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1. INTRODUCTION

In the last two decades, many achievements in quan-
tum optics have come from nonlinear effects in crystals
(for a review on the topic, see [1]). Nonlinear crystals
made it possible to produce both single-mode squeezed
states, which carry attenuated quadrature noise and
constitute good carriers for classical information [2–4],
and two-mode squeezed states, such as the twin beam,
which is a prototype for harmonic-oscillator entangled
states and is useful in many applications, such as con-
tinuous variables teleportation [5]. On mathematical
grounds, the action of nonlinear crystals can be
described by parametric unitary transformations in
which the pump mode is considered as a classical field
and its creation and annihilation operators are replaced
by the complex amplitude. The effective Hamiltonian
makes possible parametric down-conversion, which is
the process by which a photon with higher frequency is
annihilated and two photons with lower frequencies are
created. This process gives rise to time evolution that
can be described through unitaries in the Schwinger
representation of the group 

 

��

 

(1,1), namely, exponen-
tials of linear combinations of the three generators

(1)

where 

 

a

 

 and 

 

b

 

 are the annihilation operators for the two
modes. The degenerate parametric down conversion
happens when the two created photons are in the same
mode with a frequency which is half of the annihilated
photon frequency, and this particular case giving rise to
single-mode squeezing corresponds to 
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three generators

(2)

K+ a†b†, K– ab, Kz
1
2
--- a†a b†b 1+ +( ),= = =

K+
1
2
--- a†( )2

, K–
1
2
---a

2
, Kz

1
2
--- a†a 1/2+( ).= = =

 

Squeezed states and twin beams are nowadays
widely used in experimental quantum optics, and it is
clear that the ability to manipulate radiation modes by
unitaries of the group 

 

��

 

(1, 1) is crucial. In this paper,
we consider some general aspects of the group 

 

��

 

(1,
1) that can be exploited on the physical ground in order
to approximately simulate any 

 

��

 

(1, 1) transformation
by a finite set of elementary 

 

gates

 

, namely, unitary
transformations which can be applied in a given succes-
sion in order to approach a target unitary in the repre-
sentation of 

 

��

 

(1, 1). This is very useful in a situation
in which an experimenter needs a flexible setup which
allows him to simulate to within some accuracy any
possible gate. A similar situation holds for qubits,
where a very powerful theorem from Solovay and
Kitaev states that any gate can be efficiently approxi-
mated by a finite set of elementary gates. In the case of
harmonic oscillators, however, the theorem still lacks
an important part, which states that the amount of ele-
mentary gates needed in order to approximate any gate
grows logarithmically with the accuracy. This fact is
due to the dimension of the Hilbert space, and some
intermediate result towards the analogue of the qubit
Solovay–Kitaev theorem in the case of harmonic oscil-
lators can be derived with the reasonable assumption
that the states of interest, to which the gates have to be
applied, have finite average energy and finite variance
of the energy distribution. In the paper, we will also dis-
cuss severe limitations that make it impossible to find a
power law which is independent of the group element
that one wants to approximate.

Besides the problem of approximation of squeezed
states, we can consider the problem of classifying and
analyzing the performances of covariant measurements
and tomographic measurements. The first ones are an
idealization of physical measurements, which turns out
to be interesting, because they saturate the bounds on
the precision for the estimation of squeezing parame-
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ters, thus providing an absolute standard for rating
actual detectors. As regards the tomographic measure-
ments, their statistics allows one to completely deter-
mine the state of radiation modes—up to statistical
errors. In [6], a particular tomographic measurement
has been proposed for states with even or odd parity
based on the properties of the Schwinger representation
of 

 

��

 

(1, 1). In this paper, we will discuss the possibil-
ity of deriving similar tomographic identities from
group integrals. Moreover, an interesting mechanism,
due to which the “natural” group integral does not con-
verge for physical representations and a sort of regular-
ization is needed, is shown. This analysis provides a
whole range of tomographic POVMs corresponding to
different regularizations, which can be studied in order
to optimize the performances of 

 

��

 

(1, 1) tomography.
The technique is general and can be applied to many
tomographic measurements originating from other
groups. The core of the regularization technique con-
sists in modifying the invariant (Haar) measure on the
group manifold; this modification gives rise to a gener-
alization of the Duflo

 

–

 

Moore [7, 8] operator, which is
typical in groups which are not unimodular, namely, for
which the Haar measure does not exist. This fact
implies some complication in the data processing with
respect to the usual homodyne tomography but on the
other hand allows the group measure to be optimized in
order to minimize the statistical errors.

In Section 2, we discuss some general aspects of the
group 

 

��

 

(1, 1), considering its defining representa-
tion, The results derived there will be exploited in sub-
sequent sections. In Section 3, we prove the existence
of a set of three elementary gates and discuss the possi-
bility to use them for the approximation of target group
elements under reasonable assumptions on the physical
states. We also discuss the impossibility of having the
exact analogue of the Solovay–Kitaev theorem for the
quantum optical representations of 

 

��

 

(1, 1). In Sec-
tion 5, we show that the physical representations of

 

��

 

(1, 1) are not square-summable, and we show how
one can modify the group theoretical identities for
group integrals in order to obtain converging integrals
which are useful for group tomography. In Section 6,
we close the paper with a summary of the contents and
concluding remarks.

2. GENERAL ASPECTS OF THE GROUP 

 

��

 

(1, 1)

 

��

 

(1, 1) is the group of complex 2 

 

×

 

 2 matrices 

 

M

 

with unit determinant that satisfy the relation

(3)

where

(4)

M†PM P,=

P 1 0
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.=

 

This relation implies that the elements of 

 

��

 

(1, 1)

preserve the Hermitian form 

 

ω

 

(

 

v

 

1

 

, 

 

v

 

2

 

)   for
arbitrary column vectors 

 

v

 

i

 

 

 

∈

 

 

 

�

 

2

 

.

From the above definition, it is simple to show that
any matrix 

 

M

 

 

 

∈

 

 

 

��

 

(1, 1) has the form

(5)

for 

 

α

 

, 

 

β

 

 complex numbers such that 

 

|α|

 

2

 

 – 

 

|β|

 

2

 

 = 1.
Notice that the columns 

 

M

 

1

 

, 

 

M

 

2

 

 of 

 

M

 

 are orthogonal and
normalized with respect to the form 

 

ω

 

, namely, 

 

ω

 

(

 

M

 

1

 

,

 

M

 

2

 

) = 0, 

 

ω

 

(

 

M

 

1

 

, 

 

M

 

1

 

) = 1, and 

 

ω

 

(

 

M

 

2

 

, 

 

M

 

2

 

) = –1. By writing

 

α

 

 = 

 

t

 

 + 

 

iz

 

 and 

 

β

 

 = 

 

x

 

 + 

 

iy

 

, we obtain

(6)

 

1

 

 and 

 

σ

 

x

 

, 

 

σ

 

y

 

, 

 

σ

 

z

 

 being the identity and the three Pauli
matrices, respectively. In other words, the elements of

 

��

 

(1, 1) are parametrized by points of a hyperboloid
in 

 

�

 

4. This makes ��(1, 1) a Lie group, namely, a
group which is also a differentiable manifold. The
above parametrization clearly exhibits three relevant
facts: (i) a group element is in one-to-one correspon-
dence with three real parameters (x, y, and z, for exam-
ple); i.e., the group manifold is three-dimensional,
(ii) the group ��(1, 1) is not compact, and (iii) it is not
simply connected [12].

Given a parametrization M(r), where the element
M(r) ∈ ��(1, 1) is specified by the triple r ∈ �3, the
matrix multiplication induces a composition law in the
parameter space: (r, s) � r � s, where r � s is defined by
the relation M(r � s) = M(r)M(s). In particular, if r = (x,
y, z), with x, y, z as in Eq. (6), we can define the invariant
measure

(7)

Invariance of the measure means that the action of the
group does not change the volume of regions in the
parameter space, namely, for any r, s, dµ(r � s) = dµ(s �
r) = dµ(r). Expression (7) of the invariant measure
dµ(x, y, z) is particularly useful, since it allows the
invariant measure in any parametrization of the group
to be obtained just by performing a change of variables.
For example, a useful alternative parametrization of a
group element M ∈ ��(1, 1) is given by

(8)

=̇ v 1
†
Pv 2

M α β
β α⎝ ⎠

⎜ ⎟
⎛ ⎞

=

M t1 izσz xσx yσy,+ + +=
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for θ ∈ [0, +∞), φ ∈ [0, 2π), ψ ∈ [0, 2π). The change of
parametrization from Eq. (6) to (8) corresponds to the
change of variables x = sinhθcosψ, y = sinhθsinψ, z =
coshθsinφ. Performing the change of variables in
Eq. (7), we obtain the expression of the invariant mea-
sure in the parametrization M = M(θ, φ, ψ), namely,

(9)

2.1. The Lie Algebra ��(1, 1)

Since ��(1, 1) is a real three-dimensional mani-
fold, its Lie algebra su(1, 1)—the tangent space in the
identity—is a three-dimensional vector space. As usual,
a basis of the Lie algebra is obtained by differentiating
curves passing through the identity. Differentiation
with respect to the parameters x, y, z in the identity pro-
vides the generators

(10)

(11)

(12)

where M(x, y, z) is defined by Eq. (6). Hence, the Lie
algebra su(1, 1) is the real vector space spanned by the

matrices iσx, iσy, and σz. By defining kx = , ky = ,

kz = , and k± = kx ± iky, we obtain the standard com-

mutation relations

(13)

By definition, an operator representation of the algebra
su(1, 1) is given by the assignment of three operators
Kx, Ky, and Kz that satisfy the above commutation rela-
tions with K± = Kx ± iKy. From such relations, it follows
that, in any representation of su(1, 1), the Casimir oper-
ator

(14)

commutes with the whole algebra spanned by Kx, Ky, Kz.

2.2. The Exponential Map

A way of writing the group elements in any repre-
sentation in terms of the Lie algebra generators is
through the exponential map. The exponential map M =
eim is the map that associates an element m ∈ su(1, 1) of
the Lie algebra with an element M ∈ ��(1, 1) of the
group. In order to discuss the exponential map, it is suit-

dν θ φ ψ, ,( ) θ θdθdφdψ.coshsinh=

iσx i
d
dx
------M x y z, ,( )

x y z 0= = =

,=

iσy i
d
dy
------M x y z, ,( )

x y z 0= = =

,=

σz– i
d
dz
-----M x y z, ,( )

x y z 0= = =

,=

i
σx

2
----- i

σy

2
-----

σz

2
-----

k+ k–,[ ] 2kz–=

kz k±,[ ] k±.±=⎩
⎨
⎧

K K =̇ Kz
2

Kx
2

– Ky
2

–⋅

able to write the elements of the algebra as m = χn · k,
where χ ∈ �, n · k  nzkz – nxkx – nyky and n ∈ �3 is a
normalized vector. In this context, normalized means

that the product n · n   –  –  can assume only
the values +1, –1, and 0. Then, the exponentiation of the
element m ∈ su(1, 1) is easily performed by using the
relation

(15)

which follows directly from the properties of Pauli
matrices. In the following, we analyze the three cases
n · n = ±1, 0 separately.

Case 1: n · n = +1. The exponentiation gives

(16)

Notice that, for any fixed direction n, we have a one-
parameter subgroup, which is compact and isomorphic
to U(1).

The group elements of the form (16) form a region
Ω+ ⊂ ��(1, 1), which contains ±1 and all the matrices
M ∈ ��(1, 1) such that |Tr[M]| < 2.

Case 2: n · n = –1. Exponentiating the generator n · k,
we obtain

(17)

In this case, for a fixed direction n, we have a one-
parameter subgroup, which is not compact and is iso-
morphic to �. The elements M– form a region Ω– ⊂
��(1, 1), which contains the identity and all the matri-
ces M ∈ ��(1, 1) such that Tr[M] > 2.

Case 3: n · n = 0. In this case, the exponentiation
gives

(18)

The elements M0 form a region Ω0 ⊂ ��(1, 1), which
contains all matrices M ∈ ��(1, 1) such that Tr[M] =
2. The region Ω0 is a two-dimensional surface and
therefore has zero volume.

We want to stress that the exponential map does not
cover the whole group ��(1, 1). The region of ��(1,
1) covered by the exponential map is Ω = Ω+ ∪ Ω– ∪
Ω0 and contains matrices M ∈ ��(1, 1) such that
Tr[M] ≥ –2. However, according to parametrization (6),
the trace of the matrix M ∈ ��(1, 1) is Tr[M] = 2t,
t ∈ �. Therefore, the group ��(1, 1) also contains ele-
ments with the trace Tr[M] < –2, which cannot be
obtained with the exponential map. Nevertheless, any
matrix M ∈ ��(1, 1) with Tr[M] < –2 can be written as
M = −M– for some M– ∈ Ω–, and any matrix M ∈
��(1, 1) with Tr[M] = –2 can be written as M = –M0

=̇

=̇ nz
2

nx
2

ny
2

n k⋅( )2 n n⋅
4

-----------1 ,=

M+ e
iχn k⋅ χ

2
---⎝ ⎠

⎛ ⎞ 1cos i
χ
2
---⎝ ⎠

⎛ ⎞ 2nsin k.⋅+= =

M– e
iχn k⋅ χ

2
---⎝ ⎠

⎛ ⎞ 1cosh i
χ
2
---⎝ ⎠

⎛ ⎞ 2nsinh k.⋅+= =

M0 e
iχn k⋅

1 iχn k.⋅+= =
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for some M0 ∈ Ω0. Defining –Ω–  {–M– |M– ∈ Ω–} and
–Ω0  {−M0 |M0 ∈ Ω0}, we have

(19)

Notice that, since Ω0 and –Ω0 have zero measure, any
group integral can be written as the sum of only three
contributions coming from Ω+, Ω–, and –Ω–, respec-
tively.

Even though the exponential map does not cover the
whole group ��(1, 1), any group element M(θ, φ, ψ)—
parametrized as in Eq. (8)—can be written as a product
of exponentials, for example, as

(20)

Relation (20) is particularly useful, since it allows one
to construct from any representation of the Lie algebra
su(1, 1) a representation of the group ��(1, 1). In par-
ticular, for the physical realizations of the group ��(1,
1), where the generators kx, ky, kz are represented by
Hermitian operators Kx, Ky, Kz in an infinite-dimen-
sional Hilbert space, relation (20) provides the unitary
representation

(21)

2.3. Baker–Campbell–Hausdorff Formula

The exponential with k+, k– in Eq. (21) can be further
decomposed according to the Baker–Campbell–Haus-
dorff (BCH) formula. The BCH formula is the funda-
mental relation holding for any representation of the
algebra su(1, 1), given by [9]

(22)

This formula can be simply proven by verifying it in the
case of the two-by-two matrices k+, k–, kz ∈ su(1, 1).

A version of the BCH formula in “antinormal order”
is given by the relation

(23)

which follows from expression (22) with the change of
representation  = –K–,  = –K+,  = –Kz.

ELEMENTARY GATES

Parametrization (8) makes it evident that any ele-
ment of ��(1, 1) can be obtained as a product of expo-

=̇
=̇

�� 1 1,( ) Ω Ω–– Ω0.–∪ ∪=

M θ φ ψ, ,( ) e
ξk+ ξk––

e
2iφkz, ξ iθe

i ψ φ–( )–
.–= =

Uθ φ ψ, , e
ξK+ ξK––

e
2iφKz, ξ iθe

i ψ φ–( )–
.–= =

e
ξK+ ξK–– 1

ξcosh
-----------------⎝ ⎠

⎛ ⎞
2Kz

exp
ξ
ξ
----- ξ K–tanh–

exp
ξ
ξ
----- ξ K+tanh

=

ξ∀ �.∈

e
ξK+ ξK––

ξcosh( )
2Kz exp

ξ
ξ
----- ξ K+tanh

exp
ξ
ξ
----- ξ K–tanh–

=

ξ∀ �,∈

K+' K–' Kz'

nentials of the generators kz and kx. In fact, Eq. (8) is
equivalent to the decomposition

(24)

As a consequence, we have the following approxima-
tion theorem:

Theorem 1. (Approximation of group elements)
Any element of M ∈ ��(1, 1) can be approximated
with arbitrary precision by a finite product involving
only three elements G1, G2, G3 ∈ ��(1, 1). A possible
choice is

(25)

with θ1, θ2 > 0, θ1/θ2 ∉ �, and φ3/2π ∉ �.
Proof. Due to decomposition (24), it is enough to

show that all elements of the form  and of the form

 can be approximated with a product of G1, G2, and
G3. First, any point of the circle � = �mod2π can be
approximated by a multiple of an angle φ3, provided
that φ3 is not rational with 2π. Approximating φ as φ ≈
N3φ3, we see that N3 ∈ � corresponds to approximating

the exponential  as . In the same way, any
point of the circle �' = �modθ1 can be approximated
by a multiple of –θ2, provided that θ2 is not rational
with θ1. Since any real number θ ∈ � can be written as
θ = Mθ1 + θmodθ1, by approximating θmodθ1 ≈
N2θ2modθ1, we obtain θ ≈ N1θ1 – N2θ2 for some N1 ∈
�. This corresponds to approximating the exponential

 as .

The previous theorem is particularly important in
consideration of physical realizations, where the group
��(1, 1) acts unitarily on an infinite-dimensional Hil-
bert space. In this case, the previous result shows that
any unitary transformation representing an element of
��(1, 1) can be arbitrarily approximated by a finite cir-
cuit made only of three elementary gates. However, if
we thoroughly define a parameter for the rating of the
approximation, we find that the accuracy is arbitrarily
small; this is due to the unboundedness of the genera-
tors for the unitary representations of ��(1, 1) of phys-
ical interest. In particular, we are interested in the two
representations in which

(26)

The parameter for the approximation rating is the
accuracy �–1, with

(27)

M θ φ ψ, ,( ) e
i φ ψ–( )kze

2ikx–
e

i φ ψ+( )kz.=

G1 e
θ1σx, G2 e

θ2σx–
, G3 e

iφ3σz,= = =

e
iφσz

e
θσx

e
iφσz G3

N3

e
θσx G1

N1G2

N2

Kz
1
2
--- a†a b†b 1+ +( ), K+ a†b†, K– ab,= = =

Kz
1
2
--- a†a 1/2+( ), K+

1
2
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, K–
1
2
---a

2
.= = =

� =̇ U1 U2–( ) ψ| 〉
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sup ,
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where U1 is the target element, U2 is the product of ele-
mentary gates that approximates U1. However, since we
are considering infinite-dimensional representations,
the difference U1 – U2 has eigenvalues arbitrarily near
2. The supremum is then always 2, and in order to find
some approximation criterion we have to impose some
constraints on the states that we are considering. For
example, we will impose that the average and second
moment of the photon number distribution are finite,
which are reasonable physical assumptions. Suppose
now that we have a sufficiently long sequence of ele-
mentary gates, in such a way that, using the decompo-

sition of Eq. (24), U1 =  and U2 =

, and only first-order
terms in δx are relevant thanks to the constraint on
states. After some algebra, and exploiting Eq. (63), one

can verify that the supremum of 〈ψ|2I –  –

|ψ〉 is almost equal to the supremum of 〈ψ|∆|ψ〉,
where

(28)

depending on the sign of  +  + 2coshβδαδγ – .
This equation implies two facts. First of all, we can eas-
ily verify that the physical constraint on states is neces-
sary in order to guarantee the boundedness of �. How-
ever, it is not sufficient because of the presence of
coshβ in the expression. This is due to the noncompact-
ness of the group, which implies that, even in the defin-
ing representation, the approximation is worse as one
goes further along the direction of a noncompact
parameter. This is a fatal flaw of any analogy to the
Solovay–Kitaev theorem for the qubit case, and in order
to have a similar result one must also restrict the set of
unitaries that he wants to approximate. Otherwise, a
power law for the number of gates as a function of �–1

can be sought which also contains an explicit depen-

dence on the parameter β. Suppose that we have |  +

 + 2coshβδαδγ – |  f(N), where N is the number
of elementary gates needed to approximate the target
group element within the defining representation. Then,

for ∆ ∝  in Eq. (28), we have � = f(N)(〈E2〉 + 2λ〈E〉 +

λ2), where E is the total number of photons and λ = 

for the single-mode representation and λ =  for two

modes. The function f is clearly nonincreasing; suppos-

e
iαKz–

e
iβKx–

e
iγ Kz–

e
i α δα+( )Kz–

e
i β δβ+( )Kx–

e
i γ δγ+( )Kz–

U1
†
U2

U2
†
U1

∆
δα

2 δγ
2

2 βδαδγcosh δβ
2

–+ +( )Kz
2

δβ
2 δα

2
– δγ

2
– 2 βδαδγcosh–( )Kx

2
,⎩

⎨
⎧

=

δα
2 δγ

2 δβ
2

δα
2

δγ
2 δβ

2
=̇

Kz
2

1
4
---

1
2
---

ing that it is strictly monotonic, we can invert it,
obtaining

(29)

4. UNITARY REPRESENTATIONS OF ��(1,1)

Given a representation of the su(1, 1) algebra where
the generators Kx, Ky, Kz are Hermitian operators acting
in an infinite-dimensional Hilbert space �, we consider
the unitary representation Uθ, φ, ψ of the group ��(1, 1)
defined by Eq. (21). In general, such a representation is
reducible, and it can be decomposed into unitary irre-
ducible representations (UIRs).

A UIR Uθ, φ, ψ is called square-summable if there is
a nonzero vector |v〉 ∈ � such that

(30)

where dν is the invariant measure defined in Eq. (9).
Moreover, since the group ��(1, 1) is unimodular, if
the above integral converges for one vector |v〉 ≠ 0, then
it converges for any vector in � [10].

Square-summable representations enjoy the impor-
tant property expressed by the following.

Theorem 2 (Formula for the group average). If
the irreducible representation Uθ, φ, ψ is square-summa-
ble, then for any operator A ∈ �(�) the following rela-
tion holds:

(31)

Here, 1 is the identity in � and d is the formal dimen-
sion defined by

(32)

where |v〉 is any normalized vector |v〉 ∈ �, 〈v |v〉 = 1.
The formula for the group average is fundamental in

the contexts of quantum estimation and tomography,
since it allows resolutions of the identity to be con-
structed via a group integral. In the context of quantum
estimation, Eq. (31) ensures that the operators

(33)

where ξ is any operator satisfying ξ > Tr[ξ] = d, provide
a positive operator valued measure (POVM) for the
joint estimation of the three parameters θ, φ, ψ. In fact,
such operators satisfy the normalization condition

(34)

N f
1– �

E
2〈 〉 2λ E〈 〉 λ2

+ +
---------------------------------------------⎝ ⎠

⎛ ⎞ .=

ν θ φ ψ, ,( ) v〈 |Uθ φ ψ, , v| 〉 2
d

�� 1 1,( )
∫ ∞,<

ν θ φ ψ, ,( )Uθ φ ψ, , AUθ φ ψ, ,
†

d

�� 1 1,( )
∫ Tr A[ ]1

d
---.=

d  =̇ ν θ φ ψ, ,( ) v〈 |Uθ φ ψ, , v| 〉 2
d

�� 1 1,( )
∫⎝ ⎠

⎜ ⎟
⎛ ⎞

1–

,

P θ φ ψ, ,( ) Uθ φ ψ, , ξUθ φ ψ, ,
†

,=

ν θ φ ψ, ,( )P θ φ ψ, ,( )d

�� 1 1,( )
∫ 1 ,=
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which guarantees that the total probability of all possi-
ble outcomes is one. In particular, if ξ = d |v〉〈v | for
some state |v〉, the above formula gives the complete-
ness of the set of ��(1, 1) coherent states [11]:

(35)

4.1. Examples

4.1.1. Single-mode squeezing. The representation
of the su(1, 1) algebra, given by

(36)

is reducible in the Hilbert space � of a single harmonic
oscillator. In fact, the subspaces �even = Span{|2n〉|n ∈
�} and �odd = Span{|2n + 1〉|n ∈ �}, defined in terms

of the Fock basis |n〉 = a†n |0〉, are invariant under

the application of Kx, Ky, Kz. The unitary representation
of ��(1, 1) defined by Eq. (21) acts irreducibly in the
subspaces �even and �odd. There is a substantial differ-
ence between the two UIRs acting in �odd and �even; in
fact, the first is square-summable, with formal dimen-
sion dodd = 1/(4π2), while the latter is not. A surprising
consequence of the non-square-summability in �even is

that the squeezed states |ξ〉 = |0〉—which are
the coherent states of ��(1, 1) commonly considered
in quantum optics—do not provide a resolution of the
identity.

4.1.2. Two-mode squeezing. The representation of
the Lie algebra su(1, 1) given by the operators

(37)

is reducible in the Hilbert space �a ⊗ �b of two har-
monic oscillators. It is indeed immediately evident that,
for any δ ∈ �, the subspaces �δ = Span{|m〉|n〉|m, n ∈
�, m – n = δ} are invariant under application of the
operators K+, K–, Kz. The unitary representation of
��(1, 1) given by Eq. (21) is irreducible in each sub-
space �δ. The two UIRs acting in �δ and �–δ are uni-
tarily equivalent, while for different values of |δ | one
has nonequivalent UIRs. All UIRs in the two-mode
realization are square-summable, with the only excep-
tion being the case δ = 0.

5. ��(1, 1) TOMOGRAPHY

5.1. Reconstruction Formula for Square-Summable 
Representations

Let us now consider the group as a tool for quantum
tomography. In order to do that, it is useful to consider

v θ φ ψ, ,| 〉 =̇ Uθ φ ψ, , v| 〉.

K+
a†2

2
-------, K–

a
2

2
-----, Kz

1
2
--- a†a

1
2
---+⎝ ⎠

⎛ ⎞= = =

1

n!
---------

e
ξK+ ξK––

K+ a†b†, K– ab, Kz
1
2
--- a†a b†b 1+ +( )= = =

the set of operators on a Hilbert space � as a Hilbert
space itself, isomorphic to � ⊗ �, and to look for
spanning sets in this Hilbert space. An immediate and
handy way of defining the isomorphism between oper-
ators and bipartite vectors is through the definition

(38)

where A is an operator on � and |n〉 are elements of a
fixed basis for �. This definition implies the following
useful identities:

(39)

(40)

where Xτ denotes the transpose of X in the basis |n〉.
For a square-summable UIR Uθ, φ, ψ , we can obtain a

resolution of the identity by simply exploiting Eqs. (31)
and (39), namely,

(41)

which shows that the unitaries Uθ, φ, ψ form a spanning
set for the space of operators.

Tomographing the state ρ is equivalent to recon-
structing the ensemble average Tr[ρA] = 〈〈ρ|A〉〉 of any
operator A on the state ρ. This can be done using the
reconstruction formula

(42)

which directly follows by inserting the resolution of
identity (41) into the product Tr[ρA] = 〈〈ρ|A〉〉. In a real
tomographic scheme, the traces Tr[ρUθ, φ, ψ] have to be
evaluated by experimental data and subsequently aver-
aged with the processing function fA(θ, φ, ψ) =

Tr[ ] in order to obtain the expectation value
Tr[ρA]. A feasible scheme for evaluating the traces
Tr[ρUθ, φ, ψ] by experimental data is discussed in Sub-
section 5.4.

5.2. Non-Square-Summable Representations: 
Regularization

The representations of ��(1, 1) that are common in
quantum optics are single-mode and two-mode
Schwinger representations, analyzed in paragraphs
4.1.1 and 4.1.2, respectively. In particular, the irreduc-

A〉| 〉 =̇ m〈 |A n| 〉 m| 〉
m n,
∑ n| 〉,⊗

A B C〉| 〉⊗ ACB
τ〉| 〉,=

A B〈 | 〉〈 〉 Tr A†B[ ],=

1 1⊗ d ν θ φ ψ, ,( ) Uθ φ ψ, , 〉| 〉 〈Uθ φ ψ, ,〈 |,d

�� 1 1,( )
∫=

Tr ρA[ ]

=  d ν θ φ ψ, ,( )Tr ρUθ φ ψ, ,[ ]Tr Uθ φ ψ, ,
†

A[ ],d

�� 1 1,( )
∫

Uθ φ ψ, ,
†

A
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ible subspaces �even in the single-mode case, and �0 in
the two-mode case, are particularly interesting, since
coherent states with an even photon number in the sin-
gle-mode case (or, alternatively, zero difference of pho-
ton numbers in the two-mode case) are experimentally
achievable by simple vacuum squeezing.

The problem now is that the single-mode represen-
tation in �even and the two-mode representation in �0
are not square-summable; therefore, the group integral
in Eq. (30) diverges. In order to circumvent this prob-
lem, we address here a technique that consists in mod-
ifying the invariant measure dν(θ, φ, ψ) by a regulariza-
tion factor g(θ, φ, ψ), which is positive almost every-
where. The modification of the measure makes it
noninvariant, and consequently the group average iden-
tities become similar to those of nonunimodular
groups, where there is no invariant measure.

Using the regularization factor instead of the resolu-
tion of identity (41), we have a positive invertible oper-
ator

(43)

and the ensemble average of any operator A can be
obtained by writing Tr[ρA] = 〈〈ρ|FF–1 |A〉〉. In this way,
we can provide a regularized reconstruction formula

(44)

involving the processing function

(45)

instead of 〈〈Uθ, φ, ψ|A〉〉. Notice that identity Eq. (44) can
also be used in the square-summable case with
g(θ, φ, ψ) ≡ 1.

5.3. A Relevant Example

Here we consider in detail the case of the UIRs with
even photon number (single-mode case) and with δ = 0
(two-mode case) representations, providing an example
of the general method discussed above. We will start
from the following integral:

(46)

F = ν θ φ ψ, ,( )g θ φ ψ, ,( ) Uθ φ ψ, , 〉| 〉 〈Uθ φ ψ, ,〈 |,d

�� 1 1,( )
∫

Tr ρA[ ]

=  ν θ φ ψ, ,( )g θ φ ψ, ,( ) f A θ φ ψ, ,( )Tr Uθ φ ψ, , ρ[ ],d

�� 1 1,( )
∫

f A θ φ ψ, ,( ) 〈Uθ φ ψ, ,〈 |F 1–
A〉| 〉,=

S m n; m' n', ,( )

=  ν θ φ ψ, ,( ) 2m〈 |Uθ φ ψ, , 2n| 〉 2n'〈 |Uθ φ ψ, ,
†

2m'| 〉,d

�� 1 1,( )
∫

where |2m〉 denotes either the even eigenstate of a†a or
the zero-difference eigenstate |m〉|m〉 of a†a + b†b. This
can be evaluated by exploiting Eqs. (21) and (22), thus
obtaining the following expressions for the matrix ele-
ment 〈2m |Uθ, φ, ψ|2n〉:

(47)

where κ = 1/2 for even single-mode states and κ = 1 for
d = 0 two-mode states, and

(48)

By exploiting the integral in ψ and then in φ, we obtain

(49)

where

(50)

and for 2n = p + p' this is clearly divergent. Moreover,
for m < n and p = p' = 0, the integral diverges because
of the singularity in θ = 0. If we introduce the regular-

ization factor g(θ, φ, ψ) = g(θ)  , by exploit-

ing the same calculations we get the same result with
Iκ(m, n, p, p') replaced by

(51)

2m〈 |Uθ φ ψ, , 2n| 〉 e
iφ 2n κ+( )

e
i ψ φ–( ) n m–( )

=

× cκ p( ) i θtanh–( )2 p m n–+ 1
θcosh

---------------⎝ ⎠
⎛ ⎞

2n 2 p– κ+

,
p 0=

n

∑

cκ p( ) = 

2n!2m!

p! p m n–+( )! 2n 2 p–( )!2
2 p m n–+

----------------------------------------------------------------------------------, κ = 
1
2
---

n!m!

p! p m n–+( )! n p–( )!2
---------------------------------------------------------, κ 1.=

⎩
⎪
⎪
⎨
⎪
⎪
⎧

S m n; m' n', ,( )

=  4π2δm m', δn n', cκ p( )cκ p'( ) 1–( ) p p'+
Iκ m n p p', , ,( ),

p p', 0=

n

∑

Iκ m n p p', , ,( )

=  θ θ θ θtanh( )2 p p'+( ) 2m 2n–+

θcosh( )4n 2 p– 2 p'– 2κ+
--------------------------------------------------,coshsinhd

0

∞

∫

=̇
e

1/ θtanh( )2
–

θcosh( )3
----------------------

Iκ g, m n p p', , ,( )

=  xx
2n p– p'– κ+

1 x–( ) p p' m n–+ +
e

1
1 x–
-----------–

,d

0

1

∫
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which is derived from Eq. (50) by the change of vari-
able (1/coshθ)2  x and which is finite. As a conse-
quence,

(52)

and since the coefficients cκ(p) are not null, clearly 0 <

 < ∞. This implies that the operator F in Eq. (43)
is actually invertible, and we can safely use the process-
ing function in Eq. (45) for tomographic reconstruction
of the operator A. Notice that this formula is very close
to the group-average formula for nonunimodular
groups, where the Duflo–Moore operator C is involved.
The group average identity in that case is similar to

Eq. (52) with  = (C†C)m, m.

5.4. How to Make Tomography Experimentally

In quantum tomography, the expectation value 〈A〉 =
Tr[ρA] of any observable is reconstructed by exploiting
integral (44). Moreover, in order to have a feasible
tomography, it is essential to devise a method to evalu-
ate the traces Tr[ρUθ, φ, ψ] from experimental data. To do
this, it is useful to break the integral over ��(1, 1) into
the sum of the contributions coming from the regions
Ω+, Ω–, and –Ω– introduced in Subsection 2.2. It is not
difficult to see that the regions Ω– and –Ω– give the
same contribution to the tomographic integrals, whence
we have

(53)

By definition, any element in Ω+(Ω–) can be obtained
by the exponential map as eiχn · K for some χ and n with

ν θ φ ψ, ,( )g θ( ) Uθ φ ψ, , 〉| 〉 〈Uθ φ ψ, ,〈 |d

�� 1 1,( )
∫

=  Fm n,
κ( )

2m| 〉 2m〈 |
m n, 0=

∞

∑ 2n| 〉 2n〈 |,⊗

Fm n,
κ( )

 = 4π2
1–( ) p p'+

cκ p( )cκ p'( )Iκ g, m n p p', , ,( )
p p', 0=

n

∑

=  x 1–( ) p
cκ p( ) 1 x–

x
-----------⎝ ⎠

⎛ ⎞
p

p

∑
2

x
2n

1 x–( )m n–
e

1
1 x–
-----------–

,d

0

1

∫

Fm n,
κ( )

Fm n,
κ( )

Tr ρA[ ]

=  ν θ φ ψ, ,( )g θ φ ψ, ,( ) f A θ φ ψ, ,( )Tr Uθ φ ψ, , ρ[ ]d

Ω+

∫

+ 2 ν θ φ ψ, ,( )g θ φ ψ, ,( ) f A θ φ ψ, ,( )Tr Uθ φ ψ, , ρ[ ].d

Ω–

∫

n · n = +1 (–1). In addition, it is possible to show that
any exponential eiχn · K can be written as

(54)

where V(n) and W(n) are suitable unitaries in the group
representation. A detailed proof of this result is given in
the Appendix. Thank to this observation, the trace
Tr[ρeiχn · K] can be evaluated by performing a unitary
transformation on the state ρ (either V(n) or W(n)) and
subsequently by measuring one of the observables Kz

and Kx.

Finally we observe that, since a real experiment pro-
duces only a finite array of data, integral (53) has to be
approximated by a statistical average over the experi-
mental results obtained by measuring a large number N
of identically prepared systems. This introduces the
need for a randomization in the experimental setup that
produces the unitaries V(n), W(n) according to some
probability distribution. Notice that the most natural
choice, which would be to take dρ(n) as the measure
over the space of directions n induced by the invariant
measure dν(θ, φ, ψ), is not possible, since such a mea-
sure cannot be normalized (the space of directions is
noncompact). The form of Eq. (53) suggests then to
take as a measure dν(θ, φ, ψ)g(θ, φ, ψ), and in the
example we considered this actually works. However, it
may happen that regularizing the integral in Eq. (44) is
not sufficient to regularize the group measure also. In
this case, it is convenient to modify g(θ, φ, ψ) in such a
way that both the measure itself and the group integrals
converge. This implies in particular that the choice
g(θ, φ, ψ) ≡ 1 for square-summable representations has
to be changed. Finally, the ensemble average 〈A〉 can be
approximated by the expression

(55)

where θj, φj, ψj are the randomly extracted parameters.
Notice that the expression on the right-hand side of
Eq. (55) reasonably converges to the left-hand side if
the variance of the processing function is finite, namely,
if fA(θ, φ, ψ) is square-summable. By Eqs. (43) and
(45), this condition is equivalent to

(56)

e
iχn K⋅ V n( )†e

iχKzV n( ), n n⋅ +1=

W n( )†e
iχKxW n( ), n n⋅ 1,–=⎩

⎨
⎧

=

A〈 〉  � 
1
N
---- f A θ j φ j ψ j, ,( )Tr ρU θ j φ j ψ j, ,( )[ ],

j 1=

N

∑

ν θ φ ψ, ,( )g θ φ ψ, ,( ) f A θ φ ψ, ,( ) 2
d

�� 1 1,( )
∫

=  A〈 |F 1–
A| 〉〈 〉 ∞.<
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6. CONCLUSIONS

This paper collects a large number of useful results
about the group ��(1, 1) that are dispersed in the liter-
ature and also contains some novel applications regard-
ing the use of ��(1, 1) for quantum computation and
tomography with nonlinear optics. The main issues we
addressed here are (i) the approximation of ��(1, 1)
gates in the quantum optical representations and (ii) the
tomographic state reconstruction exploiting group the-
oretical methods. As regards the first topic, we gave an
approximability theorem and discussed the limits under
which it holds. The theorem provides a useful result in
the search for an elementary set of gates that can be
used to universally approximate any ��(1, 1) gate with
arbitrary accuracy. To complete the analogy with the
Solovay–Kitaev theorem for qubit gates, the power law
of the number of elementary gates as a function of the
accuracy should be evaluated, and due to noncompact-
ness we expect that the law would depend on the
parameters of the target group element.

In the context of quantum estimation and tomogra-
phy, we showed a technique for regularization of the
group integral for physically relevant representations
that are not square-summable. The core of the regular-
ization technique is a modification of the Haar measure
over the group, such that the regularized measure is no
longer invariant. This makes the integrals for tomo-
graphic reconstruction convergent but radically modi-
fies the processing functions in a way that can be seen
as a generalization of the group integral identity for
nonunimodular groups. Such a regularization technique
is very powerful, since it contains a freedom in the
choice of the regularization factor, which allows for a
further optimization of the processing. Moreover, the
mentioned scheme can be applied not only to the case
of ��(1, 1), but also to any other tomographic setup.

APPENDIX A

For a given representation of the su(1, 1) algebra,
consider the real vector space � spanned by the gener-
ators Kx, Ky, Kz. Of course, � is isomorphic to �3 via
the correspondence

Kx  , Ky  , Kz  (57)

The action of the group ��(1, 1) on the space �, given
by � ∋ m � eiχn · Kme–iχn · K, can be obtained by expo-
nentiating the adjoint action on the algebra, namely,

(58)

where Ad(Ki) is defined by Ad(Ki)Kj  [Ki, Kj]. More-
over, using the commutation relations of su(1, 1), we
immediately find

1

0

0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞ 0

1

0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞ 0

0

1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.

e
iχn K⋅

me
iχn– K⋅

e
iχn Ad K( )⋅

m,=

=̇

(59)

Therefore, we find that a generic element of ��(1,
1)—parametrized as M(θ, φ, ψ) =

 as in Eq. (24)—is represented in
the space � by the matrix

(60)

whose explicit expression is rather lengthy but is easily
computable by exponentiating the matrices in Eq. (59).

It is not difficult to see that the matrices R(θ, φ, ψ)
given by Eq. (60) form a subgroup of the group
�	(2, 1); namely, they all have unit determinant and
preserve the form v · w = vzwz – vxwx – vywy. More pre-
cisely, the matrices R(θ, φ, ψ) coincide with the group
�	+(2, 1), which contains all matrices R ∈ �	(2, 1)
such that R33 ≥ 1. Incidentally, we notice that the corre-
spondence ��(1, 1)  �	+(2, 1) is not one-to-one,
since both ±1 ∈ ��(1, 1) are mapped into the identity
in �	+(2, 1). One has indeed the group homeomor-
phism �	+(2, 1) � ��(1, 1)/�2 [14], which is exactly
the same relation occurring between the groups ��(2)
and �	(3), namely, �	(3) � ��(2)/�2.

Similarly to the case of �	(3), where any spatial
direction n can be conjugated with the direction of the
z axis by a suitable rotation, in the case of �	+(2, 1),
any direction n with n · n = +1 can be conjugated with
the z axis, and any direction with n · n = –1 can be con-
jugated with the x axis. For example, the matrix R(θ, φ,
ψ) in Eq. (60) transforms the direction of the z axis as

(61)

and it is clear that here n can be any direction with
n · n = 1 (modulo an overall phase factor). Therefore,
we have, for any n with n · n = +1,

(62)

for suitable θ, φ, ψ. In conclusion,

(63)

The same reasoning holds for any direction with n · n = –1.

Ad Kx( )
0 0 0

0 0 i–

0 i– 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

, Ad Ky( )
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0 0 0

i 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,= =
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i 0 0

0 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
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e
i φ ψ–( )kze

2ikx–
e
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i φ ψ–( )Ad Kz( )

e
2i Ad Kx( )–

e
i φ ψ+( )Ad Kz( )
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k
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 � n
2θ( ) φ ψ–( )sinsinh–
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2θ( )cosh⎝ ⎠
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n K⋅ Uθ φ ψ, ,
†
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