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Optimal phase-covariant cloning for qubits and qutrits
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We consider cloning transformations of equatorial qubits)=1/y2(|0)+€'#|1)) and qutrits | ,)
=1//3(|0)+€'?|1)+e'?|2)), with the transformation covariant for rotation of the phagesnd 6. The
optimal cloning maps are derived without simplifying assumptions from first principles, for any number of
input and output qubits, and for a single-input qutrit and any number of output qutrits. We also compare the
cloning maps for global and single-particle fidelities, and we show that the two criteria lead to different optimal

maps.
DOI: 10.1103/PhysRevA.67.042306 PACS nunier03.67—a, 03.65-w
[. INTRODUCTION fidelity averaged uniformly over all states of a Bloch sphere
equator
The impossibility of perfectly cloning unknown quantum
states selected from a nonorthogonal set is a typical quantum 1 _
feature[1], and is the basis of the security of quantum cryp- lihg)= E[|O>+e'¢|1)], 1)

tography[2—4]. In fact, the potential eavesdropper Eve can-

not clone the quantum state transmitted by Alice, recover it

from multiple copies, and retransmit it undisturbed to thewhere{|0),[1)} represent a basis for a qubit and the param-
receiver Bob. Eve, however, can try to realize an approxi®ter ¢ €[0,2m) is the angle between the Bloch vector and
mate clonind5—8] in an optimal way, maximizing the fidel- the x axis, with th_e equator in the-y plane with the Blo_ch .
ity of the copies with the original state, and this is a possiblesPhere. As we will see, such averaged form for the fidelity
eavesdropping strategy. The eavesdropping strategies that gtomatl_cally leads to the optimal clor_1|ng covariant under
known to be optimal so far are actually based on clonin e Abelian _groupU_(l) of phase r°t’°.‘t'°”5—th‘? so-called
attacks[9—11]. Moreover, quantum cloning allows to study hase-covariantloning [9]. After the first analysis of Ref.

the sharing of quantum information among several partieg.g]’ where only the upper bounds for the fidelity were de-

. : . . rived by exploiting a connection between optimal phase-
and it may b_e applied also to study the security of multlpartycovariant cloning and phase estimation, in RékS,14 a
cryptographic schemd4.2].

L . ._value for the fidelity that breached the bound given in Ref.
G'enerally the vqlues of the fidelity achieved by optlmal %9] was found for the -3 cloning, apparently obtained un-
cloning transfo_rmatlons_ deper!ds on the set of alloyved iNPUfier the same assumptiofS]. Then in Ref[14] a cloning
states. In particular, higher fidelities can be achieved fok.ansformation from an arbitrary number of input copiéto
smaller sets of input states, since the more information aboy, arbitrary numbe of output copies was presented, how-
the input is given, the better the input states can be clonegyer, it was proved to be optimal only fod=1. In this
More precisely, for group-covariant clonifg3}—where the  paper we will prove that the cloning maps of REf4] are
set of input states is the orbit of a given state under the actiogenerally suboptimal foN>1 and we will derive the opti-
of a group of unitary transformations—the smaller is themal ones for any values & andM. In the derivation of the
group the higher is the fidelity averaged over the input statesptimal cloning maps we will use the general method de-
In this paper we will develop a thorough analysis of thesigned for group-covariant cloning introduced in R3],
cloning map that is optimal for equatorial qubits and qutritswhich exploits the correspondence between(€dmpletely
without any simplifying assumptions, including that of group positive maps and positive operators. We also extended our
covariance and the requirement that the output of the cloningnalysis to the case of phase-covariant cloningdotrits,
map has support on a symmetric tensor-product Hilbernamely, for quantum states with dimensids 3. Here the
space. As we will see in Sec. Il, these assumptions can beovariance groupJ (1) X U(1) is still Abelian, and describes
derived from the form of the fidelity that one wants to maxi- the rotation of two different phases.
mize. More precisely, we will derive with no assumption the  The paper is organized as follows. In Sec. Il we describe
optimal quantum cloning transformation maximizing the the general theory of optimal phase-covariant cloning, giving
the definitions of all relevant quantities in the qubit case,
since for the qutrit case the treatment is strictly analogous.
*Also at Department of Electrical and Computer Engineering, The starting point is the maximization of a phase-averaged
Northwestern University, Evanston, IL 60208. Electronic addressfidelity, which will lead to a phase-covariant CP map with

dariano@unipv.it output on the symmetric Hilbert space of the output copies.
"Electronic address: macchiavello@unipv.it Then the theory of group-covariant cloning of RéL3]
*URL: http:/Awww.qubit.it is shortly reviewed and specialized to the case of phase
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covariance. In Sec. lll we derive the optimal phase-covarianthere
cloning for qubits for any number of input and output copies,
giving the fidelities for all cases. In Sec. IV the same deri- 1
vation is given for qutrits with any number of output copies, |¢¢,9>= ﬁ
starting from a single input copy. Finally, in Sec. V we con-
clude with a discussion of the results, and with some opegjenotes an equatorial qutrit state, and in placel gfwe will
problems and future perspectives. consider the two-phase rotation operattby , that achieves
the phase shift, |4 ) =¥y + 4,00+ 0)-

Upon defining the rotated mapy,,, as follows:

(|0)y+e'?|1)+€e'?|2)) (8)

II. OPTIMAL PHASE-COVARIANT CLONING

A cloning map is a special kind @fuantum channel.e. a
trace-preserving CP map. In the cloning case, the CP@nap
goes from input states ifi{ to output states ir{ ®™, with
the output state invariant under the permutations of Nhe
output spaces. More generally, if we haMe>1 identical
copies available, the map goes from an input st&t8 on
the input Hilbert spacét;,, given by the symmetric subspace
N=(H®N), of the tensor produck *N to the output space
M=H*M with M>N, and with the output state permuta-
tion invariant. Actually, as we will see in the following, the
optimal map itself will have the output state restricted to theWhere clearly f[C ¢, 1(0)=f[Cyy]l(4), and the averaged
symmetric subspac#t=(H *M)_, even though, generally, - y - NM LNMARY 9
permutation invariance of the state does not imply that thé"@PCiy is obviously defined as
state has support in the symmetric subspace. In the following
we will denote a cloning map fromd to M “copies” asCyy -

We want to find a cloning magy), that minimizes the 0o 2m

Clm(pa)=U 5" (UG o UPHUGY (9

from Eqg. (4) we see that covariance of the maR,, is
equivalent to the identit¢NMECﬁM for every ¢. Since the
fidelity f[Cym1( @) is linear versus the cloning mdlyy, , the
averaged fidelity in Eq(2) can be also written in the form

— 2mwd R
ewl= | 5o fIChIO=MCil0)., (0

11)

following averaged fidelity:

2

— d
ewl= | e flCul(6)

fCam1(B) =T | )Wyl “MCum([ )y *™)]1,  (2)
for equatorial qubitinput stateg,) defined as

1

|4)= E

We will call the cloning mapphase covariantf it satisfies
the following covariance relation:

Cum(U3Np U5 =UgMenm(p U™, (@)

whereU , is the unitary phase rotation operator

(10)+e'’|1)). )

Ugmoyi-oy), ®

ay.y,z denotes the usual Pauli matrices, angis any state in

NE(H®N)+ . In particular, according to the fidelity in Eq.

(2), we will consider only input states of the form

pr= o) {ol °N. (6)

The unitary transformation in Eq5) gives the phase shift
Uglthy) =]y +4). For qutrits the situation will be analo-

gous, with input states of the form

p= oo od N, (7)

Since, by definition, the averaged mé&fj,, is phase covari-
ant, Eq.(10) simply means that the cloning map minimizing
the averaged fidelity2) must itself be covariant. Therefore,
finding the optimal cloning magy,, that minimizes the
fidelity (2) is equivalent to find the optimal phase-covariant
map Cyn that minimizes the following fidelity:

fam=Tf[Cym1(0) :Tr[| ¢0><¢O|®MCNM(| w0><$0|®N)](.12)

Moreover, due to orthogonality with the statgy)( g ",

any component of the output stafgy (| o){ ol ") which

is not supported on the symmetric subspage®{"). will
give no contribution to the fidelityl2). Therefore, there will

be always an optimal cloning map having output on the sym-
metric space ¥ ®™) . , and in the following we can restrict
our attention to such maps only, and take= (H M), . We

will also consider for comparison the average single particle
fidelity

1
FNM:MTT[U¢0><¢0|1®M_1+1|¢o><¢o|l®M_2+ EE

F 1M o) o) [ o) ol “NCam(| o) (0l “™)1.
(13

As shown in Ref[13], it is convenient to study covariant
CP maps in terms of invariant positive operators which are in
one-to-one correspondence with CP maps. In the present
context this means to consider the positive operaRyg,
defined as

Rum=Cam®@ Iy | 1)) (1), (14)
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whereZ,, denotes the identity map ovev=(H *V), , and
[I)) is the maximally entangled vector ovi® .\,

|I>>:ngo |SN,n>®|SN,n>! (15

{Isnn)} denoting any orthonormal basis foH(N), , that
we conveniently choose as follows:

sy ) =C(N,n)~ 12 > PM]00...0111...1),
’ J e — ————
N—n n

(16)

where {P{N)} denote the permutation operators of tNe
qubits, andC(N,n) is the binomial coefficientC(N,n)

=N!/n!(N—n)!. As shown in Ref[13], one can see that
Ryw is a positive operator oM ® N, which is in one-to-one
correspondence with the CP-mafyy, with the trace-
preserving condition for the map writing in terms of the op-

eratorRy as follows:

17

TraudRam] =1 p
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The derivation for the case of qutrits will be strictly analo-
gous to that of qubits.

IIl. OPTIMAL CLONING FOR QUBITS

Since the phase rotation group is abelian, all UIRs of the
group are unidimensional. The inequivalent representations
can be conveniently labeled by the non-negative integer
corresponding to the invariant spaces of vectors where the
group action is equivalent to multiplication by the phase fac-
tor exp{v¢). Therefore, in the reduction of the representation
U3MeU®l, each UIR equivalent to the representatiois
spanned by a vector of the type

IM—j—v,j+v)®|N—j,j),

j=0,... mnN,M-v),
(22)
where|N—j,j) denotes a state df qubits, whereN—j of

them are in stat¢0), while the remaining are in statd1).
We will now look for the optimal transformations,

The mapCyy can be recovered from the positive operatorn@mely, the transformations that maximize the fidefiy; .

Rywm as follows:

Cam(pp) =Tl (1 @ pi) Ruml, (18

where Q' denotes the transposed operatoQowith respect

As proved above, we can restrict our attention to the sym-
metric subspace, and therefore we will consider the equiva-
lent representations corresponding to the symmetric states
{Ism.j+»Isnj).i=0, ... min(N.M—w)},, wherev labels the
inequivalent representationg€0, M—N). In the evalua-

to the same orthonormal bagiks) chosen for the maximally  tion of the fidelity we takd ¢o)=(|0)+|1))/\2. The fidel-

entangled vector in Eq16), namely, one define®'=(0")*
where thecomplex conjugated O of the operatoiO is de-

ity of the map is made of contributions of the form

fined as the operator having complex-conjugated matrix of Tr[(lllfo>(llfo|®M+N)(|SM,j+V><SM,k+V|®|SN,1>(SN,k|)]
the operatorO with respect to the same orthonormal basis
(15). Notice that for the particular state in E@), one has

p\=py since|yy)®N has all real coefficients on the basis

(15). The covariancé4) of the CP magyy in terms of the
operatorRy), becomes the invariance relation
[Rum. U@ (UgM*]1=0, (19

and in our case we have simpl{")*=U®%. Then, ac-
cording to the Schur lemmas, the positive operdQs, is
given by the following direct sum:

RNM:EBVRVI (20)

1 _ _
= 2N—+M\/C(N11)C(Nak)\/C(M,j +)C(M,k+ ).
(23

Each block of equivalent representations labeled ibys
given by the positive operator

RF% FiklSmj+ ) {SMkr ol ® SN (Snkls (24

where the trace-preserving condition for the operdgg,

wherev runs over all inequivalent unitary irreducible repre- leads to

sentations (UIR) contained in the reducible onmﬁ'\"

®(U§N)*, with all equivalent representations grouped to-
gether, and withR,, denoting any positive operator over the

space of all representations equivalenwtowith the overall
constraint of the trace-preserving conditidi).

Our purpose is to find the optimal phase-covariant clonin

map that maximizes the fidelity in E¢L2), which using Eq.
(18) can be rewritten in terms of the positive operaRyy
as follows:

fam=TrL(| o) (ol “M @ o) (ol *™)Ruml- (2D

M-1
> rh=1, i=0,...N, (25)
v=0

Since each single contribution to fideli(g3) is positive ver-

gs’usj andk, the operator®, that maximize the fidelity have

positive elements;, and the off-diagonal terms are as large
as possible, i.exj,=\rj\rg. Therefore, the operatd,
can be written as ggenerally non normalizedorojectorR,,
=[r,)(r,|, where|r )==r{|sy j+,)®|sy,j), andr{=r.
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Let us now explicitly construct the cloning map that op- A
timizes the fidelity. We will first consider the simple case o = V2—, ry= V2 . (32
N=1. Each termR, will therefore give the following con- VA?+B? A*+B?

tribution to fqy:
W Therefore, the optimal maR,,, for even values oM is

" given by
= TrL([ o) ol *M ® | o) ol )R, ]
2M+1(r0\/C(M v)+r{JC(M,1+v))?  (26) Rim=75( | BPEERSRI(N) (33
with fyy=2f7y. with ro~ and r}* given by Eq.(32), andr *=r;", ri*

For odd values oM the largest contribution to the fidelity
comes from the projector with=(M —1)/2, because in this
case both terms/C(M,») and C(M,1+ v) are equal and
are maximized simultaneously. Moreover, this contribution is 1
maximized when the values of andr, are maximized, i.e. fim=-y C(M+1,M/2). (34
for riM~ V2= (M=D2=1 |n this case the optimal map is 2
given by

rO*. The fidelity takes the form

Consider now the general cade—~M. Each contribution
fum to the fidelity takes the form

Rim=Irm-12{rm-1)d (27)
and the fidelity takes the form 1 [min(N.M=v) . . 2
Rn=nem JEO r/'VC(N,j)C(M,j+v)
1 (35)
flM:WC(M,(M—l)/Z). (28)

The maximum value is achieved for the representaﬁdor

For even values ofl the optimization procedure is more Which both the terms/C(N,j) and C(M,j+») are maxi-
involved, because the coefficientsyC(M,r») and mized at the same time. In fad,,fy, is a convex function
JC(M,1+v) are different and cannot be maximized simul- of r{ defined on convex domaif25), and the maximum is
taneously by a single value of In order to derive the form achieved on the extremal point§=1 for somev. This also
of the optimal map let us first notice that the same contribucorresponds to maximize the rhs. of E85) by adding “co-
tion f7,, in Eq. (26) is also achieved by choosing’ =M herently” all the terms in the sum ovgffor a single value of

—p—1 with ro—r'f' »~1 and v. We have then to distinguish different cases:Noodd and
M odd the simultaneous maximization _afC(N,j) and
(v M1 (29) C(M,j+v) occurs whenj=(N—1)/2 andv=(M—N)/2.

1=Fo .

In this case the optimal cloning map corresponds;te 1,
Therefore we can look at contributions due to maps of theand is described by
form

1 Rum= [ (v=ny2) (T (m—nyral - (36)
R,=3 (R, Ru—-1). B0 The fidelity takes the explicit form

By taking into account relation@9), in this case complete-

. ; N 2
ness constraintl7) can be written as

1
o= 2, VC(N.)CM,(M=N)/2+])

(37

An analogous argument and the results given in Eg6)

The optimal map is given by the values ofthat give the and (37)_2°|d also vr\]/herM andi are bOtg e\(’fcjn' .
maximum contributions to Eq(26), namely, forv_=M/2 Consider now the case o evé an 0 N, or vice
—1 andv, =M/2. Therefore the optimization problem con- Versa. The two termgC(N,j) and JC(M j +») are maxi-

e - ooy v_ . mized at the same time for the two values=(M—N
ists in maximizing th ntity,"A+r. B, with th n- . . =
sists a g the qua tnyg 1 B, with the co +1)/2. In order to derive the optimal map we follow an

. V_\2 V_\N2__ H —
straint )+ (r;)*=2 and with A=yC(M,».) and  grgument analogous to the case-1 discussed above. Ac-
B=C(M,v_+1). The solution is given by tually, let us first notice that the same contributfgp, in Eq.

> (r?+ 2 (r)2=2. (3D)
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(35) is also achieved by choosing’'=M—N—v with r{ VC(M,j+v_)
_ +M—=N—-v» : _ V- — 2
=rN—; . Therefore, as in the cadé=1 we can look at I} . — ,
cloning maps of the form VEM,j+v ) +C(MN=j+v)
JC(M,N—=j+v_)
1 r'- =2 .4
R,=5(R,+Ru—n-)- (38) NS JCML v )+ CMIN= [+ o)
By exploiting the relationr/=ry """, we can write the |et us now consider as a quality criterion to optimize the
completeness condition as cloning map the optimization of the average single-particle
fidelity Fyy, defined as
> (rD?+ X (rf =2, j=0,...N2. (39
V V F =T (90Xl 1942 1 o) (1M 2 -
As mentioned above, the greatest contributions to ther fidel- = "™ M O/AY0 0/AY0
ity are given by the blocks withv.=(M—-N=1)/2. The M—1 N
optimal cloning map will therefore be of the form +1° |0} (o) @[ o) (o] “"Rum]- (42)

In this case we assume that the operaRyj§, are supported

on the symmetric subspacé{¢M), . Notice that the last

. o, Mo N=» ) , requirement is now an assumption, because the argument
with the constraintsr; “=ry_,~ " and (rj’)er(rN:j)2 after Eq.(12), valid for the global fidelityfy, , does not
=2,j=0,.N/2. The optimization of fidelity(35) with con-  hold for the average single-particle fidelity. In this case the
straints(39) leads to the following solutions: fidelity of the map is made of contributions of the form

1
RNMZE(RV7+RV+)’ (40)

|
Tl (| o) ol 1M~ Hbo) thol “™) (ISm—j = ) {(Sm—k— | ® | Sn—){Sn-k])]

JC(N,HC(N,j +1)C(M—1,j+ ») ]
JC(M,j+v)CM,j+vt1)

_2N+1

C(N,j) 6kt

_2N+1

1
C(N,J)5j,k+m\/C(N,J')C(N,J' +ONM—j =) (j+v+1) 8.1k, (43

where we have considerég=j. As in the case of the global the optimal solution corresponds 1@*: r:*= 1. The form

Each termR, will therefore give the following contribu-
tiontoFqy:
RlM:)\er_><rv_|+(1_)\)|rv+><rv+|’ (46)

1 2
Fin=7 (rg)?+(ry)+ V(M=) (r+ 1)}

(44)  with 0ssA=<1, and the fidelity takes the form

For odd values oM the termy(M —»)(v+1) is maximized

for v=(M—1)/2. The optimal map, as in the case of the 1 VM(M +2)
optimization of the global fidelity, is given by Eq7) with FlMZE( TV (47)
r(M-D2= (M=D/2_ 1 The fidelity in this case takes the ex-
plicit form
The above optimal single-particle fidelities are the same as
Flel 1+ M+1 _ (45) those reported in Ref.14], where cloning transformations
2 2M restricted to the symmetric subspace were studied and the

optimality of the single-particle fidelity was proved only for
For odd values oM, we can argue similarly to the case of N=1.

the global fidelity, and therefore we have to maximize quan- Consider now the general calle~M. Each contribution
tity (44) with the constraint(;~)?+(r;")?=2. In this case  Fy, to the fidelity takes the form
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min(NE,ls/va) r:’zl, r;’=\/2—(rg’)2' (53
i=o

1

FKMZZ— (rC(N,j)

_ and the fidelity takes the explicit form
2 min(N,M—»)—1

Fou=a| 14— =] (54)
2 \/EM

XV(M=j=v)(j+r+1)|. (48)

We can see that, in general whéhand M have different

. . ) . parity the optimal solutions are not in agreement with the
The maximum value is achieved for the representatiofor optimal transformations conjectured in REE4].

which _both the terms _\/C_(N!J)C(N!J +1) and We want to point out that the fidelitf )\ of the above
V(M —j—v)(j+v+1) are maximized at the same time. We gptimal cloning transformations in the limil — = coincides
have then to distinguish different cases: ffbodd andV odd it the fidelity of optimal state estimation fot equatorial
this occurs whenj=(N—1)/2 andv=(M—N)/2. In this  qubits[16].

case the optimal cloning map corresponds te- 1, and is Moreover, we want to stress that the cloning transforma-
described by : tions that optimize the global fidelity coincide with the opti-
mal ones for the single-particle fidelity only in the cases
Ram= T m—ny2) (T =yl - (49)  whereN andM have the same parity.
The fidelity in this case takes the explicit form IV. OPTIMAL CLONING FOR QUTRITS
1 N-1 _ _ In this section we will derive the optimal-:M cloning
Fam=5+ —— 2> VC(N,j)C(N,j+1) transformations for equatorial qutrit states
2 M2V =0
X[(M+N)/2—j[(M=N)/2+j+1]. (50 1 . .
Il//¢,e>=ﬁ(|0>+e'¢ll>+e”’|2>), (55)

The results given in Eq$49) and(50) hold also wherM and

N are both even. Notice that these results are in agreement .
with those conjectured in Ref14] for genericN and M. covariant under the group of rotations of both phagesnd

Consider now the case whetd and M have different ¢+ Again, since the group is abelian, all UIR of the group are
parity, for exampleM is even andN is odd. The two terms unidimensional, and in a way analogous to the case of clon-
— - - — : i f qubits, when restricting to output states supported on
JC(N,)C(N,j+1) and J(M—j—»)(j+ »+1) are maxi- M9° _ : ,
mized at the same time for the two values =(M—N the symmetric subspacé{(®*") ., the equivalent UIR’s are

+1)/2. The optimal cloning map will therefore be of the spanned by the vectors
form

|SM,V1,V2>|O>’ |SM,V1+1,V2>|1>’ |SM,V1,V2+1>|2>’
1 (56)
Rum=5 (R, +R, ), (51)

wherev;=0, ... M—1 andv,=0, ... M—v;—1 label the

with the constraintsr’*=r~ = and (r.”*)2+(r;:.)2=2,j invariant spaces of th(_e UIR_corresponding to multiplication
=0,.N/2—1. Therefore, we have to ]optimize fiiﬂeli(yiS) by the phase factor ?MMQSJF'VZO)’ _and|_skvp'q> denotes _the
with v=wv_ by taking into account the above constraints, "0rmalized symmetric state &fqutrits withk—p—q qutrits
namely, the quantity in state|0), pin state|1) andq in state|2) (the statgs p o)
is a superposition ok!/(k—q—p)!p!q! orthogonal statgs

In this case we will have contributions of the following

N-1
v 1 1 v_ v_ . . I itv:
Frg= >+ oy JZO ] I’j+l\/C(N,J)C(N,J +1) type to the fidelity:
@M+1
X\/(M_j_V,)(j‘f‘V,'f‘l). (52) Tr[|¢0,0><¢0,0| (|SM,V1,V2><SM,V1+1,V2|®|0><1|)]
The forms of the coefficients; cannot be found in general. = Mlﬂ\/T(M,Vl,Vz) VT(M, v+ 1,p,), (57)
As an example we explicitly optimize the fidelity fof=2 3
and oddM. In this casev_=(M —3)/2 and the form of the
coefficients is given by where we define
. V(M—1)(M+3) M!
ro = , =
o TV IM—D)(M+3)+ (M+1)? T(Mv,v2) (58

(M — V1~ Vz)! Vl! Vz! ’
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Since all the above contributions are positive, we can applyvith the following identifications:
the same argument as in the case of qubits and consider

positive operators of the fOf”RVl,yf|TV1,V2><U1,V2|1 e SN LR e O
where 0 ! 2
— V1V vV , M=—vi—vo—1_ M—wi—vy—1,
|rV1,V2>_r01 2|SM,V1,V2>|0>+r11 2|SM,V1+1,V2>|1> ril VZZrZZ e :rO e Vl,
+r.1"s 2), 59
2 | M,Vl,V2+1>| > ( ) r;1’y2:rSZ,M—Vl—VZ—l:rlM—Vl—Vz—l,Vll (64)
and the trace-preserving condition for the oper&tqy leads _ _
to The completeness constraifit7) along with Eqs.(64) lead
to
V1.V2\2 V1av2y2 Y1.V2y2
V%’Z (rO ) V%’Z (rl ) V%z (r2 ) 1, V1.V2\2 V1.,V2\2 V1,Vp\2
(60) D (g2 2 (1 X (rph'?)2=3,
V]_,VZ Vl’VZ Vl,V2
where in each sumv; and v, are constrained to give non- (69

negative entries in the states in E§9).
Each operatoR, ,, gives the following contribution to

the fidelity

If we restrict our attention to the family of cloning transfor-
mations described bl}tylyy2 we have to fulfill the constraint

(rgl,y2)2+(rZ1!V2)2+(r;1’V2)2=3. (66)

[r;l'vz\/T(M,Vl,Vz)

fV 14 = . .
172 gM+t Let us first consider the cadé =3k. From Eq.(61) we can

see that the representation that contributes mostly to the

1 AT(M, vt L) fidelity is that with »,= v,=k, because one of the three co-
+r§”2 T(M.v. 0+ D2 61) efficients T that appear in Eq(61) is maximized and the

other two take the second possible highest value simulta-
neously. Therefore, we can maximize the fidelity by restrict-
ing our attention to the block labeled by and v,. More-
over, sinceT(M,v,+1,v,) and T(M,»,,v,+1) have the
same value fow; = v,=Kk, expressior{61l) is invariant under
exchange of the coefficient§* andr*. Therefore, we can
set r¥k=r¥k when we look for the optimal solution. The
optimization of the contribution in Eq61) with v;=v,=k

The operatoR, ,, that gives the highest contribution to the

fidelity is that where the values of(M,v{,v,), T(M,v;
+1,v,), andT(M,vq,v,+ 1) are maximized. This is easy to
establish in the case ofl =3k+1, because the three above
expressions foil are all simultaneously maximized far;
=wv,=Kk. Therefore, the optimal cloning map is given by
Ry k with ro=r;=r,=1. The corresponding fidelity takes

the explicit form corresponds to maximizing the quantity*A+ 2r B, with
the  constraint Kk24+2(rk2=3  and  with
n Mol M-1 A= T(M,M/3M/3) andB = \T(M,M/3+ 1,M/3). The so-
fu= 1 T| M, 33 ) (62 lution corresponds to
The cases withl = 3k andM = 3k+ 2 are more involved, re*=v3-2(rf"?,

because the three valuesDthat appear in Eq61) cannot

be maximized simultaneously. In order to find the form of

the optimal maps we will follow an argument similar to the r‘fk= J3
case of qubits. Notice first that the value of the contribution

fVl,V2 to the fidelity does not change by performing any per-

mutation of the basis statéf0),|1),]2)} for each of theM and all other nqnvanishing coefficients given by E64).
+1 qutrits in the operatoR, .. This means that the three The corresponding optimal map is then given by
blocks labeled by %1,v5), (vo,M— Vi 1/_2—1), and_ Q\/I_ 1

—v,—vo,—1,vy) give the same contribution to the fidelity. R1M=§(RM/3,M/3+ Ruvizmiz—1+ Rus—1m3), (68
Therefore, the same contribution given by the operator

R,, v, is achieved also by the map

y
Kk Kk
v M=, (67)

2

S t2

with the nonvanishing coefficienty®'"2 given by Eqs(64)

and(67).

R —=(R R +R ) In the remajning cas_e/l=3k+2 the optimization argu-
IMT g vy ey My ey =1 E My m vy =1y ment and the final solution are the same asMior 3k. Here

(63 we maximize the quantity rg*A+2r*B, with A
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—2)/3+1). The optimal solution can be derived analogously Fu=35|1+t2—5 (72

3 3M
to the previous case.

As in the case of qubits we can derive optimal maps fon_et us now consider the case bf=3k. By looking at Eq.
qutrits by maximizing the average single-particle fidelity in- (71) we can see that the maximum contribution to the fidelity
stead of the global one, and by assuming that the opeRator corresponds to; = v,=k, because one of the three coeffi-
is supported on the symmetric subspace. As in the case @fents A, is optimized and the other two take the second
qubits we will see that the optimal maps for the averageyossible highest value simultaneously. Moreover, since
single-particle fidelity are not always the same as thOSQ\M(M_Vl_VZ,Vl) and Ay(M—v,—v,,v,) have the
derived above, where the global f|del|ty was maXimiZed.Same value fopl: Vo= k' expressiom7l) being the Opt|ma|
Actually, in this case the contributions to the averagesoytion corresponds 1K= rk* . Therefore, maximum con-

single-particle fidelityFy are of the form tribution (71) corresponds to maximizing the quantity

=T(M,(M—2)/3,(M—2)/3) and B=T(M,(M—2)/3,(M 1( |v|+2)

1 2 k,k k,kA k,k 2A , 73
5 (Y0 vad 1™ Huod (Wod) oA () e 79

with the constraint r('é,'k)2+2(r'fk)2=3 and with Ap
XISM .y 0, (SM, vy + 1, @[ 0)(1] = JM(M+3)/3M andAg=(M +3)/3M. The optimal solu-

tion corresponds to
1 (M—1)! \/(M—vl—vz)!vl!vz!
V2!

M! rik=3-2(rkh?,

(M=vi—vo—1)l (v + 1)yl
X\/ M! rk'k=\/—§ 1+—AB rk=rkk (74
TN R

T9(M—v—vy—1)l !

1
- W\/(M i v)(ntl) The optimal map has forrt68), with the values of the coef-
1 ficientsr; for eack block fixed according to Eq&4) and
_- o (74).
g Am(M=v1=vz,), €9 In the remaining case d¥1=3k+2 the optimization ar-

gument and the final solution are the same as in the
where we define =3k case, withAy,=y(M+4)(M+1)/3M and Ag=(M
+1)/3M. Notice that the optimal map coincide with the case
AP ) =T ([0 0 %o,d 17 ) Ism p.a)(Sm,p-14+1/] 1—3 derived in Ref[13]. _ o
1 We want to point out that the average single-particle fi-
i Py delity in the limit M — oo coincides with the fidelity of opti-
M P(Q+1). (70 mal double-phase estimation for a quitrit in stégg) [17].

The arguments leading to for(®9) and to constraint$65) V. DISCUSSION

hold also in this case. The contributions to the fidelity due to ) _ _ o )

the operatorR are given by In this paper we derived from first principles the optimal
v1.V2

quantum cloning transformations that maximize the fidelity
averaged uniformly over all equatorial qubit states. We have
= = E[(rV1’V2)2+(rV1vV2)2+(rV1~V2)2 seen that such averaged form for the fidelity automatically
vz 9t 0 ! 2 leads to the optimal phase-covariant cloning. We have then
derived the optimaN— M cloning transformation using the
method[13] designed for group-covariant cloning. We have
also considered phase-covariant cloning for qutrits, and de-
rived the 1M optimal cloning maps. From our analytical
(71) results one can see that the fidelities are always larger than
those obtained for the universal clonifi@]. Moreover, the
. . . fidelity for the qutrit cloning is smaller than the correspond-
As discussed above, the optimal cloning map corresponds {dq one for the qubit. We also found that the form of the
optimizing the coefficients; for the blockR, ,, that gives  gptimal cloning maps depends on the criterion adopted to
the maximum contributiori71). In the caseM =3k+1, all assess the quality of the transformation. Actually, we showed
the three terms\,, that appear in expressidiil) are opti- that the maximization of the global fidelity and the maximi-
mized at the same time for;=wv,=Kk, and therefore the zation of the average single particle fidelity in general lead to
optimal map has the same form as that found by maximizinglifferent solutions.
the global fidelity. The fidelityF ), in this case takes the We want now to emphasize that the general analysis per-
explicit form formed in Sec. Il for optimal phase-covariant cloning would

+2rleV2rI]"V2AM(M — V1~ V2,V1)
+2I‘gl'yzl‘gl'yzAM(M — Vi1~ V2,V2)

2072 12N (v Lvp) .

042306-8



OPTIMAL PHASE-COVARIANT CLONING FOR QUBITS.. .. PHYSICAL REVIEW A 67, 042306 (2003

be exactly the same for any smaller discrete phasetion will always lead to a an optimal cloning that is
covariance group, such as for example the discrete gfQup covariant, as long as the cost function is linear in the cloning
of m/2-rotations that is employed in the BB84 cryptographicCP map. However, it will not be necessarily true that the
schemd2]. Moreover, since the averaged fidelity is the sameoptimal cloning map will have output state in the symmetric
as that of the single state whose group orbit generates dlénsor-product Hilbert space. Actually, also in the case of the
possible input states, the only feature that can depend on tteingle-particle fidelity we found the optimal maps starting
particular group in the following analysis is the irreducibility from the assumption that the output state is supported on the
of the representatiot ;"' ® (U3M)*. This is the same for symmetric subspace.

the full rotation groupU(1) and for its subgrou@, for N

=1 andl\_/ls_z_, whereas one may expect a slight improve- ACKNOWLEDGMENTS

ment of fidelities for largeN and M.
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