
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF OPTICS B: QUANTUM AND SEMICLASSICAL OPTICS

J. Opt. B: Quantum Semiclass. Opt. 4 (2002) S277–S280 PII: S1464-4266(02)38295-8

To take a (binary) decision you’d better
use entanglement
G M D’Ariano1,2, M G A Paris1 and P Perinotti3

1 Quantum Optics and Information Group, INFM Unità di Pavia, Italy
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Abstract
We address two-mode quantum interferometry as binary measurements
aimed at determining whether or not a phase perturbation has occurred. We
show that optimized measurements achieve the best sensitivity when the
input state is entangled. A concrete set-up based on parametric sources of
entanglement and photodetection is also suggested and shown to approach
ideal sensitivity.
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1. Introduction

Interferometry is a measurement scheme devised to monitor
a given configuration and to detect minute perturbations.
Usual interferometric set-ups involve two modes of radiation,
arranged in such a way that any perturbation results in
a two-mode phase-shift transformation of the given input.
The phase shift is monitored by probing the output, and
the set-up is optimized by variation over the possible input
states and detection schemes. The optimization is performed
according to the following criteria: (i) maximization of the
probability of revealing a perturbation when it actually occurs;
(ii) minimization of the smallest perturbation that can be
effectively detected.

We look at interferometers as binary communication
systems [1, 2], with the perturbation playing the role of the
encoded information. According to this view, a general
interferometric scheme consists of a source which prepares
a state �0, an intermediate apparatus which may or may not
act as a perturbation, and a detector described by a generic
POVM�. The perturbation is described by a unitary operator
Uλ and the two possible output states are thus given by �0,
if no perturbation occurs, and �λ = Uλ�0U †

λ , in the case of
perturbation. Depending on the outcome of the measurement,
one decides on the most probable hypothesis as regards the state
of the system. Interferometry is thus equivalent to a binary
decision problem, and the corresponding POVM is binary,
i.e. there are two possible outcomes.

In this paper we wish to emphasize the role of
entanglement in improving interferometric measurements. In
particular, we show that an optimized two-mode interferometer
requires an entangled input state.

In order to optimize the detection strategies, and to
show the benefits of entanglement, we will make use of
results and methods from quantum detection theory applied
to binary decisions [3]. This approach is particularly useful
for our purposes, since it does not refer to any specific
detection scheme for the final stage of the interferometer,
but rather, owing to its generality, it allows us to find the
ultimate quantum limits to interferometry for specific classes
of quantum signals [4].

In the next section, in order to establish notation, we
briefly review the Neyman–Pearson (NP) approach to quantum
binary decisions, and state a lemma regarding minimum input–
output overlap. Then, in section 3 we apply these results to
the interferometric detection of perturbations and analyse a
concrete set-up, based on parametric sources of entanglement
and photodetection, that approaches the ultimate bounds on
precision. Finally, in section 4 we close the paper with some
concluding remarks.

2. Quantum binary decisions in the
Neyman–Pearson approach

A measurement aimed at discriminating between two states of
a system is described by a binary POVM:

�0,�λ � 0 �0 +�λ = I. (1)
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Figure 1. Left: the detection probability Qλ as a function of the false-alarm probability Q0 for |κ|2 = 0.2,0.4, 0.6,0.8 respectively (from
top to bottom; the value for Q0 = 0 is Qλ = 1 − |κ|2). Right: the detection probability Qλ as a function of the overlap |κ|2 for
Q0 = 0.2, 0.4,0.6, 0.8 respectively (from bottom to top; the value for |κ|2 = 1 is Qλ = Q0).

If �0 and �λ are orthogonal, i.e. �0�λ = �λ�0 = 0, the
discrimination is trivial, since the POVM in which �0 is the
projection onto any subspace that contains the support of �0

and is orthogonal to the support of �λ perfectly distinguishes
the two states. In most cases of interest, however, the states are
not orthogonal and one has to apply an optimization scheme.
Since interferometric schemes are frequently used for detecting
low-rate events, we look for a strategy that has a tolerable
probability of wrong inference of perturbation, while leading
to a high probability of detecting the perturbation when it
actually occurs. For this reason we adopt the so-called NP
detection strategy, which consists in fixing the false-alarm
probability Q0—the probability of inferring that the state of
the system is �λ while it is actually �0—and then maximizing
the detection probability Qλ, i.e. the probability of a correct
inference of the state �λ [5]. It has been proved [3] that this
problem can be solved by diagonalizing the operator �λ−µ�0,
µ ∈ R playing the role of a Lagrange multiplier accounting
for the bound of fixed false-alarm probability. According
to [3], the optimal POVM is the one in which �λ is the
projection onto the eigenspaces of �λ−µ�0 relative to positive
eigenvalues and �0 = I −�λ. If �0 and �λ are mixed states,
such diagonalization is generally not easy. However, when
�0 = |ψ0〉〈ψ0| and �λ = |ψλ〉〈ψλ| are pure states, it can be
easily solved analytically, by expanding |ψ0〉 and |ψλ〉 in the
eigenvectors of the difference operator. In this way one can
evaluate both Q0 and Qλ versus µ, and after eliminating µ
from their expressions one obtains

Qλ =




[√
Q0|κ|2 +

√
(1 − Q0)(1 − |κ|2)

]2

for 0 � Q0 � |κ|2,
1 for |κ|2 < Q0 � 1

(2)

where |κ|2 = |〈ψ0|ψλ〉|2 = |〈ψ0|Uλ|ψ0〉|2 is the overlap
between the two states. The behaviour of the detection
probability is shown in figure 1. According to (2), the smaller
the overlap, the easier the discrimination. In fact, if the overlap
is smaller than Q0, one has Qλ = 1, while if the overlap
is greater than Q0, Qλ is a decreasing function of |κ|2. In
contrast, when the overlap approaches 1, one is forced to
decrease the detection probability in order to keep the false-
alarm probability small.

After the optimal POVM has been determined, i.e. the
optimal detection stage, the whole set-up can be further
optimized in looking for the best input state—that is, the state
for which |κ| assumes its minimum value |κ|min .

The value |κ|min depends on the eigenvalues of the unitary
operator Uλ. In order to illustrate this, let us expand Uλ in
terms of its eigenvectors Uλ = ∑

j eiϕ j |ϕ j 〉〈ϕ j | (with integrals
replacing sums in the case of a continuous spectrum) and let us
denote by O(Uλ) = minψ |〈ψ |Uλ|ψ〉|2 the minimum overlap
between the two possible outputs, as obtained by varying the
probe state. Then we have the following overlap lemma [6, 7]:
the minimum overlap O(Uλ) is given by the distance from the
origin in the complex plane of the polygon whose vertices are
the eigenvalues of Uλ. Therefore, the overlap is either zero
(if the polygon includes the origin) or it is given by

O(Uλ) = cos2 �ϕ

2
, (3)

where �ϕ is the angular spread of the eigenvalues. Moreover,
this geometric interpretation of the overlap allows us to
calculate the class of optimal states: zero overlap can be
achieved with a probe state that is given by a superposition of
at least three eigenvectors of Uλ, corresponding to eigenvalues
that make a polygon that encloses the origin (or, if they
exist, by a superposition of two of them corresponding to
diametrically opposed eigenvalues). However, if the minimum
overlap is not zero, it is achieved by the optimal probe state
given by

|ψ〉 = 1√
2
(|ϕi〉 + eiθ |ϕ j 〉), (4)

with �ϕ = ϕi − ϕ j and θ an arbitrary phase.

3. Interferometry as a binary decision problem

In this section we apply the concepts developed in section 2 to
a generic two-mode interferometer, and calculate the optimal
input states for the NP ideal strategy. As we will see, the
optimal states are entangled. Since they are not physically
realizable, we also analyse the ideal scheme with entangled
input states that can be concretely prepared and approximate
the optimal behaviour. Then we compare the performances of
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Figure 2. A schematic diagram of a generic two-mode
interferometer. The hexagons denote the preparation and the
detection stages respectively.

the ideal set-up with that of a realistic Mach–Zehnder scheme
based on the entangled twin-beam from a parametric amplifier,
and on the measurement of the difference photocurrent at
the output. Remarkably, this concrete set-up approaches the
performance of the ideal scheme.

The comparison is made in terms of the sensitivity of the
interferometer, which is defined as the minimum detectable
value λmin of the perturbation parameter λ. More precisely,
λmin is meant as the minimum value of λ such that Qλ/Q0 =
γ ∗ � 1/p, where p is the a priori probability of the
perturbation. The value of γ ∗ is fixed by the experimenter
and is called the acceptance ratio. In order to understand
its meaning we note that, if the set-up detects a perturbation,
the probability that this inference is true is P(p, λ) =
pQλ/[pQλ + (1 − p)Q0] = pγ ∗/[pγ ∗ + (1 − p)]. Therefore,
the greater γ ∗ is, the closer this probability is to one. The
condition on λ reads

|κ|2 = 1 −
(Q0, γ
�)


(Q0, γ
�) = Q0

[
1 + γ �(1 − 2Q0)

− 2
√
γ �(1 − Q0)(1 − γ �Q0)

]
,

(5)

where |κ|2 depends parametrically on λ. By solving this
equation for the given preparation, one can calculate the
sensitivity λmin .

3.1. The NP-optimized interferometer

In figure 2 we show a schematic diagram of a generic two-mode
interferometer. The perturbation may act in the surrounded
region and, when this occurs, the action on the light beams is
described by the unitary operator Vφ = exp{i φ2 (a†b + ab†)}.

If we consider the Schwinger representation of the Lie
algebra of the group SU (2), we have

J+ = a†b, J− = ab†, Jz = 1
2 (a

†a − b†b)

[Jz, J±] = ±J±, [J+, J−] = 2Jz,
(6)

such that Vφ = exp{iφ Jx} [8]. It is well known that the
spectrum of Jx is the set Z of relative integers, so the spectrum
of Vφ is the discrete subset {eimφ,m ∈ Z} of the unit circle
in the complex plane. Apart from the null measure set
 = {(q/p)π, q ∈ 2Z+1, p ∈ Z} of values of φ, the spectrum
of Vφ is dense in the unit circle and its convex hull contains
the origin of the complex plane, although there is no couple of
diametrically opposed eigenvalues. If φ ∈ , then the optimal
state is given by a superposition of two eigenstates of Vφ with

eigenvalues differing by a factor eiπ . In the general case, the
optimal state is any superposition of three or more eigenstates
of Vφ , such that the polygon with vertices on their eigenvalues
encloses the origin of the complex plane [7].

Since Jx = W † JzW with W = exp{i π2 Jy}, the
eigenvectors of Vφ are entangled. In fact they are obtained
from the eigenstates |n, d〉〉 of a†a − b†b:

(a†a − b†b)|n, d〉〉 = d|n, d〉〉,

where |n, d〉〉 =
{

|n + d〉 ⊗ |n〉 for d � 0,

|n〉 ⊗ |n + |d|〉 for d < 0,
(7)

by the unitary transformation W † = exp{−π
4 (a

†b − ab†)}.
In fact, the optimal states are far from being practically

realizable. However, we have proved that they are entangled,
and this suggests exploring the possibility of performing
a reliable discrimination by means of physically realizable
entangled states, e.g. twin-beams obtained by a nondegenerate
parametric amplifier (NOPA). A twin-beam is a state of the
form

|x〉〉 = Ug|0〉〉 =
√

1 − x2
∞∑

n=0

xn|n〉 ⊗ |n〉, (8)

with Ug = exp[g(a†b† + ab)] (g is the gain of the amplifier),
x = tanh g, and with mean photon number N = 2 sinh2 g =
2x2/(1 − x2). The overlap for the probe prepared in a twin-
beam state is given by

κ = 〈〈x |Vφ |x〉〉 = 〈〈0|U †
g VφUg|0〉〉. (9)

After some algebra we get

|κ|2 = 1

1 + 4x2 sin2 φ

(1−x2)2

= 1

1 + N(N + 2) sin2 φ
. (10)

This value is not zero, but it can be arbitrarily small, depending
on the mean photon number of the input state. The minimum
detectable φ, according to (10), is thus given by

φmin = arcsin

(√

(Q0, γ �)

1 −
(Q0, γ ∗)
1√

N(N + 2)

)

	
√


(Q0, γ �)

1 −
(Q0, γ ∗)
1

N
. (11)

3.2. A Mach–Zehnder interferometer fed by a twin-beam

In this section we consider the usual Mach–Zehnder
interferometer, i.e. a scheme similar to that of figure 2 but
where the detection stage consists of a difference photocurrent
measurement (see figure 3). As the input state we consider the
entangled twin-beam |x〉〉 produced by a NOPA. The scheme
should be feasible with current technology and, as we will see,
would approach the ultimate sensitivity bound that has been
obtained in the ideal case [4].

After being prepared by the NOPA, the twin-beam enters
the interferometer, where it is possibly subjected to the action
of the unitary Vφ . At the output the two beams are detected and
the difference photocurrent D = a†a − b†b is measured. If no
perturbation occurs, then the output state is still a twin-beam,
and since |x〉〉 is an eigenstate of D with zero eigenvalue, we
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Figure 3. The interferometric scheme used to achieve the ultimate
bounds on precision by means of an entangled probe. The NOPA
generates a twin-beam which may be subjected to the action of the
unitary Vφ . At the output the beams are detected and the difference
photocurrent is measured. For an unperturbed interferometer the
output is again a twin-beam state, and the scheme is designed in
order to obtain a constant zero difference photocurrent, whereas a
perturbation Vφ would produce fluctuations in the difference
photocurrent.

have a constant zero outcome for the difference photocurrent.
On the other hand, when a perturbation occurs, the output state
is no longer an eigenstate of D, and we detect fluctuations
which reveal the perturbation.

The false-alarm and the detection probabilities are given
by

Q0 = P(d 
= 0|notVφ) ≡ 0 (12)

Qλ = P(d 
= 0|Vφ) = 1 − P(d ≡ 0|Vφ), (13)

where the probability of observing zero counts at the output,
after the action of Vφ , is given by

P(d ≡ 0|Vφ) =
∑

n

|〈〈n, n|Vφ|x〉〉|2, (14)

since the eigenvalue d = 0 is degenerate. In this case the
false-alarm probability is zero and therefore it is not necessary
to introduce an acceptance ratio. The scaling of the minimum
detectable perturbation can be obtained directly in terms of the
detection probability Qλ using equations (13) and (14):

P(d = 0|φ 
= 0) = 1 − 1

2
φ2N 2 + O(φ2) −→ φmin 	

√
2Qλ

N
.

(15)
One can see that a Mach–Zehnder interferometer fed by a twin-
beam shows a sensitivity that scales with the energy as the ideal
scheme. The scaling in equation (15) does not depend on any
parameter but the energy of the input state. This should be
compared with the sensitivity of the customary squeezed states
interferometry [9], where the same scaling is achieved only for
a very precise tuning of the phase of the squeezing. This means
that the entanglement-assisted interferometry provides a more
stable and reliable scheme.

It is worth noticing that the experimental measurement
of a modulated absorption based on entanglement-assisted
difference photocurrent detection has already been performed
using an entangled beam exiting an amplifier above threshold
(parametric oscillator, OPO) [10].

4. Summary and conclusions

In this paper we analysed two-mode interferometric schemes
for the detection of a phase perturbation. We have evaluated
the minimum detectable perturbation according to the NP
criterion, and have shown that optimal detection schemes
need entanglement. Since the NP detection strategy does
not correspond to a realistic detector, we suggest the use of
a Mach–Zehnder interferometer with a twin-beam as input.
Remarkably, the sensitivity of this set-up has the same energy
scaling as the ideal scheme. Moreover, the sensitivity depends
only on the energy of the input state, thus showing the stability
of the present scheme as compared with customary squeezed
states interferometry.

We conclude that the technology of entanglement could
be of great help in improving the precision and stability of
quantum interferometers.
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