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The hypothesis of a discrete fabric of the universe, the “Planck scale,” is always on stage since it solves
mathematical and conceptual problems in the infinitely small. However, it clashes with special relativity, which
is designed for the continuum. Here, we show how the clash can be overcome within a discrete quantum theory
where the evolution of fields is described by a quantum cellular automaton. The reconciliation is achieved
by defining the change of observer as a change of representation of the dynamics, without any reference to
space-time. We use the relativity principle, i.e., the invariance of dynamics under change of inertial observer,
to identify a change of inertial frame with a symmetry of the dynamics. We consider the full group of such
symmetries, and recover the usual Lorentz group in the relativistic regime of low energies, while at the Planck
scale the covariance is nonlinearly distorted.
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I. INTRODUCTION

Is the world continuous or discrete? Feynman [1,2]
motivated a discrete universe as the only way it can be
simulated by its own constituents, which means by a quantum
computer. Einstein himself considered a discrete space-time
as a possibility, however, he complained about the lack of an
appropriate mathematical framework [3]. Usually we dismiss
discreteness on the basis of mathematical convenience of
continuous theories. But, the continuum leads to still unsolved
mathematical problems in the infinitely small, problems that do
not arise in the discrete. The discrete, on the other hand, seems
to raise an issue: the disagreement with Einstein’s special
relativity.

The debate about the clash between a discrete space and
Lorentz symmetry has been recently renewed because in some
approaches to quantum gravity (such as Regge calculus [4],
spin foam [5], causal sets [6]) the fundamental description of
space-time is a discrete structure, to which the continuum is
only an approximation. The scale of this discreteness is the
Planck length, which is amazingly small: the Planck length
compared to a meter is like the electron radius compared to
the size of our galaxy.

Why would the Lorentz transformations not work with a
discrete space-time? The objection is that a discrete space-time
would not be invariant under the Lorentz group, even if we take
it as discrete. Such a point, raised more than 60 years ago, was
disproved for d = 3 space dimensions in Ref. [7]. However, it
was shown that the minimum admissible boost would be huge:
0.866 times the speed of light! It seems therefore that there is
no way for the reconciliation of Einstein’s special relativity
with a discrete fabric of space-time. The issue is, however, a
false problem, originating from the unnecessary requirement
of enforcing a covariance designed for the continuum. The
right point of view is to take the Lorentz covariance only as
an approximate symmetry, and recovering it in the regime
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where the discreteness looks continuous. This is similar to
what happens for a crystalline medium, which looks isotropic
at large scales, whereas instead it is highly anisotropic at
microscopic scales. The smaller is the crystal structure, the
more accurate is the continuum symmetry: think that the
Planck length is 10−25 Å!

The right point of view is thus to consider the continuum
as an approximation of the discrete when observed at very
large scales. It is thus conceptually legitimate that the Lorentz
transformations are actually distorted at the tiny Planck scale.
An example of such a distorted Lorentz symmetry is that of
doubly special relativity [8–10], where the distorted Lorentz
transformations, in addition to the speed of light, preserve also
an energy scale.

Here, we show that if we take only the very essence of the
relativity principle, the invariance of the physical law under
change of inertial representation, we get nonlinear Lorentz
transformations, which happen to be of the same kind as those
of doubly special relativity. In the continuum description,
the reference frame is a Cartesian coordinate system, what
is called “position representation” in quantum theory. Other
representations of the dynamics are given in terms of constants
of motion, such as the momentum or energy representations,
and these provide a viable notion of inertial frame in a world
made of countably many quantum systems.

II. QUANTUM WALK FROM PRINCIPLES

We take the pragmatic point of view that quantum theory is
more efficient a description of our world than classical theory,
pretty much like Kepler laws for the planet orbits are more
efficient than Ptolemaic epicycles. We therefore consider the
most general quantum discrete theory, which is a quantum
cellular automaton [1,11,12]. This consists of infinitely many
quantum systems (qubits, fermionic or bosonic fields), whose
evolution occurs in discrete steps, and which interact locally,
namely, every system interacts with a bounded number of other
systems. A consequence of locality is that signals propagate
at finite speed over the lattice of quantum systems. For our
purposes, it is sufficient to consider a single particle, and
technically this simplifies the automaton to be linear in the

2469-9926/2016/94(4)/042120(10) 042120-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevA.94.042120


BISIO, D’ARIANO, AND PERINOTTI PHYSICAL REVIEW A 94, 042120 (2016)

quantum field. Moreover, we require that the dynamics is
reversible, hence, it is described by a unitary matrix: this is
what is called quantum walk [13,14].

By denoting with G the set of the lattice’s points we
can conveniently introduce the Hilbert space ℓ2(G) and the
orthonormal basis |x⟩ which corresponds to the position of the
particle. If we associate the Hilbert space Cs to the internal
degrees of freedom of the particle, the quantum walk (QW) is
then a unitary operator on ℓ2(G) ⊗ Cs .

(a) Locality. The QW evolution is assumed to be local,
i.e., information propagates through the lattice at a bounded
speed. Given a lattice, let Nx be the set of nearest neighbors
of the site x. If the particle is localized at site x, then, after
one step of the QW, it must be localized within a finite set Nx.
Such a locality condition introduces a notion of causal cone in
the lattice.

(b) Homogeneity. The evolution is assumed to be homo-
geneous, i.e., requirement that all the sites are equivalent.
The QW evolution should not not allow one to discriminate
between two points x and x′. This requirement (see Ref. [15]
for a full derivation) implies that the set of points G is a group
and the lattice is a possible Cayley graph of this group.

(c) Isotropy. The assumption of isotropy translates the
requirement that there is no privileged direction on the lattice.
The mathematical translation of this requirement requires the
existence of a group of permutations that act on the generators
of the group G that can be faithfully represented on the internal
degrees of freedom (see Ref. [15] for a full derivation).

(d) Flat and curved space. The above sketched framework
encompasses a broad variety of dynamics. In particular,
depending on the properties of the group G, we can have
a quantum dynamics on a generally curved space. If we are
interested to make contact with special relativity, it is natural to
restrict the scenario to QWs corresponding to dynamics on the
flat Minkovski space-time. This requirement corresponds to
assume the existence of a quasi-isometry between the Cayley
graph (with the word metric) of the group G and the Euclidean
space R3 [16]. This assumption implies that the Abelian group
Z3 must be a subgroup of G with finite order. We can further
restrict ourselves to the case in which G coincides with Z3

itself. The price to pay for this restriction is to add additional
internal degrees of freedom (see Ref. [17] for a more complete
discussion).

(e) Fourier analysis. If the group G is Abelian, it is
convenient to study the dynamics in the Fourier transform
basis |k⟩ := (2π )

3
2
∑

x eik·x|x⟩. Since homogeneity condition
implies that the QW commutes with the translations on the
lattice, in the Fourier basis the QW operator can be written as

A =
∫

B

d3k |k⟩⟨k| ⊗ Ak, (1)

where B denotes the first Brillouin zone of the underlying
lattice. The unitary constraint implies that Ak is unitary for
every k ∈ B and the locality assumption implies that Ak is a
matrix polynomial in eih·k. Notice that due to the discreteness
of the lattice, the QW is band limited in k. The spectrum {eiω

(i)
k }

of the operator Ak, and especially its dispersion relation that
is the expression of the phases ω

(i)
k as functions of k, plays a

crucial role in the analysis of the QW dynamics.
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FIG. 1. Top: body-centered-cubic lattice. Each pair of nearest
neighbor is connected by a blue link. Each point of the lattice has
eight nearest neighbors, e.g., the red points are the nearest neighbors
of the yellow one. Bottom: Brillouin zone B of the bcc lattice. The
zone is a rhombic dodecahedron in which the opposite faces are
identified.

(f) Weyl quantum walk. If the dimension of the Hilbert
space of the internal degrees of freedom is s = 2 and the
group G is Z3, the requirements of locality, homogeneity,
and isotropy then [15] the QWs can only be defined over the
body-centered-cubic lattice and they are equivalent (up to a
local change of basis) to the following two QWs:

A±
k := λ±(k)I − in±(k) · σ±, (2)

n±(k) :=

⎛

⎝
sxcycz ± cxsysz

cxsycz ∓ sxcysz

cxcysz ± sxsycz

⎞

⎠,

λ±(k) := (cxcycz ∓ sxsysz), (3)

cα := cos(kα/
√

3), sα := sin(kα/
√

3), α = x,y,z.

The Pauli matrices σ+ = σ are the usual ones, while the σ− =
σ T are their transposed ones, and k ∈ B where B denotes the
Brillouin zone of the bcc lattice (see Fig. 1).
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III. CHANGE OF INERTIAL FRAME

Let us consider a quantum walk A as in Eq. (1) where the
Ak are 2 × 2 matrices. The eigenvalues of A are obtained by
solving the eigenvalue equation

Akψ(ω,k) = eiωψ(ω,k) (4)

which can be easily rewritten in relativistic notation as follows:

nµ(k)σµψ(k) = 0, (5)

where we introduced the four-vectors k := (ω,k), n(k) :=
[sin ω,n(k)], we defined σ := (I,σ ), and the vector n(k) is
defined by

n(k) · σ := i

2
(Ak − A

†
k). (6)

The eigenvalues can be collected into two dispersion
relations ω±(k).

In this scenario, the constants of motions are k and ω±,
hence, a change of representation corresponds to a map
k *→ k′(k). Then, the principle of relativity corresponds to the
requirement that the eigenvalue equation (5) is preserved under
a change of representation as follows:

nµ(k)σµ = (̃−1
k nµ(k′)σµ (k, (7)

where (k,(̃k are invertible matrices. Equation (7) translates
the relativity principle for the QW evolution: the dynamics is
left invariant by a change of observer.

The simplest example of change of observer is the one
given by the trivial relabeling k′ = k and by the matrices
(k = (̃k = eiλ(k), where λ(k) is an arbitrary real function of
k. When λ(k) is a linear function, we recover the usual group
of translations. The set of changes of representation k *→ k′(k)
for which Eq. (7) holds are a group, which is the largest group
of symmetries of the dynamics.

IV. WEYL QUANTUM WALK AND SPECIAL RELATIVITY

Let us now apply this definition to the Weyl quantum walk
of Eq. (2). The Weyl quantum walks have the remarkable
feature that in the small wave-vector regime they recover, with
the rescaling k√

3
→ k, the two Weyl equations for the left-

and right-handed massless fermions (hence their name). The
dispersion relations of the two walks are given by

n±
µ (k)nµ±(k) = 0, (8)

and are plotted in Fig. 2.
In the small wave-vector regime k ∼ k0 = (0,0,0) one has

n(k) ∼ k, recovering the usual relativistic dispersion relation.
The Weyl equations can be also recovered in the neighborhood
of the wave vectors k1 = π

2 (1,1,1), k2 = −π
2 (1,1,1),k3 =

−π
2 (1,0,0). The mapping between the vectors ki exchanges

chirality of the particle and double the particles to four species
in total. Therefore, we have four different particles (two left
handed and two right handed), namely, the discreteness also
doubles the particles, which is the well-known phenomenon
of fermion doubling [18]. In the following, the term “small
wave vector” will denote the neighborhoods of the vectors ki ,
i = 0, . . . 3.

FIG. 2. The green surface represents the dispersion relation in
Eq. (8) where we fixed kz = 0 (ωk = arccos λ±(k) have the same
plot). The red surface is the usual relativistic dispersion relation
ω2

k = k2
x + k2

y . Notice that the two surfaces get closer approaching
the origin for k → 0.

We now show that the group of symmetries of the
dynamics of the quantum walks in Eq. (2) contains a nonlinear
representation of the Poincaré group, which exactly recovers
the usual linear one in the small wave-vector regime.

For any arbitrary nonvanishing function f (k) we can
introduce the four-vector

p(f ) = D(f )(k) := f (k)n(k) (9)

and rewrite the eigenvalue equation (5) as follows:

p(f )
µ σµψ(k) = 0. (10)

Let us now consider the following splitting of the Brillouin
zone B:

B′
0 := {k ∈ B|λ(k) > 0, cos(2ky/

√
3) > 0},

B′
1 := {k ∈ B|λ(k) < 0, cos(2ky/

√
3) > 0},

B′
2 := {k ∈ B|λ(k) > 0, cos(2ky/

√
3) < 0},

B′
3 := {k ∈ B|λ(k) < 0, cos(2ky/

√
3) < 0},

(11)

with B = ∪3
i=0B′

i up to a null-measure set, and let us denote
with n(i)(k) the restriction of n(k) to B′

i . Notice that we dropped
the label ± denoting the two different Weyl walks since the
results hold the same in the two cases. We now denote with U
the unit open ball in R3 (U denotes its closure) and with H the
subset of U defined as follows:

H :=
{
m ∈ U such that mx = ±mz,2m2

x + 2m2
y ! 1

}
. (12)

We then consider the regions

Bi := n(i)−1(U \ H) (13)

and the function f (ω,k) defined as follows:

f (ω,k) = g(n(k))

= g̃(r,θ,φ) := 1 + r

∫ r

0
ds

[
1

a(s)
+ 1

b(s,θ,φ)

]
, (14)
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FIG. 3. Top left figure: surfaces λ(k) = 0 in Eq. (3) (yellow) and cos(2ky) = 0 (red planes) inside the Brillouin zone (transparent). Top
middle figure: B0 zone (red X shaped). Top right figure: B0 (red) and B1 (blue). Bottom left to right: B1,B2,B3. Bottom right: region B1

represented in a properly translated Brillouin zone. In this paper, the Lorentz transformations are those that leave the dispersion relations of
the Weyl QW invariant, and act on the Weyl spinor independently of the wave vector. In such way they are nonlinear in (ω,k) and linear over
the Weyl spinor. Therefore, the Lorentz group acts as a group of diffeomorphisms over the Brillouin zone B. The four domains Bi ⊂ B are
Lorentz invariant (up to a null-measure set, see Fig. 6 in the Appendix). More precisely, a point (ω,k) with k ∈ Bi and sin2 ω − |n(k)|2 = 0 is
mapped to a point (ω′,k′) with sin2 ω′ − |n(k′)|2 = 0 and k′ ∈ Bi . Moreover, the map n maps each Bi into the same set (up to null-measure set;
see Fig. 6). Since the kinematics of a wave vector k depends only on the vector n(k), we can conclude that the Bi regions are kinematically
equivalent and they can be interpreted as four different massless Weyl fermions. Because of the identification of the boundary points in the
Brillouin zone, all the Bi regions have the same X shape as B0. This is evident in the bottom right figure, in which we see that the region B1 (in
red), when represented in a properly translated Brillouin zone (in blue), has the same X shape as the region B0. Considering the identification
of the boundary points of the Brillouin zone in Fig. 1, one realizes that the opposite arms of the X are glued together, resulting in a solid
double-torus (genus two). This result is rigorously proved in the Appendix where we show that the Bi regions are diffeomorphic to a solid ball
pierced by two arches of ellipses (Fig. 6 in the Appendix).

where

a(r) := 1 − r2,

b(r,θ,φ) := [cos2(φ) − sin2(φ)]2

+
{ 1

2 − r2[1 − cos2(θ ) sin2(φ)
]}2

,

where we used the spherical coordinates nx(k) = r cos θ cos φ,
ny(k) = r sin θ , nz(k) = r cos θ sin φ. Finally, we define the
maps D(i) as

D(i) : +i → (0, D(i) :
(

ω
k

)
*→ f (ω,k)

(
sin ω

n(i)(k)

)
,

+i := {(ω,k) such that k ∈ Bi , sin2 ω − |k|2 = 0},
(0 := {p ∈ R4 such that pµpµ = 0}. (15)

One can prove (see Appendix A) that the maps D(i)

define an analytic diffeomorphism between +i and (0. As
a consequence, the composition

L(i)
β : +i → +i , L(i)

β := D−1 ◦ Lβ ◦ D (16)

is a well-defined nonlinear representation of the Lorentz group
on the set +i . Since the union of the Bi sets coincides with the
whole (up to a null-measure set) Brillouin zone (see Fig. 3),
we have that the collection of the maps L(i)

β provides a notion
of Lorentz transformation for any (up to a null-measure set)
solution of the Weyl QW dynamics.

The four invariant regions corresponding to the four
different massless fermionic particles showing that the notion
of “particle” as invariant of the Poincaré group survives in
a discrete world, consistent with a physical interpretation of
the fermion-doubled particles. For fixed function f the maps
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FIG. 4. The distortion effects of the Lorentz group for the discrete Planck-scale theory represented by the quantum walk in Eq. (2). Left
figure: the orbit of the wave vectors k = (kx,0,0), with kx ∈ {0.05,0.2,0.5,1,1.7} under the rotation around the z axis. Right figure: the orbit of
wave vectors with |k| = 0.01 for various directions in the (kx,ky) plane under the boosts with β parallel to k and |β| ∈ [0, tanh 4].

L(f )
β provide a nonlinear representation of the Lorentz group

[9,10,19]. In Figs. 4 and 5, we show the numerical evaluation
of some wave-vector orbits under subgroups of the nonlinear
Lorentz. The distortion effects due to underlying discreteness
are evident at large wave vectors and boosts. The relabeling
k → k′(k) = L(f )

β (k) satisfies (7) with (k = -β and (̃k = -̃β

for the right-handed particles, and (k = -̃β and (̃k = -β for
the left-handed particles, with -β and -̃β being the (0, 1

2 ) and
( 1

2 ,0) representations of the Lorentz group, independently on
k in each pertaining region.

For varying f , we obtain a much larger group, including
infinitely many copies of the nonlinear Lorentz one. In the
small wave-vector regime, the whole group collapses to the
usual linear Lorentz group for each particle.

FIG. 5. The green surface represents the orbit of the wave vector
k = (0.3,0,0) under the full rotation group SO(3).

V. SPECIAL RELATIVITY AND THE DIRAC
QUANTUM WALK

Up to now we have analyzed what happens with massless
particles. A simple way to obtain the Dirac equation is to pair
an automaton in Eq. (2) with its adjoint into a direct sum. As
proved in Ref. [15], there are only two admissible quantum
walks

D± =
(

nA± imI
imI nA±

)
,

0 " n,m " 1, n2 + m2 = 1

(17)

giving the Dirac equation in the small wave-vector regime. A
relevant feature of the discreteness is that because of unitarity
the mass parameter is upper bounded [20].

The eigenvalue equation of the Dirac QW can be written as
[
p(f )

µ (ω,k,m)γ µ − mI
]
ψ(ω,k,m) = 0, (18)

where γ µ are the Dirac γ matrices in the Weyl representation,
and m is then interpreted as the particle mass. Due to the
explicit dependence of p

(f )
µ from m the covariance under

change of reference cannot leave the value of m invariant.
In such case the dispersion relation resorts to the conservation
of the de Sitter norm

sin2 ω − (1 − m2)|n(k)|2 − m2 = 0. (19)

The group leaving Eq. (19) invariant is the de Sitter group
SO(1,4). In the limit of m ≪ 1, the usual Lorentz symmetry
is recovered. The analysis of de Sitter covariance of Eq. (18)
will be given in a forthcoming publication.

VI. CONCLUSION

We have seen what happens of the Lorentz group in a
quantum world that is discrete. The main point is to abandon
the idea of enforcing the exact Lorentz symmetry on the dis-
crete, but instead to consider the symmetry as an approximate
one that holds only in the small wave-vector and small mass
regime. Within the framework of quantum cellular automata
(QCA), the paradigmatic example of quantum dynamics on
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a discrete set of systems, reasonable assumptions of algorith-
mic simplicity single out a QCA dynamics that recovers a
Lorentz-invariant dynamics in a small wave-vector regime.
The relativity principle is then stated as the invariance of the
physical law under change of inertial representation and leads
to nonlinear Lorentz transformations, as the ones considered
in the doubly special relativity literature. This perspective is
the reverse of the usual one, where the preexisting notions
of space-time and of inertial frame of reference constrain the
admissible dynamical laws to be covariant under the Poincaré
group. In our approach, the dynamics, which derives from
principles of computational nature, constrains the symmetries
of the emerging space-time.

A reverse approach to the one presented in this paper,
i.e., from classical to quantum, has been recently presented
in Ref. [21]. There, the authors show that a fundamental
length scale and a discrete background lattice can emerge
as a consequence of the quantization of a classical phase
space, through a generalization of the canonical approach
of geometric quantization. They show that a choice of
quantum polarization (a choice of a maximally commutative
∗ subalgebra) for the Heisenberg algebra which respects its
linear structure, corresponds to a lattice on the phase space
and to an irreducible representation of the Heisenberg group
on square-integrable quasiperiodic functions on a cell in phase
space. Within this discrete framework, the action of continuous
translation and continuous rotations induces a change in the
choice of quantum polarization (which is considered observer
dependent), thus reconciling the discrete lattice structure with
the continuous symmetry. In this picture, the starting point
is a notion of a classical phase space endowed with classical
symmetries whose action on the quantum operators can be
defined through the Weyl map. The emergence of a minimal
length and an observer-dependent notion of space-time are
both consequences of the quantization and the choice of the
quantum polarization.

One could now wonder how small is such an intrinsic
discreteness scale. According to common opinion, the scale
of discreteness a is identified with the Planck scale. In terms
of the maximum wave vector kM in the Brillouin zone, one has
kM =

√
3π
a

. In the small wave-vector regime, we recover the
simple relations [20] c = a√

3τ
and ! = µac, with c, !, and τ

denoting the speed of light, the Planck constant, and the time
step, respectively. Then, the maximum mass µ of the quantum
walk is the Planck mass.

The crucial question is now what can be actually seen
experimentally. Recently, experimental tests of Planck-scale
phenomenology have been proposed [22–24]. In particular,
the modification to the usual dispersion relations can in
principle be detected in observation of gamma-ray bursts
from deep-space events, where billions of light years of
distance can sufficiently amplify the weak vacuum dispersive
behavior due to discreteness [25]. In our context, this can
be proved with the free electromagnetic field derived as the
two-particle sector of the quantum walk in Eq. (2) [26]. This
possibility reconnects with the recent analysis of data [27]
from Fermi-LAT concluding that the observations set an upper
bound to the scale of discreteness which is smaller than the
Planck scale a by a factor 2.8. The analysis of Ref. [27]

can be refined with a complete theoretical derivation based
on Ref. [26] and on the results presented in this paper. This
would also take into account the possibility of a compensating
effect due to the phenomenon of relative locality [28]. In short,
relative locality is the phenomenon due to the nonlinearity of
the Lorentz transformations, which generalizes the relativity of
simultaneity to relativity of the full space-time coincidence of
events. The separation of events under boost is amplified by the
difference of their frequency domain. Indeed, the Fermi-LAT
observation is based on a predicted time delay between two
events with a huge difference in frequency, which could
then be compensated by the relative-locality effect. The fully
fledged discrete theory given here, derived from very general
principles, allows for a thorough quantitative evaluation that
takes into account both the dispersive vacuum and nonlinear
Lorentz transformations.
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APPENDIX A: DEFORMED RELATIVITY FOR THE WEYL
QUANTUM WALK

In this appendix, we prove that the construction in Eq. (A13)
is a well-defined deformed Lorentz symmetry for each set +i .
In the following, we will adopt the convention k√

3
→ k, in

order to lighten the notation by getting rid of the 1√
3

factors.
Let us define

D = N ◦ P, P : (ω,k) *→ (ω,n(k)),

N :
(

ω
m

)
*→ g(ω,m)

(
sin ω

m

)
, (A1)

where we also assumed f (ω,k) = g(ω,n(k)).
We now need to study separately the properties of the two

maps P and N .

1. Study of the map n(k)

In this section, we study the analytical properties of the
map P , which, according to Eq. (A1) resort to the map n. The
analysis will proceed through the determination of the largest
subdomains {B′

i} of invertibility of the map n. We first prove
that on the closure Bi of each domain the map is surjective on
the closed unit sphere U. Then, we determine the geometry of
the ranges n(B′

i), showing that they are homotopic to a solid
genus two-torus.

Let us denote by B the Brillouin zone of the center cubic
lattice. B, upon a proper identification of its boundary points
(see Fig. 1), is a compact three-dimensional manifold. The
Jacobian Jn(k) of the map n(k) is given by

Jn(k) := det[∂inj (k)] = cos(2ky)λ(k), (A2)

and it vanishes on the set

F = G ∪ X,

X := {k ∈ B| cos(2ky) = 0},
G := {k ∈ B|λ(k) = 0}. (A3)
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FIG. 6. Left figure: region Qa . Right figure: H zone in red inside the unit ball. In the left figure, the tubes around the arches e+(T)1

and e−(T)2 emphasize the piercing of the ball by the one-dimensional holes along the elliptic arches e+(T)1 and e−(T)2. The region Qa is
clearly homeomorphic to a solid torus of genus two. Because of this nontrivial topological feature, the set {(ω,m) such that |ω| " π

2 ,m ∈
n(Bi), sin2 ω − |m|2 = 0} cannot be diffeomorphic to any Lorentz-invariant region of M4. However, it is possible to remove from the region
Qa a null-measure set such that the resulting topology is trivial. This can be done by removing the set H (red zones in the right figure), resulting
in a star-shaped open set in R3.

Since ∇λ(k) ̸= 0 for all k such that λ(k) = 0, the implicit
function theorem guarantees that G is a well-defined two-
dimensional surface. In the following, we will denote by {B′

i}
(i ranging in some set) the disjoint connected subsets of B \ F,
thus,

B \ F =
⋃

i

B′
i , B′

i ∩ B′
j = ∅ for i ̸= j. (A4)

For each i the set B′
i is open and we denote as B′

i its closure
and as ∂B′

i its boundary.
Now, let us denote with U ⊂ R3 the closed unit-radius ball,

and with S2 the sphere of radius 1 in R3. Moreover, let us
define the parametric curves

e±(t) := 1√
2

[sin(t), cos(t), ± sin(t)]T (A5)

and the sets

Qa := U \ (e+(T1) ∪ e−(T2)),

Qb := U \ (e+(T2) ∪ e−(T1)),

T1 :=
(
−π

2 ,π
2

)
,

T2 :=
(
−π, − π

2

)
∪

(
π
2 ,π

]
. (A6)

Given all the definitions introduced in this section, we have
then the following result:

Lemma 1. Equation (A4) defines four regions B′
i which are

determined by the following conditions

B′
0 := {k ∈ B|λ(k) > 0, cos(2ky) > 0},

B′
1 := {k ∈ B|λ(k) < 0, cos(2ky) > 0},

B′
2 := {k ∈ B|λ(k) > 0, cos(2ky) < 0},

B′
3 := {k ∈ B|λ(k) < 0, cos(2ky) < 0}.

For each i, let n(i)(k) denote the restriction of the map n(k) to
the set B′

i . Then, n(i)(k) defines a diffeomorphism between B′
i

and its image n(i)(B′
i) and we have

n(0)(B′
0) = n(2)(B′

2) = Qa,

n(1)(B′
1) = n(3)(B′

3) = Qb. (A7)

The proof of this result is rather involved and can be found
in Appendix B. The B′

i regions are plotted in Fig. 3. The most
important consequence of this result is that, for each i, the set
n(B′

i) (see Fig. 6) (i) coincides with U except a null-measure
set and (ii) it is homeomorphic to a genus two-torus.

2. Study of the map N
Since for all i the region n(B′

i) has a nontrivial topology, the
set {(ω,m) such that |ω| " π

2 ,m ∈ n(B′
i), sin2 ω−|m|2 =0}

cannot be diffeomorphic to any Lorentz-invariant region of
M4. A possible way to change the topology of n(B′

i) is to
exclude the set H ⊆ U (as it is shown in Fig. 6) of vectors m
satisfying the following inequalities:

mx = ±mz,

2m2
x + m2

y " 1,

2m2
x + 2m2

y ! 1. (A8)

Then, the set U \ H is topologically trivial and we have
U \ H ⊂ n(B′

i) for all i. Let us now consider the function
N : (ω,m) *→ (p0,p) = g(ω,m)(sin ω,m) restricted to the set

N := {(ω,m) such that m ∈ U \ H,

|ω| " π
2 , sin2 ω − |m|2 = 0}. (A9)

As shown in Appendix C, it is possible to define the function
g(ω,m) is such that N defines a diffeomorphism between N
and the null mass shell

(0 := {p ∈ M4, such that pµpµ = 0} (A10)
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and that its Jacobian matrix at the origin is 0, i.e.,

JN (0) = I. (A11)

Finally, for each i we denote by Bi the counterimage of the
set U \ H under the map n(i) and by D(i) the composition

D(i) : +i → (0, D(i) := N ◦ P (i), (A12)

P (i) : +i → N, P (i) :
(

ω
k

)
*→

(
ω

n(i)(k)

)
,

N : N → (0, N :
(

ω
m

)
*→ g(ω,m)

(
sin ω

m

)
,

+i := {(ω,k) such that k ∈ Bi , sin2 ω − |k|2 = 0}.

For each i, the mapD(i) is an analytic diffeomorphism between
the region +i and the Lorentz-invariant set (0 which satisfies
the condition JDi

(0) = I . Then, the composition

L(i)
β : +i → +i , L(i)

β := D−1 ◦ Lβ ◦ D (A13)

is a well-defined nonlinear representation of the Lorentz group
on the set +i . Since the union of the Bi sets coincides with the
whole (up to a null-measure set) Brillouin zone, we have that
the collection of the maps L(i)

β provides a notion of Lorentz
transformation for any (up to a null-measure set) solution of
the Weyl QW dynamics.

APPENDIX B: PROOF OF LEMMA 1

In this appendix, we will give the proofs of the results
contained in Lemma 1. Since the proof is quite involved, we
split it into several pieces. Let us begin by defining the sets

Q′ := U \ R, R := S2 ∪ E+ ∪ E− . (B1)

Obviously, Q′ is open and connected, with Q′ =U and ∂Q′ =R.
We now prove some useful properties of the map n.

Sublemma 1. Let ni denote the restriction of the map n
to B′

i . Then, for each i we have that ni is a diffeomorphism
between B′

i and n(B′
i)

Proof. Since by definition k ∈ B′
i ⇒ k ̸∈ F we have

Jn(k) ̸= 0 for all k ∈ B′
i . Since B′

i is connected and n is
analytical, we have the thesis. #

Sublemma 2. We have the following inclusions:
(1) n(B′

i) ⊆ U,
(2) ∂n(B′

i) ⊆ R.
Proof. Let us start with the proof of item 1. By explicit

computation, we have |n(k)|2 = 1 − λ2(k) " 1 which implies
that the image of n is contained in U.

We now prove item 2. Thanks to Lemma 1 we have that
n(B′

i) is open. On the other hand, since n is continuous and
B′

i is compact, we have that n(B′
i) is compact and then it

is closed. Then, the trivial inclusion n(B′
i) ⊆ n(B′

i) implies
n(B′

i) ⊆ n(B′
i). By definition we have n(B′

i) = n(B′
i) ∪ ∂n(B′

i)
with n(B′

i) ∩ ∂n(B′
i) = ∅ and n(B′

i) = n(B′
i) ∪ n(∂B′

i). Then,
the inclusion n(B′

i) ⊆ n(B′
i) implies ∂n(B′

i) ⊆ n(∂B′
i). Since

∂B′
i ⊆ F, we have n(∂B′

i) ⊆ n(F). One can then verify by
direct computation that n(F) ⊆ R, thus proving the thesis. #

We now recall a result of basic topology which will be
useful in the following.

Sublemma 3. Let A and B be open sets such that A ⊂ B.
Then, there exists a point p such that p ∈ intB and p ̸∈ A.

Proof. Let us suppose that B ⊆ A. Since B is open and A is
closed, we have B ⊆ A which contradicts the hypothesis. #

The following result will be of crucial importance.
Sublemma 4. The following identity holds:

n(B′
i) = U. (B2)

Proof. First, we prove the easiest inclusion n(B′
i) ⊆ U.

From item 1 of Sublemma 2 we have that n(B′
i) ⊆ n(B′

i) ⊆ U
(the first inclusion is trivial). Reminding that n(B′

i) is open we
have n(B′

i) ⊆ U.
We now prove that U ⊆ n(B′

i). By contradiction, let us
suppose that the strict inclusion n(B′

i) ⊂ U holds. Then,
thanks to Sublemma 3, we find p ∈ U such that p ̸∈ n(B′

i).
Moreover, we can find an open neighborhood N of p such that
N ∩ n(B′

i) = ∅ and then without loss of generality we can
suppose that p ∈ Q′. Since R has no interior points, n(B′

i)
cannot be included in R, hence, n(B′

i) ∩ Q′ is not empty. Let us
now fix a point q ∈ n(B′

i) ∩ Q′. Then, for any continuous path
γ connecting p and q there exist t ′ such that γ (t ′) ∈ ∂n(B′

i).
From item 2 of Sublemma 2 we have γ (t ′) ∈ R. Since this
conclusion contradicts the fact that Q′ is connected, we have
proved the thesis. #

As a consequence, we have the following:
Corollary 1. The following inclusion holds Q′ ⊆ n(B′

i).
Proof. From Sublemma 4 we have Q′ ∪ R = n(B′

i) ∪
∂n(B′

i). Reminding that Q′ ∩ R = ∅ = n(B′
i) ∩ ∂n(B′

i) and the
inclusion ∂n(B′

i) ⊆ R, proved in Sublemma 2, we have the
thesis. #

We now turn our attention to the regions B′
i . Our first

objective is to determine how many different B′
i regions are.

The answer is provided by the following result.
Sublemma 5. The regions B′

i are in one-to-one correspon-
dence with the solution of the equation |λ(k)|2 = 1.

Proof. We proved that the map ni defines a diffeomorphism
between B′

i and the set n(B′
i) ⊆ P which includes the origin.

Then, for each B′
i there exist a point k such that n(k) = 0

and it is unique. Since n(k) = 0 if and only if |n(k)|2 =
|λ(k)|2 − 1 = 0, we have the thesis. #

Thanks to this result it is sufficient to find the solutions of
|λ(k)|2 = 1 in the Brillouin zone. One can easily check that
there are only four solutions and then four different regions
B′

0, . . . ,B
′
3.

We can now prove the first part of Lemma 1.
Sublemma 6. The region B′

i are given by

B′
0 := {k ∈ B|λ(k) > 0, cos(2ky) > 0},

B′
1 := {k ∈ B|λ(k) < 0, cos(2ky) > 0},

B′
2 := {k ∈ B|λ(k) > 0, cos(2ky) < 0},

B′
3 := {k ∈ B|λ(k) < 0, cos(2ky) < 0}. (B3)

Proof. Let us denote with B̃i the regions defined by the
right-hand sides of Eq. (B3). One can immediately see that (i)
the B̃i are open sets, (ii) the B̃i are mutually disjoint, and (iii)
the union of the B̃i is the union of the B′

i . We now prove that
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for all B̃i there exist a unique B′
j such that B̃i ⊆ B′

j . This fact,
together with the previous properties of the B̃i , gives B̃i = B′

i

Clearly, for all B̃i we must have B̃i ⊆ B′
j1

∪ · · · ∪ B′
jk

for
some k ! 1. Let us suppose then that there exist B̃i such that
B̃i ⊆ B′

j1
∪ · · · ∪ B′

jk
with k strictly greater than 1. Since we

have as many B̃i as B′
i , there must exist a B′

i and two points ka ∈
B̃a and kb ∈ B̃a such that ka,kb ∈ B′

i . Since B′
i is connected,

there must exist a path connecting ka and kb that entirely lies
within B′

i . On the other hand, since the B̃i are disjoint, this
path would cross the border of the B̃a , but this contradicts the
fact that the border of the B̃a is not included in B′

i . #
Finally, we can give the complete characterization of the

sets n(B′
i). From Corollary 1 we have the inclusion Q′ ⊆ n(B′

i).
Since |n(k)| = 1 ⇐⇒ λ(k) = 0, we know that the S2 ̸⊂
n(B′

i). It is easy to check that also the points p± := (0,±
√

2
2 ,0)

are not included in the set n(B′
i). For any region n(B′

i), we will
determine which ones of the eight open arches defined as

E±
j := e±(Lj ),

L1 :=
(
0,π

2

)
, L2 :=

(
π
2 ,π

)
,

L3 :=
(
−π

2 ,0
)
, L4 :=

(
−π,−π

2

)
(B4)

are included in n(B′
i).

Let us consider the sets E+
j . If we for some t we have

n(k) = e+(t) and cos(2ky) ̸= 0, then it must be

kx = π
4 + nπ

2 , kz = kx + mπ (B5)

for n and m integers. Equation (B5) then implies

λ(k) = (−1)m 1
2 [cos(ky) − sin(ky)]. (B6)

From Eq. (B6) we have

λ(k) > 0 ⇒
{

m even ∧ − 3
4π < ky < 1

4π,

m odd ∧ 1
4π < ky < 5

4π.
(B7)

Then, if we assume k ∈ B′
0 we must have

m even, − 1
4π < ky < 1

4π,

m odd, 3
4π < ky < 5

4π.
(B8)

However, since the two sets of k are related by a translation
of (0,lπ,lπ ), l ∈ Z, they actually represent the same set in the
Brillouin zone. So, it suffices to consider just the first set in
Eq. (B8), that can be written as

kx = 1
4π + n 1

2π, 1
4π < ky < 1

4π,

kz = 1
4π + n 1

2π + mπ = 1
4π + n 1

2π, (B9)

where we used Eq. (B5) and in the second equality in the
second line of Eq. (B9) we used the hypothesis that m is
even. Using again the fact that we identify points related by a
translation of (lπ,0,lπ ), l ∈ Z, we find just two inequivalent
sets

Z1 :=

⎧
⎪⎪⎨

⎪⎪⎩

kx = 1
4π

1
4π < ky < 1

4π,

kz = 1
4π

Z2 :=

⎧
⎪⎪⎨

⎪⎪⎩

kx = − 1
4π

1
4π < ky < 1

4π

kz = − 1
4π

.

It is now easy to show that the images of these two sets under
the map n are n(Z1) = E+

2 and n(Z2) = E+
4 . By applying an

analogous line of reasoning, one can prove all the following
inclusions:

(E+
2 ∪ E+

4 ∪ E−
1 ∪ E−

3 ) ⊂ n(B′
0),

(E+
1 ∪ E+

3 ∪ E−
2 ∪ E−

4 ) ̸⊂ n(B′
0),

(E+
2 ∪ E+

4 ∪ E−
1 ∪ E−

3 ) ⊂ n(B′
2),

(E+
1 ∪ E+

3 ∪ E−
2 ∪ E−

4 ) ̸⊂ n(B′
2),

(E+
1 ∪ E+

3 ∪ E−
2 ∪ E−

4 ) ⊂ n(B′
1),

(E+
2 ∪ E+

4 ∪ E−
1 ∪ E−

3 ) ̸⊂ n(B′
1),

(E+
1 ∪ E+

3 ∪ E−
2 ∪ E−

4 ) ⊂ n(B′
3),

(E+
2 ∪ E+

4 ∪ E−
1 ∪ E−

3 ) ̸⊂ n(B′
3). (B10)

This result completes the proof of Eq. (A7) of Lemma 1.

APPENDIX C: THE FUNCTION g(ω,m)

In this appendix, we now show how it is possible to
define a function g(ω,m) such that the map N defines a
diffeomorphism between N and the null mass shell (0. The
purpose of the following construction is to reduce the region
N to a star-shaped region Ñ by removing a null-measure region,
and to define the function g(ω,m) in such a way that the map
N is invertible on Ñ. Since multiplication by g(ω,m) rescales
the four-vector (sin ω,m) without affecting its direction, in
order to have an invertible map N it is sufficient to ensure that
g(ω,m) is radially monotonic versus m, namely, g(ω,rm0)
must be monotonic versus r .

Let us denote E± the ellipses defined by the parametric
equations (A5). We define the polynomials

hU(r,θ,φ) := 1 − r2,

hE(r,θ,φ) := [cos2(φ) − sin2(φ)]2

+
{ 1

2 − r2[1 − cos2(θ ) sin2(φ)]
}2

, (C1)

where we used the spherical coordinates mx = r cos θ cos φ,
my = r sin θ , mz = r cos θ sin φ. Clearly, we have
hU(m),hE(m) > 0 ∀ n ∈, hU(m) = 0 ⇔ m ∈ S2, hE(m) =
0 ⇔ m ∈ E+ ∪ E−, and hU,hE are analytic on U \ H. Since
U \ H is star shaped, we can define

g̃(r,θ,φ) := r

∫ r

0
ds

[
1

hU(s,θ,φ)
+ 1

hE(s,θ,φ)

]
. (C2)

The condition hU(m),hE(m) > 0 ∀ n ∈ U \ H implies that the
function g̃(r,θ,φ) is radially monotonic on U \ H. Since hU(m)
are hE(m) are analytic on U \ H we have that g̃(r,θ,φ) is
analytic on (U \ H) \ 0. Moreover, since g̃(r,θ,φ) is even in
r we have that g̃(m) is analytic on the whole domain U \ H.
Finally, it is easy to check that g(m) diverges to +∞ as m
approaches the boundary of U \ H, and that (∇g)(0) = 0. Let
us define

g(m) := g̃(m) + 1. (C3)

We now check that, with this definition of the map g(m), the
mapN defines an analytic diffeomorphism between U \ H and
(0 with the property JN (0) = I . Clearly, N is analytic in N so
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we just need to prove that it gives a bijection between N and
(0. Let us fix a versor j in R3. Then, in the j direction we have

N (ω,rj) = g(r,θj,φj)
(

sin(ω)
rj

)
. (C4)

Since g(r,θj,φj) is monotone we clearly have that N is injec-
tive. We now prove the surjectivity of N ′(ω,r) := N (ω,rj)
on the set K := {(p0,p1) ∈ R2 such that p2

0 − p2
1 = 0}. Let us

fix a point p = (p0,p1) ∈ K. Since g(r,θj,φj) is monotone
and surjective on [1,+∞) we can find a value rp such that
rpg(rp,θj,φj) = p1. Clearly, since |rp| < 1, also the equation
sin2(ωp) = |rp|2 can be solved and thenN ′(ωp,rp) = (p0,p1).
Since the surjectivity of N holds for any direction j, we have
that N is a diffeomorphism between N and (0. Finally, since
g(0) = 1 and ∇g(0) = 0, we have that the Jacobian of the
map N is the identity, which proves Eq. (A11). Obviously, our
choice of the map g(m) is not unique.
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