above by the identity, namely Eff(A) = {P ∈ Herm(HA) | P ≥
0, P ≤ IA}. An observation test P is given by a Positive Operator Valued Measure

(povm), namely a collection of effects {Pi}i∈η such that
∑

i∈η Pi = IA. Again, an

atomic effect is simply a rank-one projector.

The probability resulting from the pairing between a state |ρ) and an effect (P |
of the system A is given in qt by the Born rule, i.e. (P |ρ) ≡ Tr[ρP †].

A transformation C between the systems A and B is given by a quantum opera-

tion, namely a completely positive trace nonincreasing linear map from Herm(HA)

to Herm(HB). Notice that a quantum operation C always admit the Kraus decom-

position C(·) =∑iχ Ci ·C†
i for suitable bounded operators Ci. A transformation test

C ⊆ Transf(A,B) is a collection of quantum operations {Ci}i∈η such that
∑

i∈η Ci is
a deterministic transformation, namely a quantum channel, i.e. a trace preserving

completely positive map. A unitary transformation — e.g. the Schrödinger evolu-

tion — is a deterministic test made of a single quantum operation with a Kraus

decomposition made of a single Kraus operator.

3. The Fermionic Quantum Theory

In this section, we construct an opt whose systems are the composition of the so-

called local Fermionic modes. There is not a unique way for realizing a Fermionic

opt. The one presented here, denoted Fermionic Quantum Theory (fqt), stems

from simple assumptions on the states/effects of the Fermionic systems and on

the local nature of the Fermionic operations, and is the least constrained theory

satisfying these assumptions. The resulting fqt corresponds to a superselected

version of the qt of qubits with the superselection rule derived from the consistency

of local Fermionic operations in an operational framework. A crucial assumption

will be that of locality for the Fermionic theory, and it is related to considering the

operator ϕi as the Kraus operator of an atomic local transformation.

In order to proceed with the construction, first we have to introduce the concept

of Fermionic algebra.
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3.1. The Fermionic algebra

The algebra F(N) of an arbitrary number N <∞ of local Fermionic modes (lfms)

is generated by Fermionic operators {ϕi, ϕ
†
i : i ∈ JN} with JN := {1, . . . , N}

satisfying the canonical anticommutation relation (car)
{
ϕi, ϕ

†
i

}
= δijI , {ϕi, ϕj} = 0 , 1 ≤ i, j ≤ N . (11)

Due to the car, the positive operators ϕ†
iϕi have spectrum S = {0, 1}. The opera-

tors ϕi and ϕ
†
i act respectively as lowering and raising operators for ϕ†

iϕi, namely

if |Φ〉 is an eigenvector of ϕ†
iϕi with eigenvalue 1, then ϕi|Φ〉 is an eigenvector with

eigenvalue 0, and ϕ†
i |Φ〉 = 0, while if |Φ〉 is an eigenvector with eigenvalue 0 then

ϕi|Φ〉 = 0 and ϕ†
i |Φ〉 is an eigenvector with eigenvalue 1.

The operators ϕ†
iϕi form a set of mutually commuting positive operators and we

call vacuum eigenvector, denoted |Ω〉, a simultaneous eigenvector with eigenvalue

0 for all i. A vacuum eigenvector of the Fermionic algebra corresponds to all the

lfms unoccupied and it is annihilated by the lowering operators:

ϕi|Ω〉 = 0 ∀i .

In general the vacuum |Ω〉 is not unique. However, we can always restrict to the

unique case, corresponding to having a trivial multiplicity, with a vacuum vector

space where the field operators act identically. From now on, we will consider the

vacuum as unique.

By raising |Ω〉 in all possible ways we get the 2N orthonormal vectors forming

the Fock basis in the occupation number representation

|s1, . . . , sN 〉F := (ϕ†
1)

s1 · · ·
(
ϕ†
N

)sN |Ω〉 , si ∈ {0, 1} , (12)

with si corresponding to the occupation number at the ith site, i.e. the expec-

tation value of the operator ϕ†
iϕi. We call total occupation number of the vector

|s1, . . . , sN〉F the sum
∑

i si. The linear span of these vectors corresponds to the

antisymmetric Fock space FN of dimension 2N .

3.2. Assumptions

The assumptions are the following:

(i) the fqt is causal;

(ii) the states ofN lfms are represented by density matrices on the antisymmetric

Fock space FN ;

(iii) the transformations onN lfms are represented by linear Hermitian preserving

maps;

(iv) the map Xi with Kraus operators Xi := ϕi + ϕ†
i is physical;

(v) for a composite systems A made of N lfms, transformations with Kraus

operators in the algebra of field operators ϕi, ϕ
†
i with i ∈ χ ⊂ JN are local

on the subsystem B of the lfms associated to χ;
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(vi) local transformations on a system retain the same Kraus representation when

other systems are added or discarded;

(vii) the pairing between states and effects is given by the Born rule (a|ρ) := Tr[ρa];

(viii) on a single lfm the pairing with the deterministic effect is represented by

(e|ρ) := Tr[ρ].

Notice that since the projection on the vacuum eigenvector has field represen-

tation |Ω〉〈Ω| =∏N
i=1 ϕiϕ

†
i , then any state can be written as

ρ :=
∑

j

Kj |Ω〉〈Ω|K†
j =

∑

j

Kj

(
N∏

i=1

ϕiϕ
†
i

)
K†

j

for some collection of operators

Kj :=
∑

s(j)

αs(j)ϕ
†
1

s
(j)
1 · · ·ϕ†

N

s
(j)
N , αs(j) ∈ C .

Hence, a state ρ of N lfms can be written equivalently as

ρ =
∑

st

ρst

N∏

i=1

ϕ†
i

si
ϕiϕ

†
iϕ

ti
i , ρst ∈ C , (13)

where s is a binary string s1 · · · sN (and similarly for t).

Moreover, from assumptions (iv), (vii) and (viii) the following proposition holds.

Proposition 3.1. In a system A made of N lfms for every i the map Xi is

deterministic and X 2
i = I.

Proof. First notice that from the car relations we have X†
iXi = X2

i =
(
ϕ†
iϕi +

ϕiϕ
†
i

)
= I, and thus X 2

i = I. Moreover, we have Tr[Xi(ρ)] = Tr
[
XiρX

†
i

]
=

Tr
[
ρX†

iXi

]
= Tr[ρ] = 1.

3.3. Discarding of a subsystem

We derive now the simple rule for discarding a subsystem in the fqt. First, we

need two lemmas that can be derived by the assumptions.

Lemma 3.1. Consider a system A = B1B2 made of N = N1 + N2 lfms, and

let B1 be made of N1 lfms corresponding to χ1 ⊂ JN . Then a transformation

T ∈ Transf(A) is local on B1 if and only if it can be expressed in terms of Kraus

operators belonging to the algebra generated by field operators ϕi and ϕ
†
i for i ∈ χ1.

Proof. By assumption (iii) a transformation T on B1 has Kraus operators in the

algebra of fields ϕi, ϕ
†
i with i ∈ JN1 . By assumption (vi), if we now consider the

composite system A = B1B2 the local transformations on B1 have Kraus operators

in the algebra generated by the field operators ϕi, ϕ
†
i with i ∈ JN1 . On the other

hand, by assumption (v), also the converse is true.
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Lemma 3.2. The parallel composition of the effect (a| ∈ Eff(B1) and the deter-

ministic effect (e| ∈ Eff(B2) is represented by

ρ
?>
89

B1 ����a
B2 ����e

= Tr[ρa] , ∀|ρ) ∈ St(B2B2) .

Proof. Since in a causal theory ����a = T ����e for some transformation T ,

we have

ρ
?>
89

B1 ����a
B2 ����e

= ρ
?>
89

B1 T B1 ����e
B2 ����e

. (14)

T , being local on the subsystem B1, has Kraus form T (σ) :=
∑

i siKiσK
†
i where

Ki is in the algebra of the field operators acting on B1. By assumption (vi), the

map retains the same Kraus expression when extended on a system B1B2, so

ρ
?>
89

B1 ����a
B2 ����e

=
∑

j

sj Tr
[
ρK†

jKj

]
= Tr[ρa] . (15)

Consider now the system A = A1 . . .AN made of N lfms, and the bipartition

A = B1B2, corresponding to the disjoint partition {χ1, χ2} of S. Since by assump-

tion (i) the fqt is causal, the marginal state σ of system B1 for an arbitrary state

ρ ∈ St(A) is defined by the following implicit equation

ρ
?>
89

B1

B2 ����e
= ����σ B1 ⇔ ρ

?>
89

B1 ����a
B2 ����e

= ����σ B1 ����a ,

for any effect a ∈ Eff(B1) on the complementary system of B2. In formula we write

Tr[σa] := Tr[ρa] , ∀a ∈ Eff(B1) . (16)

Let |ρ) ∈ St(B1B2) be as in Eq. (13), we can perform the following swapping of the

field operators

ρ =
∑

st

ρst

N∏

i=1

ϕ†
i

si
ϕiϕ

†
iϕ

ti
i

=
∑

st

(−1)f(s,t)ρst
∏

k∈χ2

(
ϕ†
k

sk
ϕkϕ

†
kϕ

tk
k

) ∏

i∈χ1

(
ϕ†
i

si
ϕiϕ

†
iϕ

ti
i

)
,

where f(s, t) is the function evaluating the number of swaps needed to perform the

reordering, which is given by

f(s, t) :=
∑

k∈χ2

(sk ⊕ tk)Σi∈χ1

i<k
(si ⊕ ti) .
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The rhs of Eq. (16) then becomes

∑

st

ρst Tr

[
N∏

i=1

(
ϕ†
i

si
ϕiϕ

†
iϕ

ti
i

)
a

]

=
∑

st

(−1)f(s,t)ρst Tr

[
∏

i∈χ1

(
ϕ†
i

si
ϕiϕ

†
iϕ

ti
i

)
a
∏

k∈χ2

(
ϕ†
k

sk
ϕkϕ

†
kϕ

tk
k

)]

=
∑

st

(−1)f(s,t)ρst Tr

[
∏

i∈χ1

(
ϕ†
i

si
ϕiϕ

†
iϕ

ti
i

)
a
∏

k∈χ2

δsk,tk

]
.

Since f(s, t) = 0 whenever for k ∈ χ2 it happens sk = tk, the previous equation

shows that the marginal state on subsystem B1 of a state ρ ∈ St(B1B2) is given by

σ := TrB2 [ρ] = TrB2

[
∑

s,t

ρst

N∏

i=1

ϕ†
i

si
ϕiϕ

†
iϕ

ti
i

]

=
∑

s,t with
sk=tk, k∈χ2

ρst
∏

i∈χ1

ϕ†
i

si
ϕiϕ

†
iϕ

ti
i , (17)

namely it is obtained by dropping all terms that contain an odd number of field

operators in any of the lfms in B2, while in the remaining terms one erases the

field operators in B2.

3.4. Derivation of the parity superselection rule

In the following, we will show that the Wigner parity superselection rule16,17 can

be derived operationally from postulates (iv) and (v).

Theorem 3.1. Every transformation between N lfms is operationally equivalent

to a map where each Kraus operator is a combinations of products of either odd or

even numbers of field operators.

Proof. Let us take an arbitrary transformation T ∈ TransfR(A,B) with A, B

N -lfm systems. Since by assumption (iii) T is Hermitian preserving, it can be

written as the difference between two CP maps, hence, for an arbitrary ρ, T (ρ) =∑
i siKiρKi

†, where Ki are Kraus operators, and si = ±1 for every i. Every Ki can

be decomposed as Ki = Ei + Oi with Ei, Oi ∈ L(C2N ), and Ei and Oi being the

part of Ki containing only superposition of an even and odd number of field opera-

tors, respectively. Thus, we have T =
∑

i si
(
Ei ·Ei

†+Oi ·Oi
†+Ei ·Oi

†+Oi ·Ei
†).

We want to show that T is equivalent to the map T̃ :=
∑

i si
(
Ei · Ei

† +Oi · Oi
†),

namely for every ancillary system C made of M lfms

ρ
?>
89

A T B

a
=<
:;C

= ρ
?>
89

A T̃ B

a
=<
:;C

, ∀|ρ) ∈ St(AC) , (a| ∈ Eff(BC) .
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Using assumption (vii), the previous relation is equivalent to

∑

i

siTr
[(
EiρOi

† +OiρEi
†)a†

]
= 0 , (18)

for every |ρ) ∈ St(AC), (a| ∈ Eff(BC) and every ancillary system C.

In order to prove Eq. (18) we consider the physical map — by assumption (iv) —

Transf(C,D) ∋ Xj , j denoting a Fermionic subsystem belonging to C, and D a

Fermionic system made ofM lfms too. Being Xj and T two transformations acting

on different subsystems, by Eq. (1) their sequential composition shall commute; i.e.

for every ancillary system E, for every state |σ) ∈ St(ACE), and for every effect

(b| ∈ Eff(BDE)

ρ

?>

89

A T B

b

=<

:;
C Xj

D

E

= ρ

?>

89

A T B

b

=<

:;
C Xj

D

E

.

Consider the case where D is the system made of 0 lfms, i.e. the ancillary system

is the trivial system I. Then we have by assumption (vii) that a necessary condition

for the commutation of the maps T and Xj is given by

∑

i

siTr
[(
XjEiρEi

†X†
j +XjOiρOi

†X†
j +XjEiρOi

†X†
j +XjOiρEi

†X†
j

)
b
]

=
∑

i

si Tr
[(
EiXjρX

†
jEi

† +OiXjρX
†
jOi

† + EiXjρX
†
jOi

† +OiXjρX
†
jEi

†
)
b
]

∀|ρ) ∈ St(ACE) , ∀(b| ∈ Eff(BDE) .

Since the Kraus operators Ei, Oi contain respectively an even and an odd number

of field operators, the anticommutation relations for the fields and the invariance

of the trace under cyclic permutation give us

∑

i

si Tr
[(
EiρOi

† +OiρEi
†
)
X†

j bXj

]
= 0 .

If we now choose b = XjaX
†
j for an arbitrary a ∈ Eff(AC), by Proposition 3.1, we

obtain

∑

i

siTr
[(
EiρOi

† +OiρEi
†
)
a
]
= 0 ∀|ρ) ∈ St(AC) , (a| ∈ Eff(BC) , (19)

namely Eq. (18). We conclude therefore that the compatibility condition of com-

mutation between local transformation implies the thesis.
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The previous theorem allows us to consider the transformations with each Kraus

operator involving only an even or an odd number of field operators as the repre-

sentatives of the equivalence class they belong to. This fact allows us to prove the

following corollary.

Corollary 3.1. Effects of the fqt are positive operators made of products of an

even number of field operators.

Proof. Since in a causal theory we have ����a = T ����e for some transfor-

mation T , every effect can be written as a =
∑

i siEi
†Ei + siOi

†Oi, namely an

operator involving only products of even number of field operators.

Lemma 3.3. The even part of a state ρ is a density matrix.

Proof. By assumption (ii) a state of N lfms is a positive operator ρ on FN ,

then it can be expressed as ρ = X†X . Writing X = E + O, with E combination

of even products of field operators and O combination of odd products, we have

ρ = E†E + O†O + E†O + O†E. Finally, the even part of ρ is given by E†E +

O†O ≥ 0, which is positive.

Proposition 3.2. States of fqt satisfy the parity superselection rule.

Proof. Consider the state |ρ) =
∑

j Ej + Oj , and its even part |ρE) :=
∑

j Ej

with Ei and Oi made of linear combinations of an even and an odd number of field

operators, respectively. Since Tr[Oja] = 0, due to a being made of products of an

even number of field operators (see Corollary 3.1), we have that |ρ) is operationally
equivalent to |ρE), that is for every effect (a|, (a|ρ) = (a|ρE). Hence it is not

restrictive to consider only the states represented by density matrices that are linear

combinations of products of even number of field operators, as representatives of

the resulting equivalence classes of states. One can now decompose the Fock space

FN in the direct sum

FN = F
0
N ⊕ F

1
N , (20)

where F 0
N and F 1

N are the eigenspaces of the parity operator

P =
1

2

(
I +

n∏

i=1

(
ϕiϕ

†
i − ϕ†

iϕi

))
(21)

corresponding to the eigenvalues p = 0, 1 — i.e. corresponding to an even/odd

total occupation number. We conclude that every state — being represented by a

combination of products of an even number of fields — commutes with P , thus it

has a well defined parity, i.e. states satisfy the parity superselection rule.

Corollary 3.2. The vacuum state |Ω〉〈Ω| is physical.
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Proof. Being |Ω〉〈Ω| =
∏

i ϕiϕ
†
i a state with an even number of field operators, it

is valid state of the fqt.

Finally, since effects of a system of N lfms are linear combinations of even

products of field operators, they commute with the parity operator, too. This allows

us to derive the parity superselection rule also for effects.

Corollary 3.3. Effects of fqt satisfy the parity superselection rule.

3.5. Set of states, effects and transformations

In the following, we will analyze the consequences of the parity prescription on the

states, effects, and transformations of fqt.

For this purpose, we remind that if A is a N qubits system, then the linear

spaces of states and effects correspond to the set of 2N × 2N Hermitian matrices

StR(A) = EffR(A) = Herm
(
(C2)⊗N

)
(22)

and the dimension of the set of states and effects is

DA = d2A = 22N , (23)

with dA = 2N the Hilbert dimension of N qubits. On the other hand, a system

of N lfms must obey the parity superselection rule, which forbids any pure state

corresponding to a superposition of vectors belonging to F 0
N and F 1

N , i.e. pure

states are given by projections on superpositions of Fock vectors with total occupa-

tion numbers equal modulo 2. Hence the elementary system — the one-lfm — has

only the pure states |0〉〈0|, |1〉〈1|, thus corresponding to the classical bit (indeed the

Fock vectors |0〉 and |1〉 belong to F 0
1 and F 1

1 , respectively, and then one cannot

consider their superpositions). In general, for a system A of N lfms we can iden-

tify two disjoint sectors with different parity in the linear sets of states and effects:

StR(A) = EffR(A) = Herm
(
F 0

N

)
⊕Herm

(
F 1

N

)
. Since dimF 0

N = dimF 1
N = 2N−1

we have dimHerm
(
F i

N

)
= 22(N−1). Being the dimension of the linear space of

states of N − 1 qubits exactly 22(N−1), we have that each parity sector of the

linear set of states of N lfms is isomorphic to that of N − 1 qubits, making

StR(A) = EffR(A) equivalent to the direct sum of two N − 1 qubit state spaces,

with

DN lfms = 2DN−1qubits =
1

2
DN qubits = 22N−1 . (24)

A general element of StR(A) = Herm
(
F 0

N

)
⊕ Herm

(
F 1

N

)
has a block diagonal

form, that characterizes also the actual sets of states and effects: reordering the

basis of the Fock space FN in such a way that all the even vectors precede all the
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odd ones, one has that for every state ρ ∈ St(A) and every effect a ∈ Eff(A)

ρ =

(
ρ0 0

0 ρ1

)
, ρi ≥ 0 , Tr[ρ0] + Tr[ρ0] ≤ 1 ,

a =

(
a0 0

0 a1

)
, 0 ≤ ai ≤ I2N−1 ,

corresponding to St(A) = Conv[(St(A) ∩ Herm(F 0
N )) ∪ (St(A) ∩ Herm(F 1

N ))] and

St(A) = Conv[(Eff(A)∩Herm(F 0
N ))∪ (Eff(A)∩Herm(F 1

N ))], with Conv(X) repre-

senting the convex hull of the set X .

Notice that, thanks to the definition of Eq. (12) the Fock space F (N) is iso-

morphic to a N -qubit Hilbert space, by the trivial identification of the occupation

number basis |s1, . . . , sN〉F with the qubit computational basis |s1, . . . , sN 〉Q of

eigenvectors of the Pauli matrices σz
i with 1 ≤ i ≤ N . Hence the two parity sectors

St(A) ∩ Herm(F i
N ) are actually isomorphic to the (N − 1)-qubit states set, with

pure states given by the rank one projectors |Ψ〉〈Ψ| with |Ψ〉 normalized superposi-

tion of Fock vectors belonging to F i
N , while the two sectors Eff(A)∩Herm(F i

N ) are

isomorphic to the (N − 1)-qubit effects set, whose atomic elements coincide with

pure states.

Proposition 3.3. Let A, B be two N -lfm systems. Then, transformations from A

to B are CP maps from St(A) to St(B).

Proof. Since the parity superselection implies the presence of the two parity sectors

St(A) ∩ Herm(F i
N ) with i = 0, 1, we have that an arbitrary transformation T ∈

Transf(A,B) can be written as T = T00 + T01 + T10 + T11, with

Txy : St(A) → St(B)

|ρ) 7→




Txy|ρ) ∈ St(A) ∩ Herm(F y

N ) if |ρ) ∈ St(A) ∩ Herm
(
Fx

N

)
,

0 if |ρ) ∈ St(A) ∩ Herm(F x̄
N ) .

Since St(A) ∩ Herm(F 0
N ) ∼ St(A) ∩ Herm(F 1

N ) ∼ St(B) with B a N − 1 qubits

system, we have that all the Txy with x, y = 0, 1 are actually quantum maps from

N − 1 to N − 1 qubits, i.e. CP maps.

Since we are admitting the no-restriction hypothesis, all the transformations

with Kraus operators being superpositions of products of either an even number or

an odd number of field operators belong to the theory (since they are admissible).

Finally, every admissible transformation can be dilated to a single-Kraus one thanks

to the following proposition.

Proposition 3.4. Every multi-Kraus transformation can be dilated to a single-

Kraus one.
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Proof. Let T =
∑

i∈ηE
Ei ·E†

i +
∑

i∈ηO
Oi ·O†

i be a transformation of the N -lfm

system A, with Ei, Oi even and odd Kraus operators respectively. We want to show

that we can find T̃ = T̃ · T̃ † acting on AB with B a M -lfm system and a state

|σ) ∈ St(B) such that

A T A =
A

T̃
A

����σ B B ����e
. (25)

In a K-lfm system there are 2K−1 Fock vectors of Eq. (12) involving an even

number of fields (as well as 2K−1 involving an odd number of them). An even Fock

vector |ei〉 can be written as Ẽi|Ω〉, with Ei an operator involving an even number

of fields (similarly we have |oi〉 = Õi|Ω〉 for the odd ones). We set B to be aM -lfm

system with M := max[ceiling(log2 |ηE|), ceiling(log2 |ηO|)]+1: in this way B is just

big enough to allocate a number of even and odd Fock vectors equals respectively

to the number of even and odd Kraus operators appearing in T . Moreover, let |σ)
be the vacuum state ofM lfms, then a dilation of T is given by the transformation

T̃ with even single-Kraus

T̃ =
∑

i∈ηE

EiẼi +
∑

i∈ηO

OiÕi , (26)

where Ẽi and Õi are the even and odd field operators defining the even and odd

orthonormal Fock vectors for the system B. Let us show the equality of Eq. (25),

namely

ρ
?>
89

C

A T A
=

ρ
?>
89

C

A

T̃
A

����σ B B ����e
, (27)

for an arbitrary system C of P lfms and an arbitrary state |ρ) ∈ St(CA). The lhs

of Eq. (27) is given by
∑

i∈ηE

EiρE
†
i +

∑

i∈ηO

OiρO
†
i .

On the other hand, being τ := |ρ) ⊗ |σ) = ρ
∏M

i=1 ϕ̃iϕ̃i
†, with ϕ̃i, ϕ̃i

† the field

operators on the subsystem B, the rhs of Eq. (27) is

TrB[T̃ τ T̃
†] =

∑

j,k∈ηE

TrB

[
EjẼj τ Ẽ

†
kE

†
k

]
+
∑

j,k∈ηO

TrB

[
OjÕj τ Õ

†
kO

†
k

]

+
∑

j∈ηE

∑

k∈ηO

{
TrB

[
EjẼj τ Õ

†
kO

†
k

]
+TrB

[
OkÕk τ Ẽ

†
jE

†
j

]}

=
∑

j,k∈ηE

TrB

[
EjρE

†
kẼ

†
k

M∏

i=1

ϕ̃iϕ̃i
†Ẽj

]
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+
∑

j,k∈ηO

TrB

[
OjρO

†
kÕ

†
k

M∏

i=1

ϕ̃iϕ̃i
†Õj

]

−
∑

j∈ηE

∑

k∈ηO

{
TrB

[
EjρO

†
kÕ

†
k

M∏

i=1

ϕ̃iϕ̃i
†Ẽj

]

− TrB

[
OkρE

†
j Ẽ

†
j

M∏

i=1

ϕ̃iϕ̃i
†Õk

]}
.

Due to the orthogonality relation between the Fock vectors, Eq. (17) shows that

the previous equation is equal to Eq. (27). Notice that with a similar procedure we

could have dilated T to an odd single-Kraus transformation.

4. Informational Features

In this section, we derive the consequences of the parity superselection on the struc-

ture of fqt. We will explore the tomography of Fermionic states (which results to

be nonlocal), the properties of Fermionic entanglement (which exhibits differences

with respect to the quantum case), and some issues regarding the computation in

the fqt.

First of all we introduce the Jordan–Wigner isomorphism, which will be useful

to compare fqt with qt and to address the issue of simulation.

4.1. The Jordan Wigner map

Thanks to Eq. (12), the Fock space FN and Hilbert space of N qubits (C2)
⊗N

are

isomorphic. A simple way to map unitarily an orthonormal basis of the former to

an orthonormal basis of the latter is

|s1, . . . , sN 〉F U−→ |s1, . . . , sN 〉Q ,

where |s1, . . . , sN〉Q is the joint eigenvector of the qubit operators σz
j with j =

1, . . . , N . Notice that such an encoding necessarily depends on the chosen ordering

for the lfms in Eq. (12). Indeed, had we chosen a different ordering π ∈ SN in

Eq. (12) we would have got the Fock vectors

|s1, . . . , sN 〉πF :=
(
ϕ†
π(1)

)sπ(1) · · ·
(
ϕ†
π(N)

)sπ(N) |Ω〉 ≡ (−1)sign(π)|s1, . . . , sN 〉F ,

and the new unitary map would have been

|s1, . . . , sN 〉πF
Uπ

−→ |s1, . . . , sN 〉Q .

For a given ordering π the map Uπ induces a *-algebra isomorphism between

the car algebra of the fields and the algebra of the Pauli matrices {σα
j } known
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as Jordan–Wigner transform (jwt). For example, for a given ordering π the jwt

gives

ϕi → Jπ(ϕi) =

π(i−1)∏

k=π(1)

σz
kσ

−
π(i) , with σ±

k :=
σx
k ± iσy

k

2
.

From the previous equation, we notice that under jwt a single lfm field operator is

in general mapped to a many qubits operator. This is a general property of the jwt

regardless the number of lfms involved. For instance, the two-lfm field operator

ϕ†
iϕj is mapped under a jwt to

ϕ†
iϕj → Jπ(ϕ

†
iϕj) = σ+

π(i)

∏

π(i)<k<π(j)

σz
kσ

−
π(j) ,

namely the corresponding qubit operator involves more than two subsystems, the

only exception when the chosen ordering gives π(j) = π(i) + 1.

In the following, we will denote by J the jwt representation corresponding to

the trivial ordering permutation. Under the trivial ordering, the Pauli matrices can

be expressed in terms of the Fermionic operators ϕ1, . . . , ϕN as follows

σx
i = σz

1 · · ·σz
i−1J

(
ϕi + ϕ†

i

)
, (28)

σy
i = −iσz

1 · · ·σz
i−1J

(
ϕi − ϕ†

i

)
, (29)

σz
i = J

(
ϕ†
iϕi − ϕiϕ

†
i

)
. (30)

Notice that, the parity superselection rule in the Fock space FN is trivially

translated in the qubit space thanks to the jwt; i.e. defining total occupation number

for the qubit vector |s1, . . . , sN 〉Q as the sum
∑

i si, the Wigner superselection

forbids states that are projections on superposition of qubit vectors with total

occupation numbers different modulo 2.

4.2. Bilocal tomography

In the following, we exploit the jwt to represent the states of the fqt. For the sake

of simplicity, we will drop the J symbol when this causes no confusion.

Thanks to Sec. 3, we know that fqt is the parity superselected version of the

qt of qubits. Using the generalized theory of superselected opt developed in Sub-

sec. 2.2, we can see that fqt can be regarded as a minimal superselection of qt:

Proposition 4.1. fqt is a minimal superselection of qt with the following linear

constraints on the qubit system B

St(σ(B)) := {ρ ∈ St(B); Tr[σxρ] = Tr[σyρ] = 0} . (31)

Proof. Let A and B be a one-lfm and a one-qubit system, respectively. We have

noticed already that, due to the parity prescription, A has only two pure states
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|0〉〈0|, |1〉〈1|. Then the density matrices ρ ∈ St(A) shall be diagonal

Tr[σxρ] = Tr[σyρ] = 0 , (32)

showing that the superselection on the elementary systems is as in Eq. (31) with

A = σ(B) , DA = DB − V σ
B , V σ

B = 2 .

Now we have to show that the whole fqt is built bottom-up extending in the

minimal way the constraint (31) on the composite systems. Let BN , BM be two

systems made of N and M qubits respectively. According to Definition 2.5, we can

simply check that fqt achieves the lower bound of Eq. (4),

V σ
BNBM

= DBN
V σ
BM

+DBM
V σ
BN

− 2V σ
BN
V σ
BM

. (33)

Using Eq. (24), we have V σ
BN

= 1
2DBN

and V σ
BM

= 1
2DBM

, hence Eq. (33) is

satisfied.

Since qt is local-tomographic, thanks to Proposition 2.2 the fqt is maximally

bilocal-tomographic. This can also be verified counting the number of independent

local and two-local effects for a system of N lfms and noticing that it is exactly

its states space dimension:

⌊N/2⌋∑

k=0

(
N

2k

)
DN−2k

1 lfm
D̃k

2 lfms = 22N−1 = DN lfms .

We emphasize that fqt provides an example of a bilocal-tomographic theory

whose systems do not satisfy the dimensional prescription in Ref. 23. Indeed, after

showing that the dimension of the nonlocal component of a bipartite system D̃AB =

DAB − DADB can be factorized as D̃AB = LALB, and assuming that the two

functions

DA + LA , DA − LA ,

are strictly increasing functions of the number of perfectly discriminable states dA,

the authors of Ref. 23 prove that in a bilocal-tomographic theory, the dimension of

the system A must be

DA =
1

2
(drA + dsA) , (34)

for some integers r, s satisfying r ≥ s > 0. This is not true for the Fermionic

computation where for example DA = 8 cannot be achieved in this way. The strict

monotonicity of the function DA−LA is too restrictive and excludes the Fermionic

case from the set of admissible bilocal-tomographic theories, since we have DA −
LA = 0 for any system A made of an arbitrary number N of lfms.

Not satisfying local tomography, the fqt does not satisfy the property of

Remark 2.1 in Subsec. 2.1. Indeed consider the unitary maps on a single lfm system

given by I, σx, σy, σz. Being |0〉, |1〉 the only pure normalized states of a single
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lfm, the maps σx and σy (and similarly I and σz) are equal when evaluated on a

one-lfm system A; pictorially:

 '!&ρ A σx A =  '!&ρ A σy A , ∀|ρ) ∈ St(A) .

We need a n-lfm state with n ≥ 0 to verify that the two maps σx and σy are indeed

different; e.g. considering |Ψ〉 = α|00〉+ β|11〉 we get σx ⊗ I|Ψ〉 6= eiγσy ⊗ I|Ψ〉 for
every γ ∈ R; pictorially

Ψ
?>
89

A σx A

B
6= Ψ

?>
89

A σy A

B
.

4.2.1. Other superselected quantum theories

It is worth mentioning that fqt is not the unique minimal superselection of qt.

Another example is given by the rqt defined23 as the restriction of the quantum

case to real matrices. The elementary system of rqt, with two perfectly distin-

guishable states, is denoted rebit and its convex set of states is the disk obtained

by the equatorial section of the qubit. According to Definition 2.4, the rqt is a

superselection of the standard qt, being the requirement of reality of a quantum

state ρ given by the linear constraint ρ − ρT = 0, with T denoting transposition

with respect to a fixed basis taken as real. Hence, if A is the multipartite system of

N rebits having Hilbert dimension dA = 2N , the dimension of StR(A) is given by

DA = dA(dA + 1)/2 .

Thus, if B is a system of N qubits, one has A = σ(B) where the number of linear

constraints for the system A is given by

V σ
A = DB −DA .

One can easily check that also rqt is minimally superselected; indeed, for a couple

of systems A, C of N and M rebits respectively, the number of constraints for the

composite system AC

V σ
AB =

1

2
dAdB(dAdB − 1)

saturates the lower bound of Eq. (5). Hence, from the linear constraint of a one-rebit

system Tr[σyρ] = 0, we build the whole rqt by taking the minimal extension of

this constraint to the composite systems. Therefore, according to Proposition 2.2,

the rqt is maximally bilocal-tomographic (see also Ref. 23).

In Proposition 2.2, we have considered the extremal cases of minimal and

maximal superselection, which lead respectively to bilocal- and local-tomographic

theories. On the other hand, there is a full range of possible constraints between

these two cases — i.e. V σ
AB strictly included in the bounds of Eqs. (4) and (5) —

where one can find superselected theories with different degrees of discriminability.
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As already pointed out at the end of Subsec. 4.1, the parity superselection of

the fqt is trivially translated in the qt representation by allowing only pure qubits

states that are projections on superpositions of vectors with total occupation num-

bers equal modulo 2. A more general scenario is given by considering a number

superselected qt, namely superselected qt theories of qubits where the admissi-

ble pures states are projections on superpositions of vectors with the same total

occupation numbers.

Proposition 4.2. There is no n ∈ N such that a number superselected qt is n-

local-tomographic.

Proof. For any n, we will present a suitable composite system B := B1 · · ·BnBn+1

and a couple of state |ψ+), |ψ−) ∈ St(B) we cannot distinguish by means of n-local

effects (see Definition 2.3). Set n to be an arbitrary integer, then for 1 ≤ i ≤ n

each subsystem Bi is the elementary system of the number superselected qt, while

Bn+1 is the parallel composition of n of such elementary systems. |ψ+), |ψ−) are

the pure states corresponding to the projections on the Hilbert space vectors

|ψ±〉 := |0〉B1 |0〉Bn
|1, 1, . . . , 1〉Bn+1 ± |1〉B1 |1〉Bn

|0, 0, . . . , 0〉Bn+1 .

There is no n-local effect able to discriminate the two states, i.e. no discriminating

effect has the form E(n) ⊗E(1), with E(n) an effect for n subsystems (hence either

E(n) ∈ Herm((C2)⊗n) or E(n) ∈ Herm((C2)⊗(n−1) ⊗ (C2)⊗n)), and E(1) a one-

effect (and so either E(1) ∈ Herm((C2)⊗n or E(1) ∈ Herm(C2). Indeed, since the

two states differ only in the sign of the off-diagonal terms, a suitable effect to tell

them apart should have a non null component |ψ+〉〈ψ−| = |0〉〈1|B1 ⊗· · ·⊗ |0〉〈1|Bn
⊗

|1 · · · 1〉〈0 · · · 0|Bn+1 . However |ψ+〉〈ψ−| cannot be spanned by the tensor product of

the two effects E(1), E(n), since due to the superselection rule each E(1), E(n) have

just the matrix elements |s1, . . . , sk〉〈t1, . . . , tk| with
∑
si =

∑
ti.

The previous result shows that a qt with number superselection has a cumber-

some tomographic property: given a n-partite system there is always a couple of

states that cannot be discriminated without resorting to a nonlocal effect involving

all the subsystems.

4.3. Fermionic entanglement

Entanglement is commonly regarded as the peculiar trait of qt and it has been

studied extensively also in relation to the other quantum features. A pure state

of a pair of quantum systems is called entangled if it cannot be factorized, while

a mixed state is entangled if it cannot be written as a mixture of factorized pure

states, i.e. it is not separable. The main goal in the study of entanglement is to

find criteria for testing whether a state is separable or not (see for example the

partial transpose condition proposed by Peres in Ref. 28), and to provide consis-

tent measures for quantifying entanglement. Among the measures of entanglement
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considered in the literature we can cite the entanglement of formation,29–32 the

distillable entanglement,33 and the relative entropy of entanglement34 (for a review

on the entanglement measures see Ref. 35).

Despite entanglement in qt has been largely investigated, the nature of entangle-

ment in general opts is almost an unexplored field. Because of the physical relevance

of the Fermionic field some authors7 have recently wondered how separable states

can be defined for Fermionic systems, taking into account the nonlocal action of

mode creation and annihilation operators. Here we study the entanglement in fqt

and show how the parity superselection derived in Subsec. 3.4 affects the features

of the resulting theory.

While the notion of entangled state as a nonseparable state — i.e. a state that

cannot be prepared by locc — can immediately be generalized to arbitrary opts,

it is not clear whether this notion is operationally relevant in the absence of local

tomography or not. For example, it may be that in order to discriminate an entan-

gled state from a separable one, one needs bipartite effects, and then one cannot use

this kind of entanglement to violate Bell-like inequalities. The nontriviality of the

operational notion of Fermionic entanglement has been the focus of Ref. 7. There

the authors propose four different definitions of entanglement for Fermionic systems

and provide a careful analysis of their mutual relations. Fortunately, as we will see

in this section, it turns out that in fqt any entangled state can be discriminated

from any separable one by local effects, provided that two copies of the state are

available, thus establishing nonseparability as the unique notion of entanglement

in fqt.

Once an opt is provided with a notion of “entangled state,” the amount of

entanglement in a given state of the theory should be quantified in operational

terms. Having the notion of entanglement of formation a clear operational inter-

pretation, here we will extend this measure of quantum entanglement to the

Fermionic case. The entanglement of formation, introduced in Refs. 29 and 30,

focuses on the resources needed in order to generate a given amount of entan-

glement when state manipulation is restricted to locc. In qt, all measures of

entanglement for bipartite states refer to a standard unit: the ebit, which is the

amount of entanglement of a bipartite singlet state. The entanglement of formation

of a quantum state ρ represents the minimum number of ebits needed to achieve a

decomposition of ρ into pure states by means of locc, where the minimization is

over all possible decompositions. The constraint of locc plays a fundamental role

in order to view entanglement as a resource. Indeed, the amount of entanglement

does not increase under locc transformations, inducing a hierarchy of states based

on their “usefulness” under locc operations. Accordingly a state is called maxi-

mally entangled when it can be transformed into any other by means of locc. In

qt, we can find a single two-qubit state that can be used to achieve all the other

two-qubit states by means of locc: the singlet state. As soon as we increase the

dimension of quantum systems, it is no longer possible to identify a unique state we

can use to get all the others.25 The customary notion of maximally entangled state
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has to be superseded by that of mes of n-partite states, namely the set of states

maximally useful under locc manipulation, i.e. any state outside this set can be

obtained via locc from one of the states within the set, and no state in the set can

be achieved from any other state via locc. It is still not clear in qt whether the

mes is stable once we study the asymptotic quantification of entanglement. In a

general opt, we cannot expect that the mes for bipartite states reduces to a unique

maximally entangled state, as in qt for bipartite qubit entanglement.

Allowing for classical communication in locc implies that locc protocols are

not completely local, introducing a complicate structure whose complete charac-

terization is still an open problem in qt. A full theory of Fermionic entanglement

would require the introduction of similar notions, involving a complete analysis

of the transformations of states under locc, which goes beyond the scope of this

paper. Nevertheless we can find some relevant features of entanglement in fqt, and

show that fqt and qt are very different from the entanglement point of view.

Here is a brief summary of the results presented in this section:

(a) nonseparability is the unique notion of entanglement in fqt;

(b) there is a simple linear criterion for testing the full separability of states;

(c) Fermionic locc correspond to quantum locc with a polynomial overhead of

classical communication;

(d) mes are needed also for bipartite states;

(e) there are mixed states that are not separable and with maximal entanglement

of formation;

(f) there are states with maximal entanglement of formation that do not belong to

a mes;

(g) the monogamy of entanglement is violated (taking as measure the Fermionic

concurrence in relation with the Fermionic entanglement of formation).

Some of these results can also be found in Ref. 24.

Again, in the following we exploit the jwt to represent the states of the fqt

and we will drop the J symbol for the sake of clarity.

4.3.1. Nonseparability as the unique notion of Fermionic entanglement

We show that in fqt any entangled state can be discriminated from any separable

one by local effects, provided that two copies of the state are available. This feature

stems from Theorem 2.1 and indicates nonseparability as the unique notion of

entanglement in fqt.

Suppose that two states ρ and σ in St(AB) are different. This implies that

there exists an effect a ∈ Eff(AB) such that (a|ρ) 6= (a|σ). Either a is in EffR(A)⊗
EffR(B), in which case local measurements are sufficient to discriminate between

ρ and σ, or a has a genuinely bipartite term in ẼffR(AB) := EffR(AB)/EffR(A) ⊗
EffR(B), where the quotient is modulo the equivalence relation a ∼ b iff a − b ∈
EffR(A)⊗ EffR(B). This implies that if we have to discriminate between ρ⊗ ρ and
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σ⊗σ, we need an effect in ẼffR(AB)⊗ ẼffR(A
′B′). Now, by Theorem 2.1, this space

is also spanned by functionals in ẼffR(AA
′) ⊗ ẼffR(BB

′). Finally, this means that

a factorized effect c ⊗ d with c ∈ Eff(AA′) and d ∈ Eff(BB′) is sufficient to detect

entanglement between Alice’s systems AA′ and Bob’s BB′. Any state that is not

separable is then actually entangled in any operational sense, namely its statistics

on locc effects is different from that of any separable state. Notice also that two

copies of the state are sufficient to detect entanglement.

4.3.2. Full separability criterion for multi-lfm states

Unlike qt, fqt admits a linear criterion for establishing whether a state of many

lfms is fully separable. By definition, a state of N lfms is fully separable if it can

be written as a convex combination of product states, namely

ρ =
∑

i=1

piρ
(i)
1 ⊗ ρ

(i)
2 ⊗ · · · ⊗ ρ

(i)
N , with

∑

i

pi = 1 , pi ≥ 0 . (35)

Since the local states of the ith lfm are convex combination of |0〉〈0|i and |1〉〈1|i,
an arbitrary N lfms state is fully separable if and only if it is diagonal in the Fock

basis of vectors |s1, . . . , sN 〉. If we consider now a state of a system A made of N

composite systems A1, A2, . . . ,AN , by definition a state of A is separable if it can

be expressed as in Eq. (35), with ρ
(i)
j ∈ St(Aj). Then it is clear that a necessary

condition for separability is that the full state ρ commutes with all local parity

operators. Moreover, a state ρ ∈ St(A) that commutes with local parity operators

is separable if and only if the projections of ρ in every parity sector correspond to

density matrices of quantum separable states.

4.3.3. Fermionic locc

We will now show that every locc protocol in the fqt is simulated by a locc pro-

tocol in qt. Notice that we can find three classes of fqt transformations: (i) trans-

formations whose Kraus operators are even (i.e. superpositions of products of even

number of field operators), (ii) transformations whose Kraus operators are odd, and

(iii) transformations with both even and odd Kraus operators. We can then refine

every transformation T to a test {Te, To} where Te has only even Kraus opera-

tors, while To has only odd ones. Thanks to this decomposition, we can prove the

following lemma.

Proposition 4.3. Every Fermionic locc corresponds to a quantum locc on

qubits under jwt.

Proof. Let C = C1 · · ·CN be the Fermionic system made of N lfms, and let A

be one subsystems A := Ci1 · · ·CiM with ij ∈ χA ⊆ ΓN := {1, . . . , N} made of M
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lfms. Consider now the most general bipartite locc on C between Alice controlling

the subsystem A and Bob controlling the subsystem B complementary to A (i.e.

C = AB). One can always sort the lfms in the Jordan–Wigner representation so

that the first N −M lfms correspond to Bob’s subsystem B. Denoting with EX

and OX an even and an odd Kraus operator for the subsystem X, the jwt maps

single-Kraus transformations local on A and B in the following way

J(OA) =
⊗

i∈ΓN\χA

σz
i ⊗O′

A , J(EA) = IB ⊗ E′
A , (36)

J(OB) = O′
B ⊗ IA , J(EB) = E′

B ⊗ IA , (37)

where O′
X, E

′
X correspond to Kraus operators of quantum maps on the subsystem

X. Equations (36) and (37) show that if Alice and Bob perform a Fermionic locc

protocol, this is equivalent to a quantum locc protocol in the jwt representa-

tion. Indeed, whenever Alice needs to apply a Fermionic transformation T , she can

achieve it in the qubit case by performing the test {Te, To}, and then she just needs

to tell Bob whether the event o or e occurred: in this way Bob knows if he has to

apply a string of σz operators locally on his subsystem or not. On the other hand,

Bob’s Fermionic transformations are local also in the qubit case. We conclude that

the jwt mapping preserves the locc nature of bipartite transformations, with an

overhead of one classical bit at each round in order to communicate the parity of

the Kraus operators.

In general, one can consider an n-partite locc. In this case let A1, . . . ,An be the

n subsystems partitioning C, and let us sort the lfms such that the ones belonging

to the system Ai precede the ones of Aj if i < j. The ith party needs a bit of

classical information to communicate to the (i − 1)th party the total parity of all

the Kraus operators occurred up to the (n− i+1)th round, in this way the (i−1)th

party knows whether he needs to apply the string of σz’s on his subsystems or

not. Iterating this process, we find that a Fermionic n-partite locc corresponds

under jwt to an n-partite qubit locc with an overhead of n − 1 bits of classical

information.

4.3.4. Maximally entangled sets for two lfms

As already stated, the concept of “maximally entangled state” has to be super-

seded by that of mes25 even for two lfms. In fqt, a single lfm ρ is operationally

equivalent to a bit, so we can perform locally only the unitary gates with Kraus

σx, σy , sinϑI + i sinϑσz , ϑ ∈ [0, 2π) ,

which do not allow to transform the vectors |0〉, |1〉 into any superposition. Thus,

given a state |Ψ〉〈Ψ| with Schmidth decomposition |Ψ〉 = α |00〉+β |11〉, one cannot
change the magnitude of the coefficients α and β by local unitary operations. By

acting locally, one can simply change the parity sector by means of the Kraus σx,
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σy (which locally are the same), and apply an arbitrary relative phase exp(2iϑ) via

the Kraus sinϑ I + i sinϑ σz .

We can moreover get any arbitrary factorized state of the fqt — i.e. projections

on |00〉, |01〉, |10〉, |11〉 — from any state in the mes by means of locc opera-

tions: Alice measures her lfm in the computational basis by the Kraus operators

{|0〉〈0|, |1〉〈1|} and conditionally on the outcome she tells Bob the local operation

he has to apply on his lfm — i.e. the identity with Kraus I or the bit flip with

Kraus σx. Clearly, one cannot do the opposite. Hence, examples of mes’s for two

lfms are given by MES0, MES1, which are defined as

MES0 := {|Ψα,β〉〈Ψα,β | | |Ψα,β〉 := α |00〉+ β |11〉 , α, β > 0} ,

MES1 := {|Ψα,β〉〈Ψα,β | | |Ψα,β〉 := α |01〉+ β |10〉 , α, β > 0} .

4.3.5. The Fermionic entanglement of formation

In the usual qt scenario, the entanglement cost of a given, generally entangled,

state ρ ∈ St(AB) shared by distant observers Alice and Bob quantifies the amount

of resources needed by the two parties in order to create the state ρ. Consider then

the protocol

|Σ〉〈Σ|⊗m locc−−−→ ρ⊗n ,

where m singlet states |Σ〉〈Σ| are converted into n copies of the target state ρ

by means of locc. Perfect transformation by locc is usually impossible and one

requires it only asymptotically, say in the limit where the number of created copies

of ρ approaches infinity. The entanglement cost Ec is thus defined as the optimal

asymptotic ratio r = m/n. The last one is very difficult to compute, while the

entanglement of formation, which also has an operational interpretation, can be

more easily computed in terms of the density matrix ρ.

The definition of entanglement of formation is based on the result of Ref. 36

for the entanglement cost of pure states. In the paper, the authors show that the

entanglement cost of a pure state ρ = |Ψ〉〈Ψ| coincides with the von Neumann

entropy of either of its marginal states, say Ec(|Ψ〉〈Ψ|) = S(TrA |Ψ〉〈Ψ|). Therefore
to produce |Ψ〉〈Ψ|⊗n one needs m ≈ nS(TrA |Ψ〉〈Ψ|) singlets with the equality

achieved in the asymptotic limit. The entanglement of formation of a mixed state

ρ ∈ St(AB) is then defined as

E(ρ) := min
Dρ

∑

i

piS(TrA |Ψi〉〈Ψi|) , (38)

where

Dρ :=

{
{pi, |Ψi〉}

∣∣∣∣∣ρ =
∑

i

pi|Ψi〉〈Ψi|
}
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is the set of all the pure decompositions of the mixed state ρ. The operational

interpretationb of the entanglement of formation has been pointed out by Wootters

in Ref. 32, where it is noticed that

E(ρ) ≡ lim
n→∞

mn(ρ)/n , (39)

with mn(ρ) the minimum number of singlet states needed by two parties to pre-

pare via locc random tensor products
⊗n

l=1 |Ψil〉〈Ψil | of states in a decomposition

{pi, |Ψi〉〈Ψi|} of ρ, sampled by the distribution p(i1, . . . , in) = p(i1) · · · p(in), mini-

mized over all possible decompositions:

|Σ〉〈Σ|⊗m locc,Dρ−−−−−→ ρ⊗n .

In Refs. 30 and 31, a formula is also provided for evaluating the entanglement

of formation (38) of a state ρ just in terms of its density matrix. For a mixed state

ρ of two qubits, one has

E(ρ) = E(C(ρ)) , (40)

with E(x) := h
(

1+
√
1−x2

2

)
, h the binary Shannon entropy, and the expression of

the concurrence C(ρ) depending only on the density matrix ρ (see Refs. 30 and 31

for the explicit formula of the concurrence). As for the entanglement of formation,

also the concurrence of a generally mixed state ρ is given by

C(ρ) := min
Dρ

∑

i

piC(|Ψi〉〈Ψi|) . (41)

Both the entanglement of formation and the concurrence are zero if and only if the

state ρ is separable, and for two qubits they reach the maximum value 1, if and

only if ρ is a maximally entangled state.

In analogy to the quantum case we can define the operational Fermionic entan-

glement of formation. Given a Fermionic state ρ = p0ρ0 + p1ρ1 its entanglement of

formation is defined as

EF(ρ) = lim
n→∞

mn(ρ)/n , (42)

withmn(ρ) the minimum number of states in a Fermionicmes needed by two parties

to prepare via Fermionic locc random tensor products
⊗n

l=1 |Ψil〉〈Ψil | of states in

bNotice that the entanglement of formation of a mixed state ρ is not proven to correspond to its
entanglement cost, and in general it is E(ρ) ≥ Ec(ρ). However, in Ref. 37 it has been shown that

Ec(ρ) = lim
n→∞

E(ρ⊗n)
/

n ,

where the right hand side of the equality is the so called regularized entanglement of formation.
If the entanglement of formation turns out to be additive, the entanglement cost will be equal to
the entanglement of formation.
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a decomposition {pi, |Ψi〉〈Ψi|} of ρ, sampled by the distribution p(i1, . . . , in) =

pi1 · · · pin , minimized over all possible decompositions:

m⊗

k=1

|Σk〉〈Σk| (|Σk〉〈Σk| ∈ mes)
loccF,DF

ρ−−−−−−→ ρ⊗n . (43)

It is important to notice that the Fermionic entanglement of formation of a mixed

state corresponds to the convex-roof extension of the Fermionic entanglement of

formation of pure states, as follows

EF(ρ) = min
DF

ρ

∑

i

piEF (|Ψi〉〈Ψi|) , (44)

where DF
ρ is the set of all the pure decompositions of ρ satisfying the parity super-

selection rule.c For pure states, we have the following result.

Proposition 4.4. For pure states |Ψ〉〈Ψ|, the function

ẼF (|Ψ〉〈Ψ|) := S(TrA |Ψ〉〈Ψ|) (45)

is a lower bound for the Fermionic entanglement of formation (42).

Proof. First notice that EF(|Ψ〉〈Ψ|) in Eq. (42) corresponds to the maximal rate of

conversion of states in the Fermionic mes to the state |Ψ〉〈Ψ| via fermionic loccs,

as in Eq. (43). Now consider the following protocol for qubit states

|Σ〉〈Σ|⊗m′ locc−−−→
m⊗

k=1

|Σk〉〈Σk| (|Σk〉〈Σk| ∈ mes)
loccF−−−−→ |Ψ〉〈Ψ|⊗n , (46)

where m′ quantum singlets are converted via quantum locc into m states in the

Fermionic mes that are then converted at a rate Eop
F (|Ψ〉〈Ψ|) to n copies of the

target state |Ψ〉〈Ψ| via Fermionic locc. Since any Fermionic state in the mes has a

quantum entanglement of formation smaller than (or equal to) 1, the protocol (46)

allows for a conversion rate

m′

m
EF(|Ψ〉〈Ψ|) ≤ EF(|Ψ〉〈Ψ|) . (47)

Moreover, since any Fermionic locc is also a quantum locc (see Proposition 4.3),

the protocol (46) is a particular instance of the general protocol for locc conversion

of m′ singlet states to n copies of the target state |Ψ〉〈Ψ|, and then we have

ẼF(|Ψ〉〈Ψ|) = E(|Ψ〉〈Ψ|) ≤ m′

m
EF(|Ψ〉〈Ψ|) ≤ EF(|Ψ〉〈Ψ|) . (48)

This proves the thesis.

cIn Ref. 38, the authors do the same for rqt considering the decompositions DR
ρ on real states.
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Now, if we extend the definition of ẼF(ρ) to mixed states by convex-roof exten-

sion, we have

ẼF(ρ) := min
DF

ρ

∑

i

piẼF(|Ψi〉〈Ψi|) = p0E(ρ0) + p1E(ρ1) , (49)

CF(ρ) := min
DF

ρ

∑

i

piC(|Ψi〉〈Ψi|) = p0C(ρ0) + p1C(ρ1) , (50)

where we introduced the quantity CF(ρ) that extends the notion of concurrence to

the Fermionic case.d The last equalities in Eqs. (49) and (50) are obtained upon

noticing that the state ρ admits the unique parity decomposition ρ = p0ρ0 + p1ρ1,

with p0+p1 = 1 and ρ0, ρ1 states in the even and odd parity sector respectively, and

that all decompositions in DF
ρ shall preserve the probabilities p0 and p1. Moreover,

since DF
ρi

≡ Dρi
, we have ẼF(ρi) = E(ρi) and CF(ρi) = C(ρi). Notice that for a

pure state |Ψ〉〈Ψ|, we have CF (|Ψ〉〈Ψ|) = C(|Ψ〉〈Ψ|).
Now, thanks to Proposition 4.4, we clearly have

∑

i

piẼF(|Ψi〉〈Ψi|) ≤
∑

i

piEF(|Ψi〉〈Ψi|) , (51)

for every Fermionic pure state decomposition {pi, |Ψi〉} of ρ, and then by Eq. (44)

ẼF(ρ) ≤ EF(ρ) . (52)

Notice that, unlike in qt
30 and in rqt,38 the quantities EF and CF do not

satisfy the relation EF(ρ) = E(CF(ρ)) (see Eq. (40)). On the other hand it is

ẼF(ρ) ≥ E(CF(ρ)), and for a state Φ with CF(Φ) = 1 we have ẼF(Φ) = E(CF(Φ)) =

1. Therefore, when CF(ρ) = 1, the quantity ẼF coincides with the operational

Fermionic entanglement of formation EF.

4.3.6. Mixed states with maximal entanglement of formation

Using the quantities EF and CF, and the separability criterion, we can show that

in fqt there are mixed states with maximal entanglement of formation. Consider

the state

Φ :=
1

4
(I ⊗ I + σx ⊗ σx) , (53)

corresponding to the mixture with p = 1/2 of the Fermionic pure states |Ψ0〉〈Ψ0|
and |Ψ1〉〈Ψ1| with

|Ψ0〉 =
1√
2
(|00〉+ |11〉) , |Ψ1〉 =

1√
2
(|01〉+ |10〉) .

dThe expressions (49) and (50) were already proposed in Ref. 7. Here, we show that Eq. (49)
provides a lower bound for the Fermionic entanglement of formation.
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Despite being mixed, Φ has maximal entanglement of formation and concurrence

EF(Φ) =
1

2
E(|Ψ0〉〈Ψ0|) +

1

2
E(|Ψ1〉〈Ψ1|) = 1 ,

CF(Φ) =
1

2
C(|Ψ0〉〈Ψ0|) +

1

2
C(|Ψ1〉〈Ψ1|) = 1 .

It is easy to verify that Φ is not separable; indeed Φ does not satisfy the separability

criterion of Subsec. 4.3.2

Tr
[
ρsep(σ

i ⊗ σj)
]
= 0 , i, j = x, y .

Other mixed maximally entangled states can be found by replacing every occurrence

of σx
i with an arbitrary linear combination of σx

i and σy
i in Eq. (53). Notice that

all these states, which have maximal entanglement of formation, do not belong to

a mes (see Subsec. 4.3.4).

Also rqt has mixed maximally entangled states. Being the rebit defined by the

linear constraint Tr[σyρ] = 0, in rqt a mixed maximally entangled state is achieved

by replacing σx with σy in the state of Eq. (53).38

Notice that the state (53) is separable in qt, since it is the mixture with p = 1/2

of the pure product states |Π+〉〈Π+| and |Π−〉〈Π−| with

|Π+〉 := |+〉|+〉 , |Π−〉 := |−〉|−〉 and |±〉 = 1√
2
(|0〉 ± |1〉) . (54)

Such a decomposition is not allowed neither in fqt nor in rqt, because of the

violation of their respective superselection rules by the vectors |±〉.

4.3.7. Violation of entanglement monogamy

The shareability of correlations between many parties is one of the main differences

between quantum and classical correlations. While in the classical information

theory correlations can be shared among arbitrary many parties, in qt a system

maximally entangled with a second system cannot share quantum correlations with

a third one. This has been dubbed the “monogamy of entanglement” and a big

effort has been devoted to its quantification: see Refs. 39–46, or Refs. 47, 48 for a

recent review on the subject.

Entanglement monogamy is usually stated by means of inequalities involving

some entanglement measures, i.e.

M(ρAB) +M(ρAC) ≤M(ρA(BC)) , (55)

where M(ρAB) is a measure of the entanglement between systems A and B. It is

worth mentioning that not every entanglement measure satisfies the inequality of

Eq. (55), so not all the entanglement measures are good indicators for monogamy.

A measure satisfying the inequality (55) is called monogamous. In Ref. 43, it has

been shown that in qt, the concurrence is monogamous and satisfies

C2(ρAB) + C2(ρAC) ≤ 1 . (56)
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Notice that, if ρAB has maximal concurrence — C(ρAB) = 1 — then ρAC must have

concurrence equal to 0.

The Fermionic entanglement (say the Fermionic concurrence) is not mono-

gamous. For instance, consider the pure state of three lfms |Φ′〉〈Φ′| with

|Φ′〉 := 1
2 (|000〉+ |110〉+ |011〉+ |101〉) . (57)

Tracing the state |Φ′〉〈Φ′| over any one of the three lfms, we find that the reduced

bipartite state is the mixed state Φ of Eq. (53), having maximal entanglement of

formation and concurrence. Therefore, in the fqt as well as in rqt
26 each pair of

subsystems can share any amount of entanglement of formation.

4.4. Fermionic computation

Recently some authors have been wondering whether models of Fermionic quan-

tum computation might support universal computation and/or exhibit different

computational power with respect to the standard quantum computational model.

As already stressed, one can build different computational models based on lfms,

according to: (i) the degree of superselection on the states (e.g. conservation of

the parity number instead of the total excitation number), and (ii) the admitted

transformations of the theory. In Ref. 1 Bravyi and Kitaev considered an lfm

computational model with a parity superselection where the unitary transforma-

tions are the parity-preserving ones (i.e. the CP maps with a single-Kraus operator

which is a linear combination of products of an even number of field operators).

They showed that such a computational model supports universal computation and

that it can be simulated by regular unitary gates of qubits with a computational

overhead that goes as the logarithm of the number of the lfms, thus proving the

computational equivalence of the two models. The same result can be extended to

the fqt presented in this paper which is the largest computational model based on

lfms satisfying the assumptions (i)–(viii) in Subsec. 3.2.

In extending the results of Ref. 1 to the fqt, we also review the original proofs for

the sake of completeness. The proofs for the fqt relies on the following observation:

unitary transformations of Fermionic quantum computation of Ref. 1 are parity-

preserving, while the fqt allows also parity-changing transformations, i.e. the sets

of transformations of the fqt are strictly larger than the ones considered in Ref. 1.

However, a parity-nonpreserving map T on N lfms — i.e. T has Kraus operators

that are linear combinations of products of an odd number of field operators — can

always be seen as the sequential composition Xi ◦Xi
−1 ◦T acting on N lfms, where

Xi is the unitary map that flips the ith lfm from occupied to unoccupied, and vice

versa. Notice that Xi
−1 ◦ T is now parity-preserving. We conclude therefore that

in the fqt a nonparity-preserving map can be seen as the sequential composition

Xi ◦ R of a parity-preserving map R and a local flip Xi.
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4.4.1. Universality of computation

We want to prove that in the fqt, there is a finite set of Fermionic gates that allows

us to build every fqt circuit. Given a system of N lfms, there are the parity-

preserving transformations and the parity changing ones, which can be written as

the sequential composition Xi ◦ R, with R parity-preserving. In Ref. 1 a universal

set Υ of lfm gates for the parity-preserving transformations is given; then it follows

that a universal set for the fqt is given by Υ ∪ {Xi} for some i ∈ {1, . . . , N}.
Let us now review the derivation of the universal set for parity-preserving trans-

formations. The proof 1 relies on the universality of computation in qt, and on the

possibility of expressing every parity-preserving lfm gate by means of qubit gates.

It is important to notice some differences between the qubit computation and the

Fermionic one. Consider a gate G acting on M qubits. Such a gate is represented

by a unitary operator G acting on (C2)⊗M . When such a gate is used in a quantum

circuit of N > M qubits, its operator representative is always given by the unitary

operator G ⊗ I, modulo a relabeling of the subsystems; more precisely since the

Hilbert space of N qubits (C2)⊗N can be identified with (C2)⊗M ⊗ (C2)⊗(N−M) by

the qubit permutation P : |s1, . . . , sN 〉Q 7→ |sj1 , . . . , sjM 〉Q ⊗ |sjM+1 , . . . , sjN 〉Q, the
action of G on the qubits sj1 , . . . , sjM is given by the operator

G̃(j1, . . . , jM ) := P−1G⊗ IP . (58)

Clearly such a property is of paramount importance for the universality of compu-

tation, since the gate G is “always” represented by the operator G irrespective of

the number of the qubits of the whole circuit, and irrespective of the specific choice

of the qubits the gate acts on.

In the lfm scenario the situation is very different due to the car. For instance,

a two-lfm gate F behaves differently depending on the lfm subsystems F it acts

on. For example, let ϕ†
1ϕ2 be a parity-preserving Fermionic operator; when it is

applied to the lfms j1, j2 of a multipartite system of N lfms it behaves differently

depending on the chosen ordering for the N subsystems, since

ϕ†
j1
ϕj2 | . . . , sj1 , . . . , sj2 , . . .〉F

= δsj1 ,0 × δsj2 ,1 × (−1)
∑j2−1

k=j1+1 sk × | . . . , 1, sj1+1, . . . , sj2−1, 0, . . .〉F .

When we represent the lfm gate ϕ†
j1
ϕj2 by means of qubits, such a difference in

behavior is taken into account by the jwt thanks to the σz
k operators at the qubit

subsystems ranging from k = j1 + 1 to k = j2 − 1. This fact has the following

consequence: a lfm operator has many qubit representations according to the total

number of lfms involved. However, whenever j1 and j2 are nearest neighbors there

is no contribution from the coefficient (−1)
∑j2−1

k=j1+1 sk and every two-lfm parity-

preserving gate acting on nearest neighbor lfms admits an unambiguous qubit

representation made of parity-preserving qubit gates (by means of the jwt). The

same result holds for one-lfm parity-preserving transformations — due to the fact
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that parity-preserving transformations are linear combinations of products of an

even number of field operators.

This allows us to represent an arbitrary two-lfm gate T (j, k) acting on the lfms

j, k (w.l.o.g. j < k) by means of qubits in an unambiguous way. Indeed, let us call by

SF(j, j + 1) the Kraus operator of the unitary transformation performing the swap

between the jth and the (j + 1)th lfm, i.e. SF(j, j + 1)ϕjSF(j, j + 1)
†
= ϕj+1,

and SF(j, j + 1)ϕj+1SF(j, j + 1)
†

= ϕj , namely SF(j, j + 1) = I − ϕ†
jϕj −

ϕ†
j+1ϕj+1 + ϕ†

j+1ϕj + ϕ†
jϕj+1. Such an operator acts in the following way:

SF(j, j + 1)| . . . , sj , sj+1, . . .〉F = (−1)j(j+1)| . . . , sj+1, sj , . . .〉F. Since the swap be-

tween the jth and the (j + 1)th qubit of a circuit is given by the swap operator

SQ(j, j + 1) : | . . . , sj , sj+1, . . .〉Q 7→ | . . . , sj+1, sj , . . .〉Q, we have that

J(SF(j, j + 1)) = SQ(j, j + 1)D(j, j + 1) ,

where D(j, j + 1) : | . . . , sj , sj+1, . . .〉Q 7→ (−1)j(j+1)| . . . , sj , sj+1, . . .〉Q is the so-

called swap defect operator. Notice that also the swap defect operator D is parity-

preserving and nearest-neighbor. Since

T (j, k) ≡ SF(k−1, k) · · ·SF(j+1, j+2)T (j, j+1)SF(j+1, j+2) · · ·SF(k−1, k) ,

(59)

we have that

J(T (j, k)) = D(k − 1, k) · · ·D(j + 1, k)SQ(k − 1, k) · · ·

× SQ(j + 1, j + 2)J(T (j, j + 1))SQ(j + 1, j + 2) · · ·

× SQ(k − 1, k)D(j + 1, k) · · ·D(k − 1, k) . (60)

Hence we have found that an arbitrary two-lfm parity-preserving operator is equiv-

alent to a Fermionic circuit involving only gates on nearest neighbor lfms (Eq. (59)),

which can therefore be represented unambiguously by the parity-preserving qubit

circuit of Eq. (60). This method works also for operators which act on more than

two lfms. Notice that the term SQ(j + 1, j + 2) · · ·SQ(k − 1, k) in Eq. (60) is just

the permutation P of Eq. (58).

Due to the equivalence between parity-preserving Fermionic gates and parity-

preserving qubit gates we only need a universal set of parity-preserving qubit gates

in order to get a universal set of Fermionic parity-preserving unitary transforma-

tions. A universal set for the qubits is given by1

Λ(eiπ/4) , Λ(σz) ≡ D , H̃ : |a, b〉Q 7→ 1√
2

∑

c

(−1)bc|a⊕ b⊕ c, c〉Q , (61)

where Λ(U) denotes the controlled U with the control system corresponding to the

first qubit.
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The proof of universality of gates in Eq. (61) proceeds as follows: (i) it is observed

that any parity-preserving qubit gate U can be considered as a block-diagonal

operators

U =

(
W0 0

0 W1

)
, (62)

where Wi acts on the parity sector Hi = (C2)⊗N−1 of the Hilbert space (C2)⊗N ;

(ii) it is shown how to get any parity-preserving operator havingW0 =W1; (iii) the

operators having W0 = I and W1 = Y , which transform the operators having

W0 =W1 to the general form of Eq. (62), are constructed.

Notice that any operator G on M − 1 qubits can be turned into a parity-

preserving one G̃ on M qubits by using an ancillary qubit:

G̃ = VM (I ⊗G)VM ,

V −1
M = VM : |s1, . . . , sM 〉Q 7→ |s1 ⊕ · · · ⊕ sM , s2, . . . , sM 〉Q .

(63)

Indeed, the unitary operator VM maps the parity sector |j〉 ⊗ Hi of M qubits

onto the subspace |i ⊕ j〉 ⊗ Hi, and then G̃ is parity-preserving, even if G is not.

Notice that if G already preserves the parity then G̃ = I ⊗ G. This is the case

of the first two operators Λ(eiπ/4) and Λ(σz) in Eq. (61), while the last universal

gate H̃ is the parity-preserving extension of the usual Hadamard gate H . Since for

every unitary G on N − 1 qubits the unitary G̃ of Eq. (63) is parity-preserving, we

have that G̃ is of the form of Eq. (62). On the other hand, one can easily check

that VM (σx ⊗ IM−1)VM = σx ⊗ IM−1, hence [σx ⊗ IM−1, G̃] = 0. Moreover, since

(σx ⊗ IM−1) |i〉 ⊗ |ξj〉 = |i⊕ 1〉 ⊗ |ξj〉, if we identify the bases |0〉 ⊗ |s1, . . . , sM−1〉
and |1〉 ⊗ |s1, . . . , sM−1〉 in the subspaces |i〉 ⊗ Hi, we have

σx ⊗ IM−1 =

(
0 I

I 0

)
,

which implies that for any M − 1-qubits gate G the parity-preserving extension G̃

has W0 =W1.

Since Eq. (63) defines a ∗ -algebra homomorphism, any universal set of gates is

mapped to a set of parity-preserving gates that is universal on the even sector. The

set of gates {Λ(eiπ/4), Λ(σz), H} is known to be universal, then the corresponding

parity-preserving set given by Eq. (61) must be universal. Notice that the homo-

morphism (63) satisfies the property: Λ̃(X) = Sc,pΛ(X̃)Sc,p where Sc,p is a swap

between the control and the parity qubits.

We conclude that the set of Eq. (61) is universal for parity-preserving unitary

gates having W0 =W1. We can use the same set to build parity-preserving unitary

operators K with W0 = I and W1 = Y to correct the first step. We add one

ancillary qubit at the end of our M qubits. Let us define the operator

Z : |s1, . . . , sM , sM+1〉Q 7→ |s1 ⊕ · · · ⊕ sM , s2, . . . , sM , s2 ⊕ · · · ⊕ sM+1〉Q .
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Let K be a parity-preserving unitary operator with W0 = I and W1 = Y , and

let H̃ have diagonal blocks W0 = W1 = Y . Denoting by P the permutation

|s1, s2, . . . , sM , sM+1〉Q 7→ |s1, sM+1, s2, . . . , sM 〉Q, we have

Z−1 P−1(Λ(H̃)⊗ I)PZ = (V −1Λ(H)V )⊗ I = K ⊗ I . (64)

We just need to represent the operator Z by means of the operators in the uni-

versal set of Eq. (61). This task can be easily accomplished upon noticing that

Z ≡ Λ(σ̃x)(m−1, 0,m)Λ(σ̃x)(m−2, 0,m) · · ·Λ(σ̃x)(1, 0,m), where Λ(σ̃x)(j1, j2, j3) :

| . . . , sj1 , . . . , sj2 , . . . , sj3 , . . .〉Q 7→ | . . . , sj1 , . . . , sj2 ⊕ sj1 , . . . , sj3 ⊕ sj1 , . . .〉Q. Now,
the operator Λ(σ̃x) acting on the qubits A, B, and C can be expressed in terms of

the universal set as Λ(σ̃x)ABC = (H̃AC ⊗ IB) (Λ(σ
z)BC ⊗ IA) (H̃AC ⊗ IB).

Now we just need to represent the gates of Eq. (61) in terms of the creation and

the annihilation operators. The first two operators are

Λ(eiπ/4) = exp

(
i
π

4
ϕ†
0ϕ0

)
, Λ(σz) = exp

(
iπϕ†

0ϕ0ϕ
†
1ϕ1

)
. (65)

The gate H̃ can be represented in the lfm case by means of the decomposition

H̃ = [I ⊗ Λ(−i)] · G̃ · [I ⊗ Λ(−i)] , G =

(
1 i

i 1

)
.

Hence a universal set for the parity-preserving gates of the fqt is given by the gates

of Eq. (65) together with

G̃ = exp

[
−iπ

4

(
ϕ0 − ϕ†

0

)(
ϕ1 + ϕ†

1

)]

= exp

[
i
π

4

(
ϕ†
0ϕ1 + ϕ†

1ϕ0

)]
exp

[
i
π

4

(
ϕ1ϕ0 + ϕ†

0ϕ
†
1

)]
.

4.4.2. Simulation

We now address the issue of simulating a qubit circuit by means of a fqt circuit,

and vice versa. The proof of the universality given in the previous section gives

already a way to simulate a lfm circuit by means of qubits, relying on the Jordan–

Wigner isomorphism between the qubit algebra and the Fermionic one. Moreover,

thanks to Subsec. 4.3.3, we know that a Fermionic locc can be simulated by a

locc on qubits. In order to address the simulation in the other way round, and

to tight the simulation cost of the previous section, we will present the scheme of

Ref. 1 which does not rely on the identification |s1, . . . , sN〉F ↔ |s1, . . . , sN 〉Q —

i.e. the jwt. As we will see, this time the scheme of Ref. 1 works out of the box

even for the fqt. In the following, for the sake of convenience, we will label the

lfm and the qubit systems starting from “zero,” and not from “one” as we did in

the rest of the paper.
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Given a circuit of the fqt, a procedure to simulate a K-lfm gate T can be

summarized as: (i) we embed the M lfms system in a M qubits system, (ii) we

add K ancillary qubits initialized in the state |0, . . . , 0〉Q, (iii) we exchange the

qubits corresponding to the lfms involved in the computation with the ancillas,

taking into account possible global phases due to the anticommutation relation of

the original lfm systems, (iv) we perform the computation on the ancilla by means

of the corresponding qubit gate, (v) we revert the extracted qubits in their original

position, (vi) we re-encode the resulting qubits — excluding the ancillary qubits —

in the original M lfms.

Clearly, one possible way of encoding is given by the jwt, namely

|s0, . . . , sM−1〉F ↔ |s0, . . . , sM−1〉Q. This is actually the same encoding used in

the previous section in order to derive the universal set for the Fermionic compu-

tation. In such a case, the process of embedding and of extraction (of the jth lfm)

is synthetically given by

|s0, . . . , sj , . . . , sM−1〉F

→ |s0, . . . , sj, . . . , sM−1〉Q → |0, s0, . . . , sj , . . . , sM−1〉Q

→ (−1)sj⊕
j−1
i=0 si |sj , s0, . . . , 0, . . . , sM−1〉Q . (66)

A simulation scheme resorting to the above jwt encoding is not very efficient,

since every time we perform the extraction of one qubit we shall evaluate a phase

given by the coefficient (−1)sj⊕
j−1
i=0 si of Eq. (66). Therefore, in the worst case sce-

nario, for every one-lfm gate we have to use O(M) qubit gates. We can do better

using a different embedding.

Let us introduce a partial ordering in the space of the binary strings: we say that

the binary string α := αT−1 · · ·α0 precedes β := βT−1 · · ·β0, and we write α � β,

whenever for some 0 ≤ l0 ≤ T − 1 we have αl = βl for l ≥ l0, and βl = 1 for l < l0.

If we denote with jbin the binary string corresponding to the decimal number j, we

have jbin ≺ kbin =⇒ j < k, where clearly jbin ≺ kbin ⇔ (jbin � kbin) ∧ (jbin 6=
kbin). Notice that given a binary string jbin = α of length T , there are at most T

binary strings kbin of the same length satisfying the relation jbin � kbin. Indeed,

since for every 0 ≤ l0 ≤ T − 1 the strings greater than or equal to jbin are precisely

those of the form αT−1 · · ·αl01 · · · 1, and since there are at most T different strings

of this kind, an upper bound to the number of binary strings greater than a given

one is given by the string length T .

We can now consider the following encoding scheme:

|s0, . . . , sM−1〉F 7→ |x0, . . . , xM−1〉Q ,

where xj =
⊕

i∈S(j)

si and S(j) := {k ∈ {0, . . . ,M − 1} | kbin � jbin} . (67)

It is very important to notice that since a si appears in every xj satisfying ibin �
jbin, we have that a sj appears at most in T of the xj , with T = ceiling(log2M)
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being the number of bits required to binary encode the labels of the lfm systems,

ranging from 0 to M − 1.

Let χ[l0] be the string having χ
[l0]
l = 1 for l ≤ l0 and χ

[l0]
l = 0 otherwise, then

the following two properties hold:

(i) the inversion of the relation xj =
⊕

i∈S(j) si leads to sj = xj −
⊕

i∈K(j) xi,

where for jbin = βT−1 · · ·β0

K(j) =
{
α
∣∣∃0 ≤ l0 ≤ T − 1 s.t. χ

[l0]
l βl = χ

[l0]
l , αl = βl ⊕ δll0

}
;

(ii) the quantity
⊕j−1

i=0 si can be written in terms of the encoded numbers xl as
⊕j−1

i=0 si =
⊕

i∈L(j) xi where jbin = βT−1 · · ·β0

L(j) =
{
α
∣∣∃0 ≤ l0 ≤ T − 1 s.t. αl = βl ⊕ χ

[l0]
l (βl ⊕ 1), βl0(αl0 ⊕ 1) = 1

}
.

Observe that also the sums appearing in the two above expressions contain at most

log2M elements.

While the extraction procedure of the qubits with the standard encoding given

by the jwt requires a number of computational steps linear in the number of the

lfms of the circuit, with this last encoding the situation is improved: suppose to

extract the jth qubit starting from the initial state |s0, . . . , sM−1〉F encoded in

the qubit state |x0, . . . , xM−1〉Q. First of all we add the ancillary qubit |0〉 at the

beginning of the string (let us call it “the qubit at the position −1”), then the

extraction goes as follows

|0, x0, . . . , xM−1〉Q A→ |sj , x0, . . . , xM−1〉Q
B→ |sj , x′0, . . . , x′M−1〉Q
C→ (−1)sj⊕

j−1
i=0 si |sj , x′0, . . . , x′M−1〉Q ,

where

(A) is a unitary evolution that evaluates the value of sj from the encoded string

xM−1 · · ·x0 and writes it into the ancillary qubit. Such an operation can be

achieved by means of the unitary map

A =
∏

i∈K(j)∪{j}
Λ(σx)(i,−1) , (68)

where we remember that Λ(U)(i0, . . . , ip) represents the controlled unitary U

with control system i0 and target systems i1, . . . , ip. Since the cardinality of

K(j) is O(logM), we will need O(logM) gates to perform A;
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(B) turns the original sj (not the copy in the ancillary qubit) to zero. The transfor-

mation B then must change the encoded string in such a way that the following

diagram commutes:

|s0, . . . , sj , . . . , sM−1〉Q −→ |s0, . . . , sj ⊕ s0, . . . , sM−1〉Q ,

↓ E ↓ E

|x0, . . . , xj , . . . , xM−1〉Q B−→ |x′0, . . . , x′j , . . . , x′M−1〉Q .
This operation is achieved by the following unitary

B =
∏

ibin�jbin

Λ(σx)(−1, i) ,

where again the number of gates required is O(logM);

(C) is an unitary evolution that evaluates the phase due the exchange of the

Fermionic wires:

C =
∏

j∈L(j)

Λ(σz)(−1, i) .

Again, since |L(j)| ≈ O(logM), the number of the required gates amounts to

O(logM).

In conclusion to simulate a one-lfm gate in a circuit of M lfms by means of

qubit gates we need O(logM) qubit gates (instead of O(M) gates needed using the

jwt encoding). This result holds for every lfm operator — i.e. for a K-lfm gate

(with K ≤ M), one needs to extract K qubits by means of the above procedure.

Moreover notice that the proof does not require the gates to be parity-preserving.

Indeed the reviewed procedure of Ref. 1 provides an efficient way to perform the

qubit extraction (or equivalently to take into account the phase factor given by the

σz of the jwt) irrespective of the parity features of the gate we want to simulate.

Hence, the one-lfm transformation X (ρ) =
(
ϕ†
i + ϕi

)
ρ
(
ϕ†
i + ϕi

)
, which is parity

changing, can also be achieved by means of logM qubit gates: we just need to

perform a σx on an extracted qubit.

As shown in Ref. 1, an efficient simulation of aN -qubit circuit by means of a lfm

circuit is easier. First of all one performs the encoding of theN qubits into 2N qubits

through the isometric embedding V : |s0, . . . , sN−1〉Q 7→ |s0, s0, . . . , sN−1, sN−1〉Q.
A quantum gate G acting on the jth and the kth qubits — thus represented by the

unitary operator G̃(j, k) of Eq. (58) — is represented on the 2N qubits by the gate

G̃′(2j, 2j + 1, 2k, 2k+ 1) = V G̃(j, k)V †. If we embed the resulting 2N -qubit circuit

into 2N lfms by means of the jwt, the resulting J(G̃′(j, j + 1, k, k + 1)), besides

being parity-preserving, is also made of field operators acting only on the lfms 2j,

2j + 1, 2k, 2k + 1, namely no field operators on the rest of the circuit are needed.

In conclusion, every qubit gate acting on two qubits can be simulated by means

of a four-lfm gate. The same result clearly generalizes for gates with an arbitrary

number of qubits.
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12. K. Brádler and R. Jáuregui, Phys. Rev. A 85, 016301 (2012).
13. M. Montero and E. Mart́ın-Mart́ınez, Phys. Rev. A 85, 016302 (2012).
14. N. Friis, A. R. Lee and D. E. Bruschi, Phys. Rev. A 87, 022338 (2013).
15. F. Verstraete and J. Cirac, J. Stat. Mech.: Theory Exp. 2005, P09012 (2005).
16. R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That (Princeton

University Press, 1964).
17. S. Weinberg, The Quantum Theory of Fields: Foundations (Cambridge University

Press, 2005).
18. L. Hardy, arXiv:quant-ph/0101012.
19. G. Chiribella, G. M. D’Ariano and P. Perinotti, Phys. Rev. A 81, 062348 (2010).
20. G. Chiribella, G. M. D’Ariano and P. Perinotti, Phys. Rev. A 84, 012311 (2011).
21. J. Barrett, Phys. Rev. A 75, 032304 (2007).
22. E. Stueckelberg and M. Guenin, Helv. Phys. Acta 34, 621 (1961).
23. L. Hardy and W. K. Wootters, Found. Phys. 42, 454 (2012).
24. G. M. D’Ariano, F. Manessi, P. Perinotti and A. Tosini, arXiv:1307.7902.
25. J. I. de Vicente, C. Spee and B. Kraus, Phys. Rev. Lett. 111, 110502 (2013).
26. W. Wootters, Found. Phys. 42, 19 (2012).
27. G. M. D’Ariano, Probabilistic theories: What is special about quantum mechanics?,

in Philosophy of Quantum Information and Entanglement, eds. A. Bokulich and
G. Jaeger (Cambridge University Press, 2010).

28. A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
29. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin and W. K. Wootters, Phys. Rev. A

54, 3824 (1996).
30. S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997).
31. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
32. W. K. Wootters, Quantum Inf. Comput. 1, 27 (2001).
33. D. P. DiVincenzo, Phys. Rev. A 51, 1015 (1995).
34. V. Vedral, M. B. Plenio, M. Rippin and P. L. Knight, arXiv:quant-ph/9702027.
35. M. B. Plenio and S. Virmani, arXiv:quant-ph/0504163.
36. S. Popescu and D. Rohrlich, Phys. Rev. A 56, R3319 (1997).
37. P. M. Hayden, M. Horodecki and B. M. Terhal, J. Phys. A: Math. Gen. 34, 6891

(2001).
38. C. Caves, C. Fuchs and P. Rungta, Found. Phys. Lett. 14, 199 (2001).

1430025-46



June 25, 2014 11:57 WSPC/139-IJMPA S0217751X14300257

The Feynman problem and fermionic entanglement

39. D. Bruß, Phys. Rev. A 60, 4344 (1999).
40. W. Dür, G. Vidal and J. I. Cirac, Phys. Rev. A 62, 062314 (2000).
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