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Optimal phase-covariant cloning for qubits and qutrits

Giacomo Mauro D’Ariano* and Chiara Macchiavello†

Quantum Optics and Information Group, Istituto Nazionale di Fisica della Materia, Unita` di Pavia,‡ I-27106 Pavia, Italy
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We consider cloning transformations of equatorial qubitsucf&51/A2(u0&1eifu1&) and qutrits ucf,u&
51/A3(u0&1eifu1&1eiuu2&), with the transformation covariant for rotation of the phasesf and u. The
optimal cloning maps are derived without simplifying assumptions from first principles, for any number of
input and output qubits, and for a single-input qutrit and any number of output qutrits. We also compare the
cloning maps for global and single-particle fidelities, and we show that the two criteria lead to different optimal
maps.
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I. INTRODUCTION

The impossibility of perfectly cloning unknown quantu
states selected from a nonorthogonal set is a typical quan
feature@1#, and is the basis of the security of quantum cry
tography@2–4#. In fact, the potential eavesdropper Eve ca
not clone the quantum state transmitted by Alice, recove
from multiple copies, and retransmit it undisturbed to t
receiver Bob. Eve, however, can try to realize an appro
mate cloning@5–8# in an optimal way, maximizing the fidel
ity of the copies with the original state, and this is a possi
eavesdropping strategy. The eavesdropping strategies tha
known to be optimal so far are actually based on clon
attacks@9–11#. Moreover, quantum cloning allows to stud
the sharing of quantum information among several par
and it may be applied also to study the security of multipa
cryptographic schemes@12#.

Generally the values of the fidelity achieved by optim
cloning transformations depends on the set of allowed in
states. In particular, higher fidelities can be achieved
smaller sets of input states, since the more information ab
the input is given, the better the input states can be clon
More precisely, for group-covariant cloning@13#—where the
set of input states is the orbit of a given state under the ac
of a group of unitary transformations—the smaller is t
group the higher is the fidelity averaged over the input sta

In this paper we will develop a thorough analysis of t
cloning map that is optimal for equatorial qubits and qutr
without any simplifying assumptions, including that of grou
covariance and the requirement that the output of the clon
map has support on a symmetric tensor-product Hilb
space. As we will see in Sec. II, these assumptions can
derived from the form of the fidelity that one wants to ma
mize. More precisely, we will derive with no assumption t
optimal quantum cloning transformation maximizing t
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fidelity averaged uniformly over all states of a Bloch sphe
equator

ucf&5
1

A2
@ u0&1eifu1&], ~1!

where$u0&,u1&% represent a basis for a qubit and the para
eter fP@0,2p) is the angle between the Bloch vector a
the x axis, with the equator in thex-y plane with the Bloch
sphere. As we will see, such averaged form for the fide
automatically leads to the optimal cloning covariant und
the Abelian groupU(1) of phase rotations—the so-calle
phase-covariantcloning @9#. After the first analysis of Ref.
@9#, where only the upper bounds for the fidelity were d
rived by exploiting a connection between optimal pha
covariant cloning and phase estimation, in Refs.@13,14# a
value for the fidelity that breached the bound given in R
@9# was found for the 1→3 cloning, apparently obtained un
der the same assumptions@15#. Then in Ref.@14# a cloning
transformation from an arbitrary number of input copiesN to
an arbitrary numberM of output copies was presented, how
ever, it was proved to be optimal only forN51. In this
paper we will prove that the cloning maps of Ref.@14# are
generally suboptimal forN.1 and we will derive the opti-
mal ones for any values ofN andM. In the derivation of the
optimal cloning maps we will use the general method d
signed for group-covariant cloning introduced in Ref.@13#,
which exploits the correspondence between CP~completely
positive! maps and positive operators. We also extended
analysis to the case of phase-covariant cloning forqutrits,
namely, for quantum states with dimensiond53. Here the
covariance groupU(1)3U(1) is still Abelian, and describes
the rotation of two different phases.

The paper is organized as follows. In Sec. II we descr
the general theory of optimal phase-covariant cloning, giv
the definitions of all relevant quantities in the qubit cas
since for the qutrit case the treatment is strictly analogo
The starting point is the maximization of a phase-avera
fidelity, which will lead to a phase-covariant CP map wi
output on the symmetric Hilbert space of the output copi
Then the theory of group-covariant cloning of Ref.@13#
is shortly reviewed and specialized to the case of ph

,
:
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covariance. In Sec. III we derive the optimal phase-covar
cloning for qubits for any number of input and output copie
giving the fidelities for all cases. In Sec. IV the same de
vation is given for qutrits with any number of output copie
starting from a single input copy. Finally, in Sec. V we co
clude with a discussion of the results, and with some o
problems and future perspectives.

II. OPTIMAL PHASE-COVARIANT CLONING

A cloning map is a special kind ofquantum channel, i.e. a
trace-preserving CP map. In the cloning case, the CP maC
goes from input states inH to output states inH ^ M, with
the output state invariant under the permutations of theM
output spaces. More generally, if we haveN.1 identical
copies available, the map goes from an input stater ^ N on
the input Hilbert spaceHin given by the symmetric subspac
N8(H ^ N)1 of the tensor productH ^ N to the output space
M8H ^ M with M.N, and with the output state permuta
tion invariant. Actually, as we will see in the following, th
optimal map itself will have the output state restricted to
symmetric subspaceM[(H ^ M)1 , even though, generally
permutation invariance of the state does not imply that
state has support in the symmetric subspace. In the follow
we will denote a cloning map fromN to M ‘‘copies’’ asCNM .

We want to find a cloning mapCNM that minimizes the
following averaged fidelity:

f̄ @CNM#5E
0

2p df

2p
f @CNM#~f!,

f @CNM#~f!5Tr@ ucf&^cfu ^ MCNM~ ucf&^cfu ^ N!#, ~2!

for equatorial qubitinput statesucf& defined as

ucf&5
1

A2
~ u0&1eifu1&). ~3!

We will call the cloning mapphase covariantif it satisfies
the following covariance relation:

CNM~Uf
^ NrNUf

†^ N!5Uf
^ MCNM~rN!Uf

†^ M , ~4!

whereUf is the unitary phase rotation operator

Uf5expF i

2
f~12sz!G , ~5!

sx,y,z denotes the usual Pauli matrices, andrN is any state in
N[(H ^ N)1 . In particular, according to the fidelity in Eq
~2!, we will consider only input states of the form

rN5uc0&^c0u ^ N. ~6!

The unitary transformation in Eq.~5! gives the phase shif
Ufucf8&5ucf81f&. For qutrits the situation will be analo
gous, with input states of the form

rN5uc0,0&^c0,0u ^ N, ~7!
04230
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where

ucf,u&5
1

A3
~ u0&1eifu1&1eiuu2&) ~8!

denotes an equatorial qutrit state, and in place ofUf we will
consider the two-phase rotation operatorUf,u that achieves
the phase shiftUf,uucf8,u8&5ucf81f,u81u&.

Upon defining the rotated mapC NM
f as follows:

C NM
f ~rN!8Uf

†^ MCNM~Uf
^ NrN Uf

†^ N!Uf
^ M , ~9!

from Eq. ~4! we see that covariance of the mapCNM is
equivalent to the identityCNM[C NM

f for everyf. Since the
fidelity f @CNM#(f) is linear versus the cloning mapCNM , the
averaged fidelity in Eq.~2! can be also written in the form

f̄ @CNM#5E
0

2p df

2p
f @C NM

f #~0![ f @C NM
f #~0!, ~10!

where clearly f @C NM
f #(0)[ f @CNM#(f), and the averaged

mapC NM
f is obviously defined as

C NM
f 5E

0

2p df

2p
C NM

f . ~11!

Since, by definition, the averaged mapC NM
f is phase covari-

ant, Eq.~10! simply means that the cloning map minimizin
the averaged fidelity~2! must itself be covariant. Therefore
finding the optimal cloning mapCNM that minimizes the
fidelity ~2! is equivalent to find the optimal phase-covaria
mapCNM that minimizes the following fidelity:

f NM8 f @CNM#~0!5Tr@ uc0&^c0u ^ MCNM~ uc0&^c0u ^ N!#.
~12!

Moreover, due to orthogonality with the stateuc0&^c0u ^ M,
any component of the output stateCNM(uc0&^c0u ^ N) which
is not supported on the symmetric subspace (H ^ M)1 will
give no contribution to the fidelity~12!. Therefore, there will
be always an optimal cloning map having output on the sy
metric space (H ^ M)1 , and in the following we can restric
our attention to such maps only, and takeM[(H ^ M)1 . We
will also consider for comparison the average single part
fidelity

FNM5
1

M
Tr@~ uc0&^c0u1^ M2111uc0&^c0u1^ M221•••

11^ M21uc0&^c0u!uc0&^c0u ^ NCNM~ uc0&^c0u ^ N!#.

~13!

As shown in Ref.@13#, it is convenient to study covarian
CP maps in terms of invariant positive operators which are
one-to-one correspondence with CP maps. In the pre
context this means to consider the positive operatorsRNM
defined as

RNM5CNM ^ IN~ uI &&^^I u!, ~14!
6-2
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whereIN denotes the identity map overN[(H ^ N)1 , and
uI && is the maximally entangled vector onN^ N,

uI &&5 (
n50

N

usN,n& ^ usN,n&, ~15!

$usN,n&% denoting any orthonormal basis for (H ^ N)1 , that
we conveniently choose as follows:

~16!

where $Pj
(N)% denote the permutation operators of theN

qubits, and C(N,n) is the binomial coefficientC(N,n)
[N!/n!(N2n)!. As shown in Ref.@13#, one can see tha
RNM is a positive operator onM^ N, which is in one-to-one
correspondence with the CP-mapCNM , with the trace-
preserving condition for the map writing in terms of the o
eratorRNM as follows:

TrM@RNM#5I N . ~17!

The mapCNM can be recovered from the positive opera
RNM as follows:

CNM~rN!5TrN@~ I M^ rN
t !RNM#, ~18!

whereOt denotes the transposed operator ofO with respect
to the same orthonormal basis~15! chosen for the maximally
entangled vector in Eq.~16!, namely, one definesOt8(O†)*
where thecomplex conjugated O* of the operatorO is de-
fined as the operator having complex-conjugated matrix
the operatorO with respect to the same orthonormal ba
~15!. Notice that for the particular state in Eq.~6!, one has
rN

t [rN , sinceuc0&
^ N has all real coefficients on the bas

~15!. The covariance~4! of the CP mapCNM in terms of the
operatorRNM becomes the invariance relation

@RNM ,Uf
^ M

^ ~Uf
^ N!* #50, ~19!

and in our case we have simply (Uf
^ N)* [U2f

^ N . Then, ac-
cording to the Schur lemmas, the positive operatorRNM is
given by the following direct sum:

RNM5 % nRn , ~20!

wheren runs over all inequivalent unitary irreducible repr
sentations ~UIR! contained in the reducible oneUf

^ M

^ (Uf
^ N)* , with all equivalent representations grouped

gether, and withRn denoting any positive operator over th
space of all representations equivalent ton, with the overall
constraint of the trace-preserving condition~17!.

Our purpose is to find the optimal phase-covariant clon
map that maximizes the fidelity in Eq.~12!, which using Eq.
~18! can be rewritten in terms of the positive operatorRNM
as follows:

f NM5Tr@~ uc0&^c0u ^ M
^ uc0&^c0u ^ N!RNM#. ~21!
04230
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The derivation for the case of qutrits will be strictly anal
gous to that of qubits.

III. OPTIMAL CLONING FOR QUBITS

Since the phase rotation group is abelian, all UIRs of
group are unidimensional. The inequivalent representati
can be conveniently labeled by the non-negative integen,
corresponding to the invariant spaces of vectors where
group action is equivalent to multiplication by the phase fa
tor exp(inf). Therefore, in the reduction of the representati
Uf

^ M
^ U2f

^ N , each UIR equivalent to the representationn is
spanned by a vector of the type

uM2 j 2n, j 1n& ^ uN2 j , j &,

j 50, . . . ,min~N,M2n!,

n50, . . . ,M2N, ~22!

where uN2 j , j & denotes a state ofN qubits, whereN2 j of
them are in stateu0&, while the remainingj are in stateu1&.

We will now look for the optimal transformations
namely, the transformations that maximize the fidelityf NM .
As proved above, we can restrict our attention to the sy
metric subspace, and therefore we will consider the equ
lent representations corresponding to the symmetric st
$usM , j 1n&usN, j&, j 50, . . . min(N,M2n)%n , wheren labels the
inequivalent representations (n50, M2N). In the evalua-
tion of the fidelity we takeuc0&5(u0&1u1&)/A2. The fidel-
ity of the map is made of contributions of the form

Tr@~ uc0&^c0u ^ M1N!~ usM , j 1n&^sM ,k1nu ^ usN, j&^sN,ku!#

5
1

2N1M
AC~N, j !C~N,k!AC~M , j 1n!C~M ,k1n!.

~23!

Each block of equivalent representations labeled byn is
given by the positive operator

Rn5(
jk

r jk
n usM , j 1n&^sM ,k1nu ^ usN, j&^sN,ku, ~24!

where the trace-preserving condition for the operatorRNM
leads to

(
n50

M21

r j j
n 51, i 50, . . .N. ~25!

Since each single contribution to fidelity~23! is positive ver-
susj andk, the operatorsRn that maximize the fidelity have
positive elementsr jk

n and the off-diagonal terms are as larg
as possible, i.e.,r jk

n 5Ar j j
n Ar kk

n . Therefore, the operatorRn

can be written as a~generally non normalized! projectorRn

5ur n&^r nu, whereur n&5( j r j
nusM , j 1n& ^ usN, j&, andr j

n8Ar j j
n .
6-3
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Let us now explicitly construct the cloning map that o
timizes the fidelity. We will first consider the simple ca
N51. Each termRn will therefore give the following con-
tribution to f 1M:

f 1M
n 5Tr@~ uc0&^c0u ^ M

^ uc0&^c0u!Rn#

5
1

2M11
„r 0

nAC~M ,n!1r 1
nAC~M ,11n!…2 ~26!

with f 1M5(n f 1M
n .

For odd values ofM the largest contribution to the fidelit
comes from the projector withn̄5(M21)/2, because in this
case both termsAC(M ,n) andAC(M ,11n) are equal and
are maximized simultaneously. Moreover, this contribution
maximized when the values ofr 0 andr 1 are maximized, i.e.
for r 0

(M21)/25r 1
(M21)/251. In this case the optimal map i

given by

R1M5ur (M21)/2&^r (M21)/2u ~27!

and the fidelity takes the form

f 1M5
1

2M21
C„M ,~M21!/2…. ~28!

For even values ofM the optimization procedure is mor
involved, because the coefficientsAC(M ,n) and
AC(M ,11n) are different and cannot be maximized simu
taneously by a single value ofn. In order to derive the form
of the optimal map let us first notice that the same contri
tion f 1M

n in Eq. ~26! is also achieved by choosingn85M
2n21 with r 0

n5r 1
M2n21 and

r 1
n5r 0

M2n21 . ~29!

Therefore we can look at contributions due to maps of
form

Rn85
1

2
~Rn1RM2n21!. ~30!

By taking into account relations~29!, in this case complete
ness constraint~17! can be written as

(
n

~r 0
n!21(

n
~r 1

n!252. ~31!

The optimal map is given by the values ofn that give the
maximum contributions to Eq.~26!, namely, forn25M /2
21 andn15M /2. Therefore the optimization problem con
sists in maximizing the quantityr 0

n2A1r 1
n2B, with the con-

straint (r 0
n2)21(r 1

n2)252 and with A5AC(M ,n2) and

B5AC(M ,n211). The solution is given by
04230
s
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r 0
n25A2

A

AA21B2
, r 1

n25A2
B

AA21B2
. ~32!

Therefore, the optimal mapR1M for even values ofM is
given by

R1M5
1

2
~ ur n2

&^r n2
u1ur n1

&^r n1
u! ~33!

with r 0
n2 and r 1

n1 given by Eq. ~32!, and r 0
n15r 1

n2, r 1
n1

5r 0
n2. The fidelity takes the form

f 1M5
1

2M
C~M11,M /2!. ~34!

Consider now the general caseN→M . Each contribution
f NM

n to the fidelity takes the form

f NM
n 5

1

2N1M F (
j 50

min(N,M2n)

r j
nAC~N, j !C~M , j 1n!G2

.

~35!

The maximum value is achieved for the representationn̄ for
which both the termsAC(N, j ) andAC(M , j 1n) are maxi-
mized at the same time. In fact,(n f NM

n is a convex function
of r j

n defined on convex domain~25!, and the maximum is
achieved on the extremal pointsr j j

n 51 for somen. This also
corresponds to maximize the rhs. of Eq.~35! by adding ‘‘co-
herently’’ all the terms in the sum overj for a single value of
n. We have then to distinguish different cases: forN odd and
M odd the simultaneous maximization ofAC(N, j ) and
AC(M , j 1n) occurs whenj 5(N21)/2 andn̄5(M2N)/2.

In this case the optimal cloning map corresponds tor j
n̄51,

and is described by

RNM5ur (M2N)/2&^r (M2N)/2u. ~36!

The fidelity takes the explicit form

f NM5
1

2N1M F (
j 50

N

AC~N, j !C„M ,~M2N!/21 j …G2

.

~37!

An analogous argument and the results given in Eqs.~36!
and ~37! hold also whenM andN are both even.

Consider now the case of evenM and oddN, or vice
versa. The two termsAC(N, j ) andAC(M , j 1n) are maxi-
mized at the same time for the two valuesn65(M2N
61)/2. In order to derive the optimal map we follow a
argument analogous to the caseN51 discussed above. Ac
tually, let us first notice that the same contributionf NM

n in Eq.
6-4



de

he
cle

ent

he

OPTIMAL PHASE-COVARIANT CLONING FOR QUBITS . . . PHYSICAL REVIEW A 67, 042306 ~2003!
~35! is also achieved by choosingn85M2N2n with r j
n

5r N2 j
M2N2n . Therefore, as in the caseN51 we can look at

cloning maps of the form

Rn85
1

2
~Rn1RM2N2n!. ~38!

By exploiting the relationr j
n5r N2 j

M2N2n , we can write the
completeness condition as

(
n

~r j
n!21(

n
~r N2 j

n !252, j 50, . . .N/2. ~39!

As mentioned above, the greatest contributions to ther fi
ity are given by the blocks withn65(M2N61)/2. The
optimal cloning map will therefore be of the form

RNM5
1

2
~Rn2

1Rn1
!, ~40!

with the constraintsr j
n15r N2 j

M2N2n2 and (r j
n2)21(r N2 j

n2 )2

52, j 50,..N/2. The optimization of fidelity~35! with con-
straints~39! leads to the following solutions:
l

he

x-

of
an

04230
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r j
n25A2

AC~M , j 1n2!

AC~M , j 1n2!1C~M ,N2 j 1n2!
,

r N2 j
n2 5A2

AC~M ,N2 j 1n2!

AC~M , j 1n2!1C~M ,N2 j 1n2!
. ~41!

Let us now consider as a quality criterion to optimize t
cloning map the optimization of the average single-parti
fidelity FNM , defined as

FNM5
1

M
Tr@~ uc0&^c0u1^ M2111uc0&^c0u1^ M221•••

11^ M21uc0&^c0u! ^ uc0&^c0u ^ NRNM#. ~42!

In this case we assume that the operatorsRNM are supported
on the symmetric subspace (H ^ M)1 . Notice that the last
requirement is now an assumption, because the argum
after Eq. ~12!, valid for the global fidelity f NM , does not
hold for the average single-particle fidelity. In this case t
fidelity of the map is made of contributions of the form
Tr@~ uc0&^c0u1^ M21uc0&^c0u ^ N!~ usM2 j 2n&^sM2k2nu ^ usN2 j&^sN2ku!#

5
1

2N11 FC~N, j !d j ,k1
AC~N, j !C~N, j 11!C~M21,j 1n!

AC~M , j 1n!C~M , j 1n11!
d j 11,kG

5
1

2N11 FC~N, j !d j ,k1
1

M
AC~N, j !C~N, j 11!A~M2 j 2n!~ j 1n11!d j 11,kG , ~43!
as
s

the
r

where we have consideredk> j . As in the case of the globa
fidelity f NM , let us start from the caseN51.

Each termRn will therefore give the following contribu-
tion to F1M :

F1M
n 5

1

4 F ~r 0
n!21~r 1

n!21
2

M
r 0

nr 1
nA~M2n!~n11!G .

~44!

For odd values ofM the termA(M2n)(n11) is maximized
for n5(M21)/2. The optimal map, as in the case of t
optimization of the global fidelity, is given by Eq.~27! with
r 0

(M21)/25r 1
(M21)/251. The fidelity in this case takes the e

plicit form

F1M5
1

2 S 11
M11

2M D . ~45!

For odd values ofM, we can argue similarly to the case
the global fidelity, and therefore we have to maximize qu
tity ~44! with the constraint (r 0

n2)21(r 1
n2)252. In this case
-

the optimal solution corresponds tor 0
n25r 1

n251. The form
of the optimal map is given by

R1M5lur n2
&^r n2

u1~12l!ur n1
&^r n1

u, ~46!

with 0<l<1, and the fidelity takes the form

F1M5
1

2 S 11
AM ~M12!

2M D . ~47!

The above optimal single-particle fidelities are the same
those reported in Ref.@14#, where cloning transformation
restricted to the symmetric subspace were studied and
optimality of the single-particle fidelity was proved only fo
N51.

Consider now the general caseN→M . Each contribution
FNM

n to the fidelity takes the form
6-5
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FNM
n 5

1

2N11 F (
j 50

min(N,M2n)

~r j
n!2C~N, j !

1
2

M (
j 50

min(N,M2n)21

r j
nr j 11

n AC~N, j !C~N, j 11!

3A~M2 j 2n!~ j 1n11!G . ~48!

The maximum value is achieved for the representationn, for
which both the terms AC(N, j )C(N, j 11) and
A(M2 j 2n)( j 1n11) are maximized at the same time. W
have then to distinguish different cases: forN odd andM odd
this occurs whenj 5(N21)/2 and n̄5(M2N)/2. In this

case the optimal cloning map corresponds tor j
n̄51, and is

described by

RNM5ur (M2N)/2&^r (M2N)/2u. ~49!

The fidelity in this case takes the explicit form

FNM5
1

2
1

1

M2N (
j 50

N21

AC~N, j !C~N, j 11!

3A@~M1N!/22 j #@~M2N!/21 j 11#. ~50!

The results given in Eqs.~49! and~50! hold also whenM and
N are both even. Notice that these results are in agreem
with those conjectured in Ref.@14# for genericN andM.

Consider now the case whereN and M have different
parity, for exampleM is even andN is odd. The two terms
AC(N, j )C(N, j 11) and A(M2 j 2n)( j 1n11) are maxi-
mized at the same time for the two valuesn65(M2N
61)/2. The optimal cloning map will therefore be of th
form

RNM5
1

2
~Rn2

1Rn1
!, ~51!

with the constraintsr j
n15r N2 j

n2 and (r j
n2)21(r N2 j

n2 )252,j
50,..N/221. Therefore, we have to optimize fidelity~48!
with n5n2 by taking into account the above constrain
namely, the quantity

FNM
n2 5

1

2
1

1

2NM
(
j 50

N21

r j
n2r j 11

n2 AC~N, j !C~N, j 11!

3A~M2 j 2n2!~ j 1n211!. ~52!

The forms of the coefficientsr j cannot be found in genera
As an example we explicitly optimize the fidelity forN52
and oddM. In this casen25(M23)/2 and the form of the
coefficients is given by

r 0
n25A2

A~M21!~M13!

A~M21!~M13!1~M11!2
,

04230
nt

,

r 1
n251, r 2

n25A22~r 0
n2!2, ~53!

and the fidelity takes the explicit form

F2M5
1

2 S 11
AM212M21

A2M
D . ~54!

We can see that, in general whenN and M have different
parity the optimal solutions are not in agreement with t
optimal transformations conjectured in Ref.@14#.

We want to point out that the fidelityFNM of the above
optimal cloning transformations in the limitM→` coincides
with the fidelity of optimal state estimation forN equatorial
qubits @16#.

Moreover, we want to stress that the cloning transform
tions that optimize the global fidelity coincide with the op
mal ones for the single-particle fidelity only in the cas
whereN andM have the same parity.

IV. OPTIMAL CLONING FOR QUTRITS

In this section we will derive the optimal 1→M cloning
transformations for equatorial qutrit states

ucf,u&5
1

A3
~ u0&1eifu1&1eiuu2&), ~55!

covariant under the group of rotations of both phasesf and
u. Again, since the group is abelian, all UIR of the group a
unidimensional, and in a way analogous to the case of c
ing of qubits, when restricting to output states supported
the symmetric subspace (H ^ N)1 , the equivalent UIR’s are
spanned by the vectors

usM ,n1 ,n2
&u0&, usM ,n111,n2

&u1&, usM ,n1 ,n211&u2&,
~56!

wheren150, . . . ,M21 andn250, . . . ,M2n121 label the
invariant spaces of the UIR corresponding to multiplicati
by the phase factor exp(in1f1in2u), andusk,p,q& denotes the
normalized symmetric state ofk qutrits withk2p2q qutrits
in stateu0&, p in stateu1& andq in stateu2& ~the stateusk,p,q&
is a superposition ofk!/(k2q2p)! p!q! orthogonal states!.

In this case we will have contributions of the followin
type to the fidelity:

Tr@ uc0,0&^c0,0u ^ M11~ usM ,n1 ,n2
&^sM ,n111,n2

u ^ u0&^1u!#

5
1

3M11
AT~M ,n1 ,n2!AT~M ,n111,n2!, ~57!

where we define

T~M ,n1 ,n2!5
M !

~M2n12n2!!n1!n2!
. ~58!
6-6
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Since all the above contributions are positive, we can ap
the same argument as in the case of qubits and cons
positive operators of the formRn1 ,n2

5ur n1 ,n2
&^r n1 ,n2

u,
where

ur n1 ,n2
&5r 0

n1 ,n2usM ,n1 ,n2
&u0&1r 1

n1 ,n2usM ,n111,n2
&u1&

1r 2
n1 ,n2usM ,n1 ,n211&u2&, ~59!

and the trace-preserving condition for the operatorR1M leads
to

(
n1 ,n2

~r 0
n1 ,n2!25 (

n1 ,n2

~r 1
n1 ,n2!25 (

n1 ,n2

~r 2
n1 ,n2!251,

~60!

where in each sumn1 and n2 are constrained to give non
negative entries in the states in Eq.~59!.

Each operatorRn1 ,n2
gives the following contribution to

the fidelity

f n1 ,n2
5

1

3M11
@r 0

n1 ,n2AT~M ,n1 ,n2!

1r 1
n1 ,n2AT~M ,n111,n2!

1r 2
n1 ,n2AT~M ,n1 ,n211!#2. ~61!

The operatorRn1 ,n2
that gives the highest contribution to th

fidelity is that where the values ofT(M ,n1 ,n2), T(M ,n1
11,n2), andT(M ,n1 ,n211) are maximized. This is easy t
establish in the case ofM53k11, because the three abov
expressions forT are all simultaneously maximized forn1
5n25k. Therefore, the optimal cloning map is given b
Rk,k with r 05r 15r 251. The corresponding fidelity take
the explicit form

f M5
1

3M21
TS M ,

M21

3
,
M21

3 D . ~62!

The cases withM53k andM53k12 are more involved,
because the three values ofT that appear in Eq.~61! cannot
be maximized simultaneously. In order to find the form
the optimal maps we will follow an argument similar to th
case of qubits. Notice first that the value of the contribut
f n1 ,n2

to the fidelity does not change by performing any p

mutation of the basis states$u0&,u1&,u2&% for each of theM
11 qutrits in the operatorRn1 ,n2

. This means that the thre

blocks labeled by (n1 ,n2), (n2 ,M2n12n221), and (M
2n12n221,n1) give the same contribution to the fidelity
Therefore, the same contribution given by the opera
Rn1 ,n2

is achieved also by the map

R1M8 5
1

3
~Rn1 ,n2

1Rn2 ,M2n12n2211RM2n12n221,n1
!,

~63!
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with the following identifications:

r 0
n1 ,n25r 1

n2 ,M2n12n221
5r 2

M2n12n221,n1 ,

r 1
n1 ,n25r 2

n2 ,M2n12n221
5r 0

M2n12n221,n1 ,

r 2
n1 ,n25r 0

n2 ,M2n12n221
5r 1

M2n12n221,n1 . ~64!

The completeness constraint~17! along with Eqs.~64! lead
to

(
n1 ,n2

~r 0
n1 ,n2!21 (

n1 ,n2

~r 1
n1 ,n2!21 (

n1 ,n2

~r 2
n1 ,n2!253.

~65!

If we restrict our attention to the family of cloning transfo
mations described byRn1 ,n2

we have to fulfill the constraint

~r 0
n1 ,n2!21~r 1

n1 ,n2!21~r 2
n1 ,n2!253. ~66!

Let us first consider the caseM53k. From Eq.~61! we can
see that the representation that contributes mostly to
fidelity is that with n̄15 n̄25k, because one of the three co
efficients T that appear in Eq.~61! is maximized and the
other two take the second possible highest value simu
neously. Therefore, we can maximize the fidelity by restri
ing our attention to the block labeled byn̄1 and n̄2. More-
over, sinceT(M ,n111,n2) and T(M ,n1 ,n211) have the
same value forn15n25k, expression~61! is invariant under
exchange of the coefficientsr 1

k,k andr 2
k,k . Therefore, we can

set r 1
k,k5r 2

k,k when we look for the optimal solution. Th
optimization of the contribution in Eq.~61! with n15n25k
corresponds to maximizing the quantityr 0

k,kA12r 1
k,kB, with

the constraint (r 0
k,k)212(r 1

k,k)253 and with

A5AT(M ,M /3,M /3) andB5AT(M ,M /311,M /3). The so-
lution corresponds to

r 0
k,k5A322~r 1

k,k!2,

r 1
k,k5A3S A2

B2
12D 21/2

, r 2
k,k5r 1

k,k , ~67!

and all other nonvanishing coefficients given by Eq.~64!.
The corresponding optimal map is then given by

R1M5
1

3
~RM /3,M /31RM /3,M /3211RM /321,M /3!, ~68!

with the nonvanishing coefficientsr i
n1 ,n2 given by Eqs.~64!

and ~67!.
In the remaining caseM53k12 the optimization argu-

ment and the final solution are the same as forM53k. Here
we maximize the quantity r 0

k,kA12r 1
k,kB, with A
6-7
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5T„M ,(M22)/3,(M22)/3… and B5T„M ,(M22)/3,(M
22)/311…. The optimal solution can be derived analogou
to the previous case.

As in the case of qubits we can derive optimal maps
qutrits by maximizing the average single-particle fidelity i
stead of the global one, and by assuming that the operatR
is supported on the symmetric subspace. As in the cas
qubits we will see that the optimal maps for the avera
single-particle fidelity are not always the same as th
derived above, where the global fidelity was maximize
Actually, in this case the contributions to the avera
single-particle fidelityF1M are of the form

1

9
Tr@~ uc0,0&^c0,0u1^ M21uc0,0&^c0,0u!

3usM ,n1 ,n2
&^sM ,n111,n2

u ^ u0&^1u#

5
1

9

~M21!!

~M2n12n221!!n1!n2!
A~M2n12n2!!n1!n2!

M !

3A~M2n12n221!! ~n111!!n2!

M !

5
1

9M
A~M2n12n2!~n111!

[
1

9
LM~M2n12n2 ,n1!, ~69!

where we define

LM~p,q![Tr@~ uc0,0&^c0,0u1^ M21!usM ,p,q&^sM ,p21,q11u#

5
1

M
Ap~q11!. ~70!

The arguments leading to form~59! and to constraints~65!
hold also in this case. The contributions to the fidelity due
the operatorsRn1 ,n2

are given by

Fn1 ,n2
5

1

9
@~r 0

n1 ,n2!21~r 1
n1 ,n2!21~r 2

n1 ,n2!2

12r 0
n1 ,n2r 1

n1 ,n2LM~M2n12n2 ,n1!

12r 0
n1 ,n2r 2

n1 ,n2LM~M2n12n2 ,n2!

12r 1
n1 ,n2r 2

n1 ,n2LM~n111,n2!#. ~71!

As discussed above, the optimal cloning map correspond
optimizing the coefficientsr i for the blockRn1 ,n2

that gives

the maximum contribution~71!. In the caseM53k11, all
the three termsLM that appear in expression~71! are opti-
mized at the same time forn15n25k, and therefore the
optimal map has the same form as that found by maximiz
the global fidelity. The fidelityF1M in this case takes the
explicit form
04230
r
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g

FM5
1

3 S 112
M12

3M D . ~72!

Let us now consider the case ofM53k. By looking at Eq.
~71! we can see that the maximum contribution to the fide
corresponds ton15n25k, because one of the three coef
cients LM is optimized and the other two take the seco
possible highest value simultaneously. Moreover, sin
LM(M2n12n2 ,n1) and LM(M2n12n2 ,n2) have the
same value forn15n25k, expression~71! being the optimal
solution corresponds tor 1

k,k5r 2
k,k . Therefore, maximum con

tribution ~71! corresponds to maximizing the quantity

2r 0
k,kr 1

k,kLA1~r 1
k,k!2LB , ~73!

with the constraint (r 0
k,k)212(r 1

k,k)253 and with LA

5AM (M13)/3M andLB5(M13)/3M . The optimal solu-
tion corresponds to

r 0
k,k5A322~r 1

k,k!2,

r 1
k,k5

A3

2 A11
LB

ALB
218LA

2
, r 2

k,k5r 1
k,k . ~74!

The optimal map has form~68!, with the values of the coef-
ficients r i for eack block fixed according to Eqs.~64! and
~74!.

In the remaining case ofM53k12 the optimization ar-
gument and the final solution are the same as in theM
53k case, withLA5A(M14)(M11)/3M and LB5(M
11)/3M . Notice that the optimal map coincide with the ca
1→3 derived in Ref.@13#.

We want to point out that the average single-particle
delity in the limit M→` coincides with the fidelity of opti-
mal double-phase estimation for a qutrit in state~55! @17#.

V. DISCUSSION

In this paper we derived from first principles the optim
quantum cloning transformations that maximize the fide
averaged uniformly over all equatorial qubit states. We ha
seen that such averaged form for the fidelity automatica
leads to the optimal phase-covariant cloning. We have t
derived the optimalN→M cloning transformation using the
method@13# designed for group-covariant cloning. We ha
also considered phase-covariant cloning for qutrits, and
rived the 1→M optimal cloning maps. From our analytica
results one can see that the fidelities are always larger
those obtained for the universal cloning@8#. Moreover, the
fidelity for the qutrit cloning is smaller than the correspon
ing one for the qubit. We also found that the form of th
optimal cloning maps depends on the criterion adopted
assess the quality of the transformation. Actually, we show
that the maximization of the global fidelity and the maxim
zation of the average single particle fidelity in general lead
different solutions.

We want now to emphasize that the general analysis
formed in Sec. II for optimal phase-covariant cloning wou
6-8



s
p
ic

m

t
ty

e

th
li

l-
c

is
ing
he
ric
the
ng

the

his
ms

i

OPTIMAL PHASE-COVARIANT CLONING FOR QUBITS . . . PHYSICAL REVIEW A 67, 042306 ~2003!
be exactly the same for any smaller discrete pha
covariance group, such as for example the discrete grouZ4
of p/2-rotations that is employed in the BB84 cryptograph
scheme@2#. Moreover, since the averaged fidelity is the sa
as that of the single state whose group orbit generates
possible input states, the only feature that can depend on
particular group in the following analysis is the irreducibili
of the representationUf

^ M
^ (Uf

^ N)* . This is the same for
the full rotation groupU(1) and for its subgroupZ4 for N
51 andM<2, whereas one may expect a slight improv
ment of fidelities for largerN andM.

Finally, we want to stress that the method used in
present paper could be easily generalized to any qua
criteria—also calledcost function—different from the aver-
aged fidelity in Eq.~2! and the single-particle average fide
ity ~42!. As a matter of fact, the averaging of the cost fun
E
gn

04230
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tion will always lead to a an optimal cloning that
covariant, as long as the cost function is linear in the clon
CP map. However, it will not be necessarily true that t
optimal cloning map will have output state in the symmet
tensor-product Hilbert space. Actually, also in the case of
single-particle fidelity we found the optimal maps starti
from the assumption that the output state is supported on
symmetric subspace.
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