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Quantum walks with a one-dimensional coin
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Quantum walks (QWs) describe particles evolving coherently on a graph. The internal degree of freedom
corresponds to a Hilbert space, called a coin system. We consider QWs on Cayley graphs of some group G. In
the literature, investigations concerning infinite G have been focused on graphs corresponding to G = Zd with a
coin system of dimension 2, whereas for a one-dimensional coin (so-called scalar QWs) only the case of finite G

has been studied. Here we prove that the evolution of a scalar QW with G infinite Abelian is trivial, providing a
thorough classification of this kind of walks. Then we consider the infinite dihedral group D∞, that is, the unique
non-Abelian group G containing a subgroup H ∼= Z with two cosets. We characterize the class of QWs on the
Cayley graphs of D∞, and, via a coarse-graining technique, we show that it coincides with the class of spinorial
walks onZwhich satisfies parity symmetry. This class of QWs includes the Weyl and the Dirac QWs. Remarkably,
there exist also spinorial walks that are not coarse graining of a scalar QW, such as the Hadamard walk.
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I. INTRODUCTION

Quantum walks (QWs) are the quantum version of the
classical random walks, which made their first appearance in
physics with Einstein’s seminal work on Brownian motion [1].
A peculiarity of QWs on graphs with respect to their classical
counterpart is that the vertices of the graph carry an internal
degree of freedom (spin, helicity, etc.) corresponding to a
finite-dimension Hilbert space, called a coin system.

Models of QWs have been broadly studied in diverse
formulations [2–7], since they were revealed to be suitable both
as a simulation tool, e.g., in lattice gauge theories [8–10], and
as a computational one, e.g., in designing quantum algorithms
[11–13]. Recently QWs have also been exploited as discrete
models of spacetime [14–19]. Discrete-time QWs on lattices
have been studied in the continuum limit in Refs. [15,20–22],
recovering Weyl, Dirac, and Maxwell dynamics.

In this paper we consider discrete-time QWs on an infinite
graph requiring locality and homogeneity of the evolution. The
former implies that each site (each vertex of the graph) has a
finite number of first neighbors, while the latter means the
indistinguishability of the sites based on the evolution in a
sense formalized in Ref. [15], where it is proved that these
hypotheses amount to requiring the graph to be a Cayley
graph of a finitely generated group G. Cayley graphs, as
diagrammatic counterparts of groups, are convenient means
to study QWs exploiting the group-theoretical machinery.

In the case of Abelian G, one can represent the walk in
the wave-vector space via the Fourier transform, resorting to
the (one-dimensional) irreducible representations of G. This
allows one to diagonalize the walk evolution operator and to
simply solve the walk dynamics in terms of its dispersion
relations.

The procedure is not so straightforward in the non-Abelian
case. Indeed, a method working in the general case is still lack-
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ing, due to the fact that representations of the infinite discrete
non-Abelian groups are generally unknown. In Ref. [23], a
novel technique allowing one to tackle this issue in the case of
virtually Abelian groups has been presented.

A virtually Abelian group G is generally a non-Abelian
group with an Abelian subgroup H of finite index (the number
of cosets of H in G). This property enables one to define a
notion of wave vector as an invariant of the dynamics also
in the non-Abelian case, thus solving the dynamics of these
particular non-Abelian QWs. This technique can be viewed as
a coarse graining of the walk: the original virtually Abelian
QW on G is unitarily equivalent to a walk on H with a larger
coin system.

We will apply this method to the most elementary case of
scalar QWs, i.e., walks with a one-dimensional coin system.
This kind of walks is the most elementary from the point of
view of the coin system, but unfortunately this does not mean
that they are the easiest to treat, since their existence imposes
additional constraints on the graph (see Sec. II). Scalar QWs
on Cayley graph have been explored in Ref. [24], where the
authors restricted the investigation to finite groups, classifying
scalar QWs on Cayley graphs with two and three generators.
The present investigation focuses on infinite groups. The
framework of scalar QWs differs from that of staggered QWs,
i.e., QWs without coin tossing, recently considered in the liter-
ature [25–27] where the walk is defined by an evolution opera-
tor that is the product of two reflections acting on the site basis.

After reviewing QWs on Cayley graphs, in Sec. III we first
investigate and classify infinite Abelian scalar QWs, extending
the results of Ref. [28] to any infinite Abelian group and with
arbitrary presentations. Then, in Sec. IV A, we consider the
simplest case of non-Abelian group G with a subgroup H ∼= Z
of index 2. Such a group is the infinite dihedral group D∞, and
we derive all its Cayley graphs admitting a scalar QW with a
coarse-grained scheme having coordination number 2. All the
scalar QWs on these Cayley graphs are derived in Sec. IV B.
We show that their coarse-graining coincides (up to a local
change of basis) with the class of QWs on ℓ2(Z) ⊗ C2 that are
invariant under parity transformation. The walks in this class
are studied via the usual Fourier-transform method with the
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result that they can exhibit both linear and massive dispersion
relations.

II. QWS ON CAYLEY GRAPHS

In this section we review the notion of quantum walks on
Cayley graphs, previously discussed in Refs. [24,29,30].

Let G be a group: we can always select a generating set S+
for G, namely, a subset S+ ⊆ G such that any element of the
group can be built as a composition of elements g ∈ S+ and
their inverses. In the following we do not assume the generating
set to be symmetric (a generating set S+ is called symmetric
if S+ = S−, where S− is the set of inverses of the elements in
S+). In order to specify a group, as well as a generating set S+,
a set R of relators is also needed, namely, some words formally
built by a composition of elements g ∈ S+ and corresponding
to the identity element e ∈ G. For example, if R is trivial, one
gets the free group on S+.

These two ingredients provide a so-called presentation
G = ⟨S+|R⟩ of a group. Presentations are not in one-to-one
correspondence with groups: given a group G, it has in general
different presentations. However, any presentation completely
specifies a unique group.

Presentations of groups have a convenient geometrical
representation: Cayley graphs. Given a group G and a
generating set S+ for G, the Cayley graph "(G,S+) is defined
as the edge-colored directed graph having vertex set G, edge
set {(x,xg); x ∈ G,g ∈ S+}, and a color assigned to each
generator g ∈ S+. In addition, an edge corresponding to a
generator g ∈ S+ is usually represented as undirected when
g2 = e. Cayley graphs are indeed in one-to-one correspon-
dence with presentations. Relators are just closed paths over
the graph, i.e., cycles, and conversely any cycle on the graph
can be built as composition of some relators.

In the following we will consider Cayley graphs of finitely
generated groups (|S+| < ∞) as the graphs of our quantum
walks. A discrete-time quantum walk on a Cayley graph
"(G,S+) with an s-dimensional coin system (s ! 1) is a
unitary evolution of a system with Hilbert space ℓ2(G) ⊗ Cs

such that

|ψg,t+1⟩ =
∑

h∈S+

Ah|ψgh,t ⟩, (1)

where 0 ̸= Ah ∈ Ms(C) are the transition matrices of the walk.
In the following, we will consider S+ generally nonsymmetric.
In the previous literature [15] the sum in Eq. (1) was extended
to S+ ∪ S−. For this reason, for the sake of uniformity, we
will explicitly name the walk monoidal whenever S+ is not
symmetric [31].

Considering the right regular representation Tg of the group
G, whose action on ℓ2(G) is defined as Tg|x⟩ := |xg−1⟩, we
can represent the QW through

A :=
∑

h∈S+

Th ⊗ Ah.

The unitarity conditions for the walk operator A are AA† =
A†A = Te ⊗ Is ; these conditions, for a scalar QW of the form

A :=
∑

h∈S+

Thzh

(where the zh ∈ C are called transition scalars), lead to the set
of equations

∑

hh′−1 = g
h ̸= h′

zhz
∗
h′ = 0,

∑

h−1h′ = g
h ̸= h′

z∗
hzh′ = 0,

∑

h

|zh|2 = 1. (2)

It is simple to check that trivial solutions of Eq. (2) with
A = Th can occur only for monoidal walks QW with singleton
S+ = {h}. A necessary condition for the existence of solutions
of Eq. (2) is given by the following lemma.

Lemma 1. Given a Cayley graph "(G,S+), a necessary
condition for the existence of a scalar quantum walk A =∑

h∈S+
Thzh on "(G,S+) is that, for each ordered pair

(h1,h2) ∈ S+ × S+ such that h1 ̸= h2, there exists at least a
different pair (h3,h4) such that h1h

−1
2 = h3h

−1
4 . This is called

quadrangularity condition [24].

A. Free Abelian QWs

The case of QWs on Cayley graphs of a free Abelian group,
i.e., G ∼= Zd , is the simplest to treat in order to analytically
solve the dynamics, since the walk can be easily diagonalized
by a Fourier transform. We will label the elements x ∈ Zd ,
using the additive notation for the group composition. The right
regular representation is decomposed into one-dimensional
irreducible representations, since the group is Abelian. One
can thus diagonalize Tx in the wave-vector space as follows:

|k⟩ := 1

(2π )
d
2

∑

x′∈Zd

e−ik·x′ |x′⟩, Tx|k⟩ = e−ik·x|k⟩,

where k belongs to the first Brillouin zone B ⊆ Rd , which
is the largest set that contains vectors k corresponding to
inequivalent elements |k⟩. The evolution operator of the walk
then reads

A =
∫

B
dk|k⟩⟨k| ⊗ Ak, Ak :=

∑

h∈S+

e−ik·hAh,

where Ak is unitary ∀k ∈ B. Being Ak unitary, the eigen-
values are phase factors of the form eiωr (k): the collection
{ωr (k)}r=1,...,s for k ∈ B are called the dispersion relations
of the QW and give the kinematics of the walk. Its first and
second derivatives, indeed, provide, respectively, the group
velocity and the diffusion coefficient of particle states.

B. Coarse graining of QWs

Our aim is to study scalar QWs on some group G containing
H ∼= Z as a subgroup, with finitely many cosets in G. The
minimal choice is G = H ∪ Hr , where r is a coset represen-
tative. The group G is then virtually Abelian by definition. As
a consequence, one can apply the coarse-graining procedure
presented in Ref. [23] and study the kinematics of the walk in
the k space, likewise in the purely Abelian case.

This technique is applied through a unitary transformation
on the walk operator: it is nothing but a change of represen-
tation of the generators of G, allowing one to represent the
QW on G as a coarse-grained QW on H having a larger coin
system. In particular, two different choices of the subgroup H
do not change the dispersion relations, which are informative
about the kinematics of the system.
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The core idea is to choose a partition of G into cosets of
H , assigning to them a finite set of labels. The vertices of
the original Cayley graph of G are grouped into clusters,
containing one vertex from each coset, which become the
vertices of the new coarse-grained walk on H . The coset labels
designate now an additional internal degree of freedom.

A virtually Abelian quantum walk on ℓ2(G) ⊗ Cs can be
regarded as an Abelian QW on ℓ2(H ) ⊗ Cs×l , where l is the
index of H in G. In the present case, s = 1 and l = 2. The
coarse-graining procedure is performed by choosing a regular
tiling, namely, a particular coset partition of G with respect
to an Abelian subgroup H of finite index. Accordingly, we
will choose G = Hc1 ∪ Hc2, with H ∼= Z and c1,c2 arbitrary
coset representatives.

We will denote the generators of G by h ∈ S+. Having
chosen the coset representatives {cj }j=1,2, we can define a
unitary mapping between ℓ2(G) and ℓ2(H ) ⊗ C2 as follows:

UH : ℓ2(G) → ℓ2(H ) ⊗ C2; UH |xcj ⟩ = |x⟩|j ⟩, ∀x ∈ H,

for j = 1,2. In Ref. [23] it is shown that, since ∀x ∈ H , ∀h ∈
S+ and ∀cj there exist x ′ ∈ H and j ′ = τ (h,j ) ∈ {1,2} such
that xcjh

−1 = x ′cj ′ , the coarse-grained generating set S̃+ =
{h̃} ⊆ H is defined as

S̃+ :=
{
cτ (h,j )hc−1

j |h ∈ S,j = 1,2
}
, (3)

while their corresponding transition matrices will be given by

(Ah̃)ij =
∑

h∈S+

zhδh̃,cihc−1
j

δi,τ (h,j ). (4)

Finally, the coarse-grained evolution operator reads

R[A] = (UH ⊗ 1)A(UH ⊗ 1)†

=
∑

h∈S+

∑

j=1,2

Tcτ (h,j )hc−1
j

⊗ |τ (h,j )⟩⟨j |zh,

where clearly now T is the right regular representation of H .
We say that a QW A is a coarse-grained scalar QW if there
exists a scalar walk A′ such that A = R[A′].

It is known [3] that the only scalar QWs on Z are the
monoidal QW A± := e−iθ±T±, with θ± arbitrary phases, and
T± the right or left shift operators on ℓ2(Z). Here we analyze
scalar QWs on a group that is virtually Abelian with Abelian
subgroup H ∼= Z, starting from the easiest case in which the
index of H is 2. Furthermore, we require the coarse-grained
QW on ℓ2(Z) ⊗ C2 to have coordination number 2, which
restricts the class of Cayley graphs of G that we will study.
Our analysis will lead to a classification of all the spinorial
QW with coordination number 2 on ℓ2(Z) ⊗ C2 that can be
obtained as a coarse-grained scalar QW.

The coarse-graining technique will be applied in Secs. IV A
and IV B. In the following section we classify infinite Abelian
scalar QWs.

III. CLASSIFICATION OF INFINITE ABELIAN SCALAR
QWS ON CAYLEY GRAPHS

By the fundamental theorem of finitely generated Abelian
groups, the generic infinite group of this kind is of the form
G = Zi1 × . . . × Zin × Zd , for d ! 1 and 0 " n < ∞. We
now give a full characterization of infinite Abelian scalar QWs,

providing a general structure for the evolution operator of these
walks in the following proposition.

Proposition 1. Let A be the unitary operator of a scalar
QW on the Cayley graph of G = Zi1 × . . . × Zin × Zd for
1 " d < ∞ and 0 " n < ∞. Then A splits into the direct
sum of one-dimensional monoidal QWs e−iθj Tj , with Tj

shift operators over Zd , and j ∈ {1,2, . . . ,i1 × i2 × . . . × in}.
In particular, the dispersion relations are linear in the wave
vectors.

Proof. Let us pose G = Zi1 × . . . × Zin × Zd =: F × Zd ,
for d ! 1. We can decompose the elements of G into one
component in F and one in Zd ; accordingly, for some h ∈
S+ ⊂ Zd , we define R(h) ⊆ F such that

⋃
h∈S+

R(h) × {h}
is a set of generators for G. Let Cl be the right regular
representation of the generator of Zil [32]. Then, defining
for any f ∈ F the integers ml(f ) ∈ {1, . . . ,il} such that Tf =
C

m1(f )
1 ⊗ . . . ⊗ C

mn(f )
n , the diagonalization of the general QW

on ℓ2(G) ⊗ C reads

A =
∑

h∈S+

∑

f ∈R(h)

(Tf ⊗ Th)z(f,h)

=
i1∑

j1=1

. . .

in∑

jn=1

|j1⟩⟨j1| ⊗ . . . ⊗ |jn⟩⟨jn| ⊗
∑

h∈S+

Thzh(j),

(5)

where

zh(j) :=
∑

f ∈R(h)

z(f,h)e
2π i(j1

m1(f )
i1

+...+jn
mn (f )

in
)

and j := (j1, . . . ,jn). The evolution operator (5) is now block-
diagonalizable in the k-space as

∫

B
dk |k⟩⟨k|

⎛

⎝
∑

h∈S+

e−ik·hzh(j)

⎞

⎠ , ∀j,

with Ak(j) :=
∑

h e−ik·hzh(j) unitary by construction. This
leads to the unitarity conditions (2). Take now, for hi ,hj ∈ S+,
the collection M of all the v = hi − hj ∈ Zd such that

∥v∥ = max
hi ,hj ∈S+

∥hi − hj∥. (6)

Suppose that, for some v′ ∈ M , there exist two distinct pairs
such that

v′ = h1 − h2 = h3 − h4, (7)

with v′ ̸= 0 (otherwise d = 0). Then let us define
dij := hi − hj : by definition one has 2v′ = d14 + d32 and

2∥v′∥ = ∥d14 + d32∥ " ∥d14∥ + ∥d32∥
" ∥v′∥ + ∥v′∥ = 2∥v′∥,

where we used the triangle inequality and the definition (6)
of v′. This implies that d14 ∝ d32 and ∥v′∥ = ∥d14∥ = ∥d32∥,
which in turn imply d14 = ±d32; this, combined with (7) and
v′ ̸= 0, finally gives

h1 = h3, h2 = h4;

i.e., the pair is unique. Then, by the unitarity conditions (2),
one has zh1 (j)z∗

h2
(j) = 0, namely, e.g., zh1 (j) = 0. The above
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argument can thus be iterated removing h1 from the set S+:
one finally concludes that, for each j, just one transition scalar
zh̃(j)(j) is nonvanishing, namely,

Ak(j) =
∑

h∈S+

δh̃(j),hzh(j)e−ik·h = zh̃(j)(j)e
−ik·h̃(j),

with zh̃(j)(j) =: e−iθh̃(j) arbitrary phase factor (by unitarity of
Ak(j)). We now conveniently define hj := h̃(j),θj := θh̃(j) and
substitute in (5). Thus we finally conclude that any infinite
Abelian scalar QW is given by the direct sum of scalar walks
on Z, namely,

A =
⊕

j∈I

e−iθj Tj ,

or else, in the Fourier representation,

A =
∫

B
dk

⊕

j∈I

e−i(k·hj +θj ) ⊗ |k⟩⟨k|,

for I = {1,2, . . . ,i1 × i2 × . . . × in} and with hj ∈ S+ ⊂ Zd ,
θj arbitrary phases. This finally proves that the dispersion
relations are linear in k.

Notice that the argument of the proof does not hold in the
case of a general scalar QW on a finite Abelian group F . For
example, it is easy to verify that the Cayley graph correspond-
ing to Z2 × Z2 = ⟨g1,g2|g2

1,g
2
2,g1g2g

−1
1 g−1

2 ⟩ (square graph)
admits a nontrivial scalar quantum walk.

IV. SCALAR QWS ON THE INFINITE DIHEDRAL GROUP

A. Classification of the Cayley graphs

We provided a full classification of infinite Abelian scalar
QWs. Accordingly, in the following we will consider just
non-Abelian scalar QWs. We now aim to derive all the possible
non-Abelian groups G ∼= Z ∪ Zr and their Cayley graphs
satisfying the quadrangularity condition.

It is easy to show that an index-2 subgroup is always normal:
by contradiction, let G be an arbitrary group and H be a
index-2 subgroup which is not normal in G. Accordingly, for
some x1,x2 ∈ H , the relation rx1r

−1 = x2r holds, and this
implies rx1 = x2r

2. However, r2 must be equal to some xr ,
with x ∈ H , otherwise from the previous equation one would
have r ∈ H . On the other hand, r2 = xr reads r = x ∈ H ,
which is absurd. Then an index-2 subgroup is always normal:
left and right cosets coincide. We conventionally choose right
cosets to perform the coarse graining.

Choosing G to be non-Abelian, let us pose H = ⟨a⟩: one
has rar−1 = am for some integer m ̸= 0,1 (by normality of
H ); then a = r−1amr = (r−1ar)m = alm, for l = 1

m
integer:

the only possibility is m = −1. Thus we have rar−1 :=
ϕ(a) = a−1. Now we prove that r2 = e. Indeed, it must
be r2 ∈ H . Let us now suppose that r2 = ap: then one
has r−1ap = apr−1 = r−1a−p, implying p = 0 and finally
r2 = e. Accordingly, since defining C = ⟨r|r2⟩ one has G =
HC and H ∩ C = {e}, it follows that

G = H !ϕ C ∼= Z !ϕ Z2 = D∞,

namely, the infinite dihedral group, with the inverse map ϕ
being the only nontrivial automorphism of Z that achieves the
semidirect product with Z2.

Since the cosets are mutually disjoint (they define equiv-
alence classes), the elements of each coset of H in G define
a distinct subset of vertices of a Cayley graph of G; in fact,
the union of these subsets fills all the vertices associated to
the Cayley graph of G. Each element of H is in one-to-one
correspondence with an element of Hr through elements of
the form anr .

We now derive the admissible Cayley graphs of D∞
satisfying the quadrangularity condition of Lemma 1. In order
to find the coarse-grained generators h̃, one has to explicitly
compute the set S̃+ in Eq. (3). The h̃ depend in general on the
cosets representatives (which are arbitrary): accordingly, we
shall pose a general form c1 = am,c2 = am′

r .
We are interested in walks represented on ℓ2(Z) ⊗ C2

with coordination number 2. Correspondingly, for the coarse-
grained generators, we shall impose the condition

h̃ ∈ {e,a,a−1}. (8)

We will then exclude the case al ∈ S+ with |l| ! 2, since
by (3), choosing, for example, j = 1 one would have h̃ = al

which would give rise to coarse-grained walks with coordina-
tion number larger than two. Moreover, we can always include
e in S+, since by (3) the identity element is invariant under
coarse graining.

Case a ∈ S+. All the generators beside a and e belong
to the coset Hr and are thus of the form anr . Moreover,
combining (3) and (8), we must have |n − (m′ − m)| " 1,
namely, h ∈ {a(m′−m)r,a(m′−m)+1r,a(m′−m)−1r}. By quadran-
gularity, we need some generators h,h′ ∈ Hr such that
a2 = hh′−1, implying that a(m′−m)±1r ∈ S+. Moreover, since
h′h−1 = a−2 by quadrangularity it is also a−1 ∈ S+. We can
possibly include a(m′−m)r in S+, having e as a coarse-grained
generator. However, it is easy to check that ∀m,m′ and these
choices give rise, topologically, to the same Cayley graph
(modulo a constant left translation a(m′−m)). Here it follows an
example for the choice m′ − m = 2 (one moves between sites
horizontally through a±1, while vertically through r , which
has no associated edges in this example):

Accordingly, one can just set m = m′ = 0, namely, the
following case.

Case a ̸∈ S+. From the previous case we know that
a ∈ S+ ⇔ a−1 ∈ S+, then obviously a ̸∈ S+ ⇒ a−1 ̸∈ S+.
Then S+ ⊆ {e,hi = an+i r|i = −1,0,1}. However, for any pair
(hi,hj ) with i ̸= j , there does not exist a different pair (h,h′)
such that hh′−1 = hih

−1
j = a2, thus violating quadrangularity.

This rules out the case a ̸∈ S+.
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FIG. 1. The most general Cayley graph of the infinite dihedral
group which admits a scalar QW with coarse graining on Z
with coordination number 2. The group presentation is D∞ =
⟨a,a−1,b,c,d|aa−1,b2,c2,bda−1,cda,bab−1a,cac−1a,bca−2⟩. The
generators, namely, a (red), a−1 (violet), b (dark blue), c (green), and
d (orange), are associated to edges of the graph, each corresponding
to a transition scalar of the walk. Another Cayley graph of D∞ with
the same properties can be obtained by dropping d and the relators
containing it. Moreover, one can include e in the generating set, which
would correspond to a loop at each site.

Coloring consistently the graph derived, one finds the most
general admissionable Cayley graph of D∞, which is shown
in Fig. 1 together with the corresponding presentation.

B. Classification of the scalar QWs

The scalar QWs on D∞ are derived in Appendix A. The
transition matrices of the coarse-grained QWs, computed
choosing {|1⟩,|2⟩} to be the canonical basis of C2 and using
Eqs. (4), are

A+a =
(

za zb

zc za−1

)
, A−a =

(
za−1 zc

zb za

)
, Ae =

(
ze zd

zd ze

)
.

In Fig. 2 one finds a graphical scheme of the coarse graining.
Given Ak := e−ikA+a + eikA−a + Ae, since the zh are defined
up to an overall phase factor, one can always take Ak ∈ SU(2).

The solutions of the unitarity conditions (see Appendix A)
give that the coarse-grained scalar QWs are of the form

Ak = eiθσx AD
k eiθ ′σx , (9)

with θ,θ ′ ∈ (−π/2,0) ∪ (0,π/2), and AD
k is the Dirac QW in

one space dimension [14]

AD
k =

(
νe−ik isµ
isµ νeik

)
, ν2 + µ2 = 1, s = ±1. (10)

We denote by WCG the set of coarse-grained scalar QWs, i.e.,
the QWs A′

k such that A′
k = UAkU

† with Ak obeying Eq. (9)

FIG. 2. Realization of the scalar QW in Fig. 1 as a quantum
walk on Z = ⟨a,a−1|aa−1⟩ with a two-dimensional coin system. The
original vertices are grouped into pairs, realizing an additional helicity
degree of freedom, and each edge, namely, a (dark blue) and a−1

(brown), is associated to a transition matrix. The cosets are associated
to an element of a basis for C2; we choose the canonical basis, that
is, c1 → (1,0) (full circles) and c2 → (0,1) (empty circles).

and U being a local change of basis, say, U does not depend
on k.

Let us now consider parity invariant QWs AP
k on

ℓ2(Z) ⊗ C2, i.e.,

PAP
k P † = A−k, P = P † = P −1,

where P gives a unitary representation in C2 of the parity
transformation. Assuming that the parity is not represented
trivially, namely, P ̸= I , following the technique of Ref. [15]
one obtains the full characterization of the class of parity
invariant QWs:

AP
k = UA′

kU
†, A′

k = eiϕσx AD
k , (11)

with ϕ ∈ [−π/2,π/2], and U a local change of basis. It is
immediate to observe that the walk eiϕσx AD

k is parity invariant
with P = σx .

We denote by WP the set of parity invariant QWs, and we
observe that this set coincided withWCG. We have then proved
the following result.

Proposition 2. The set of coarse-grained scalar QWs with
coordination number 2 on D∞ coincides with the set of parity
invariant QWs on ℓ2(Z) ⊗ C2.

We notice that the parity symmetry is inherited, in the
coarse-graining procedure, from the particular automorphism
ϕ realizing the semidirect product Z !ϕ Z2, which in this case
is the inverse map. The popular Hadamard walk [4], which is
not parity invariant, cannot be obtained by the coarse graining
of scalar QW.

The dispersion relations of the parity invariant QWs are of
the form ±ω(k), with

ω(k) = arccos (δ cos k + γ ),

δ,γ ∈ R,|δ ± γ | " 1.
(12)

For any value of γ ,δ, the minimum of {ω(k), − ω(k)} is
always attained at k0 = 0, and that around k0 the behavior can
be either flat, or ±|k| plus a constant, or smooth. We notice
that when γ = 0 we recover (up to a local change of basis)
the Dirac QW AD

k . When δ = 1 we recover the Weyl QW
Ak = exp(−ikσz), which describes the dynamics of massless
particles with a dispersion relation which is linear in k. We
notice that when δ + γ = 1 the QW exhibits a nondispersive
behavior for |k| ≈ 0 and a dispersive behavior for greater
values of |k|. The dispersion relations (12) are plotted for
some values of the parameters δ,γ in Figs. 3 and 4.

V. CONCLUSIONS

We reviewed the notion of a quantum walk on Cayley graph
with the focus on scalar QWs. We also reviewed a coarse-
graining technique that allows us to unitarily map a scalar QW
on a virtually Abelian group to a coined QW on an Abelian
group, what we call a coarse-grained scalar QW.

The first result we found is a classification of infinite
Abelian scalar QWs (on Cayley graphs with arbitrary presen-
tations), which turn out to be trivial from a dynamical point
of view, meaning that they are given by a finite direct sum of
shift operators times a phase factor. In particular, this implies
that this class of QWs does not exhibit a massive dispersion
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!Π ! Π
2

0 ΠΠ
2

k

Π
2

Π

FIG. 3. The quantities plotted are dimensionless. Plot of ω(k) =
arccos (δ cos k + γ ), for (from top to bottom) δ = 0.98,0.36,0.09 and
δ + γ = 1. This class of QWs exhibits, for |k| ≈ 0 and positive δ, a
massless (Weyl) dispersion relation (up to a rescaling of k): ω(k) ≈
δ|k|. For |k| ≈ π , ω(k) becomes dispersive (massive).

relation. This result extends the previous results of Ref. [28],
concerning Zd .

We then investigated scalar QWs on the infinite dihedral
group D∞, which is the unique non-Abelian group G that
contains a subgroup H ∼= Z with index 2. We first derived all
the Cayley graphs of D∞ that allow for a scalar QW. Then
we classified all the admissible QWs over the above Cayley
graphs.

We notice that the unitarity conditions for a QW involve
relations among four generators: if one solves them for
the dihedral group, the derived transition amplitudes are a
solution also for the QWs defined over the dihedral groups
Zn !ϕ Z2∀n ! 4, corresponding to the same presentation
with the additional condition an = e. In general, transforming
some noncyclic elements into cyclic ones on infinite groups

!Π ! Π
2

0 ΠΠ
2

k

Π
2

Π

FIG. 4. The quantities plotted are dimensionless. Plot of ω(k) =
arccos (δ cos k + γ ), for (from bottom to top) δ = 0.98,0.36,0.09
and δ − γ = 1. This class of QWs exhibits a massive dispersion
relation for |k| ≈ 0, and a a massless one for |k| ≈ π . The Dirac
dispersion relation is recovered for |k| ≈ 0 and δ ≈ 1. Notice that
these dispersion relations are the same as those in Fig. 3, apart from
a transformation ω(k) → π − ω(k + π ).

presentations allows one to recover QWs on finite groups
starting from QWs on infinite ones.

Finally we have shown that the class of QWs corresponding
to the coarse-grained scalar QWs over D∞ coincides, up to
a local change of basis, to the class of QWs over ℓ2(Z) ⊗ C2

that are invariant under parity transformation. In this class we
find QWs whose dispersion relations can exhibit a massive
behavior.

Interestingly, the coarse-graining technique allows one to
build a bridge relating scalar and spinorial quantum walks,
studying the symmetries of the latter as inherited from the
underlying Cayley graph. Existence conditions in scalar QWs
are more selective than the spinorial ones, and one cannot
recover all possible spinorial QWs starting from a scalar one.
For example, the Hadamard QW, which is not parity invariant,
cannot be obtained a coarse graining of a scalar QW. On
the speculative side, this shows the crucial role played by
the coarse graining in the emergence of parity symmetry and
helicity in one dimension.
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APPENDIX: DERIVATION OF THE DIHEDRAL QWS

Considering the polar representation zh = |zh|eiθh for the
transition scalars, from the unitarity conditions (2) one has
(possibly with vanishing zd or ze)

za±1z∗
a∓1 + zgz

∗
f = 0, (A1)

za±1z∗
g + zgz

∗
a±1 = 0, (A2)

zdz
∗
e + zez

∗
d + za±1z∗

b + zbz
∗
a±1 + za∓1z∗

c + zcz
∗
a∓1 = 0, (A3)

zgz
∗
e + zez

∗
g + zdz

∗
a±1 + za±1z∗

d = 0, (A4)

za±1z∗
e + zez

∗
a∓1 + zdz

∗
g + zf z∗

d = 0, (A5)

with g,f ∈ {b,c} and g ̸= f . From Eqs. (A2), it follows, e.g.,
eiθb = t1ie

iθa−1 and eiθc = t2ie
iθa (t1,2 arbitrary signs), while

from (A1) one has

|za||za−1 | = |zb||zc|,
s1 : = t1 = −t2,

eiθ : = eiθa = s2e
iθa−1 ,

which are consistent with all of the (A2).
Therefore, we can satisfy the previous conditions and the

normalization in (2) arbitrarily defining some real parameters
such that the transition scalars are given by

za = ν
√

p
√

qeiθ , za−1 = s2ν
√

1 − p
√

1 − qeiθ ,

zb = s2s1iν
√

p
√

1 − qeiθ , zc = −s1iν
√

1 − p
√

qeiθ ,

ze = µαeiθe , zd = µβeiθd ,
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where p,q ∈ (0,1), µ ∈ [0,1), α ∈ [0,1] and ν :=√
1 − µ2,β :=

√
1 − α2.

a. Case zd = ze = 0 (µ = 0). Equation (A3) is already
satisfied, while Eqs. (A4) and (A5) turn out to be trivial.
Finally, we conclude that the transition scalars are

za = √
p
√

qeiθ , za−1 = s2

√
1 − p

√
1 − qeiθ ,

zb = s2s1i
√

p
√

1 − qeiθ , zc = −s1i
√

1 − p
√

qeiθ .

b. Case ze = 0 (α = 0).Equation (A3) ais already satisfied.
From (A4) one has eiθd = s3ie

iθ , while from (A5),

e2iθd = −s2e
2iθ ⇒ s2 = +1, |zb| = |zc|.

We conclude that the transition scalars are (up to a global phase
factor)

za = νp, za−1 = ν(1 − p),

zb = s1iν
√

p
√

1 − p, zc = −s1iν
√

p
√

1 − p,

zd = s3iµ,

for p,µ ∈ (0,1).
c. Case zd = 0 (β = 0). Equation (A3) is already satisfied.

From (A4) one has eiθe = s ′
3e

iθ := −s1s3e
iθ (this definition

is convenient in view of the next case ze,zd ̸= 0). From (A5)
one gets

e2iθe = −s2e
2iθ ⇒ s2 = −1, |za| = |za−1 |.

We thus conclude that the transition scalars are (up to a global
phase factor)

za = ν
√

p
√

1 − p, za−1 = −ν
√

p
√

1 − p,

zb = −s1iνp, zc = −s1iν(1 − p), ze = −s1s3µ

for p,µ ∈ (0,1).

d. Case ze,zd ̸= 0 (µ,α,β ̸= 0). Equation (A3) reads

zdz
∗
e + zez

∗
d = 0 ⇒ eiθe = s4ie

iθd .

Substituting in Eqs. (A4), one has

s1s2s4|zb||ze| cos(θd − θ ) = −|zd ||za| cos(θd − θ ),

s1s2s4|zc||ze| cos(θd − θ ) = |zd ||za−1 | cos(θd − θ ),

which can be satisfied only if cos(θd − θ ) = 0, implying that
eiθd = s3ie

iθ . From (A5) we have

s1|ze|(|za| + s2|za−1 |) = s4|zd |(s2|zb| − |zc|). (A6)

Notice that a change of the sign s1s4 affects the last equation
just by a relabeling |za| ↔ |za−1 | (if s2 = −1) or |zb| ↔ |zc| (if
s2 = +1), under which the unitarity conditions are invariant:
thus we can set s1s4 = +1. From (A6), one has to impose a
positivity condition according to the choice of s2, i.e., |zb| −
|zc| > 0 or |za−1 | − |za| > 0, which imply some conditions on
p,q. Finally, one also finds the expression of α in terms of
p,q, and s2. We conclude that the transition scalars are (up to
a phase factor):

za = ν
√

p
√

q, za−1 = s2ν
√

1 − p
√

1 − q,

zb = s2s1iν
√

p
√

1 − q, zc = −s1iν
√

1 − p
√

q,

ze = −s1s3µα, zd = s3iµβ,

where α = √
p
√

1 − q − s2
√

1 − p
√

q and p,q,µ ∈ (0,1),
while p > q if s2 = +1, (1 − q) > p if s2 = −1.

In Eq. (9) we posed cos θ := √
p, sin θ := −s1

√
1 − p,

cos θ ′ := √
q, sin θ ′ = s1s2

√
1 − q, in Eq. (10) s := s2s3, and

in Eq. (12) δ := za + za−1 and γ := ze.
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