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A quantum measurement of the spin direction
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Abstract

We give a first physical model for the quantum measurement of the spin direction. It is an Arthurs–Kelly model that involves
a kind of magnetic–dipole interaction of the spin with three modes of radiation. We show that in a limit of infinite squeezing of
radiation the optimal POVM for the measurement of the spin direction is achieved for spin-1/2.  2002 Elsevier Science B.V.
All rights reserved.

1. Introduction

In quantum mechanics everybody knows that we can measure the component of a spin along a given direction—
usually a magnetic field. Why is not possible to measure the “direction” of the spin itself, like what we do in
classical mechanics? There must be a way to define the measurement of the direction of the spin also in quantum
mechanics, otherwise we would face a situation which is inconsistent with what we normally do in the macroscopic
world!

The situation is somewhat similar to what happens for the measurement of position and momentum: in classical
mechanics we can measure both jointly, whereas in quantum mechanics we learn that we can measure either one or
the other. This is true since only exact (orthogonal) measurements are usually considered. However, from a number
of authors [1–4] we also learned that approximate measurements can be considered as well, and in this way we can
define joint measurements of position and momentum and, in principle, measurements of the direction of a spin.

The first scheme for a joint measurement of non-commuting observables was introduced by Arthurs and
Kelly [5]. The problem of evaluating the minimum added noise in the joint measurement of position and
momentum—and, more generally, of a pair of observables whose commutator is not ac-number—was studied in
Refs. [6–8]. In the case of two quadratures of one mode of the electromagnetic field the problem can be phrased in
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terms of a coherent positive operator-valued measure (POVM) whose Naimark extension introduces an additional
mode of the field: this kind of measurement can be realized by means of a heterodyne detector [9].

The case of a joint measurement of the angular momentum is by far more difficult than the joint measurement of
position and momentum. Some optical [10] and Stern–Gerlach [11] measurement schemes have been proposed for
discrete-spectrum POVMs for the joint measurement of non-commuting components of the angular momentum.
A model based on quantum cloning for the joint measurement of the three components has been studied in Ref. [12].

Spin coherent states have been introduced [13] that can be interpreted as continuous overcomplete POVMs [3,
14], but no physical model has been given for it. It has been shown [15] that such coherent-spin POVM minimizes
suitably defined quantities that represent the precision and disturbance of the measurement, and that such POVM
would also be optimal for estimating the rotation parameters of a spin [3].

A model for the realization of the measurement of the spin direction would be essential in connecting the
quantum with the classical meaning of the angular momentum itself, whence it is of great interest to find viable
physical schemes to realize such measurement. The realization of the spin-direction measurement would also
represent a first step toward the achievement of the POVM that is needed for teleporting an angular momentum [16].

In this Letter a first physical model for the measurement of the spin direction is presented. It is based on a
Arthurs–Kelly model that involves a sort of magnetic-dipole interaction of the spin with three modes of radiation.
As we will see, the model achieves the optimal POVM for spin-1/2, in a limit of infinite squeezing of the radiation
modes.

2. Coherent-spin POVM

The spin coherent states|n〉, with n = (sinθ cosφ,sinθ sinφ,cosθ), are generated by the action of the unitary
operatorV (n) = exp[iθ(n ∧ k) · J], k = (0,0,1), on the eigenstate|−j 〉 of J3 with eigenvalue−j . The unitary
transformationV (n) is a rotation that maps the directionk on the directionn, where the rotation is performed
continuously along the meridian connecting the two directions. For this reason one has

(1)V (n)J3V (n)† = J · n,

so that each spin coherent state is the eigenvector ofJ · n with eigenvalue−j . This set of states provides the
coherent-spin POVM [13] which is given by

(2)Π(dn) = 2j + 1

4π
|n〉〈n|dn.

This POVM is a continuous and overcomplete POVM that provides an unbiased estimation of the spin direction.
There is no known Naimark extension of POVM (2)—i.e., an orthogonal projective realization of the POVM
on an enlarged Hilbert space: we only know that such extension must be infinite-dimensional, since the POVM
spectrum is continuous. We emphasize again that coherent-spin POVM (2) minimizes suitably defined precision
and disturbance of the measurement [15], and that it is the optimal one for estimating the rotation angles of a
spin [3].

3. The Arthurs–Kelly model

In the Arthurs–Kelly scheme [5] the joint measurement of two non-commuting observables on a single quantum
system was obtained upon introducing two auxiliary meters. Here we let a spinj interact with three independent
radiation modesa1, a2, a3 for a time intervalt , according to the following kind of magnetic–dipole interaction:

(3)U = exp
[−it (J1Y1 + J2Y2 + J3Y3)

] = exp[−itJ · Y],



G.M. D’Ariano et al. / Physics Letters A 292 (2002) 233–237 235

whereYh denotes the quadratureYh = (i/2)(a†
h − ah), and all phases have been included in the definition of the

annihilation operatorsah. We fix the preparation of the radiation field in the squeezed state|Ψ 〉 = |ψλ〉1|ψλ〉2|ψλ〉3,
where

(4)h〈y|ψλ〉h =
(

2λ2

π

)1/4

e−λ2y2
,

is the wavefunction on the basis of the eigenstates ofYh. After the interaction, the measurement of the quadratures
Xh = (1/2)(a†

h + ah) is performed through independent homodyne detection on each mode. The outcome of the
measurement is a vectorx = xn = x(sinθ cosφ,sinθ sinφ,cosθ), and the resulting POVM for the spin system is
given by

(5)Πλ(dx) = Trrad
[
1s ⊗ |Ψ 〉〈Ψ |U†1s ⊗ |x〉〈x|U]

dx = Ω
†
λ(x)Ωλ(x) dx,

where Trrad denotes the trace over radiation modes,1s is the identity for the spin Hilbert space, andΩλ(x) =
〈x|e−itJ·Y|Ψ 〉. By inserting the completeness relation for the operatorsYh in the matrix element〈x|e−itJ·Y|Ψ 〉,
Ωλ(x) can be rewritten as follows:

(6)Ωλ(x) = 1

π3/2

(
2λ2

π

)3/4 ∫
d3y e2ix·ye−itJ·ye−λ2|y|2.

We are now interested in the limit of Eq. (6) for infinitely squeezed radiationλ → 0.
In order to simplify the analysis, we exploit the rotation covariance of the operatorΩλ(x),

(7)Ωλ(xn) = V †(n)Ωλ(xk)V (n),

along with the fact thatΩλ(xn) commutes withJ · n, namely it is diagonal on the eigenvectors ofJ · n. Therefore,
it is enough to evaluate the matrix elements〈m|Ω(xk)|m〉 on eigenstates|m〉 of Jz. We also know that such matrix
element is real, sinceΩλ is self-adjoint. Therefore, we are interested in the following evaluation:

〈m|Ωλ(xk)|m〉

=
(

λ

π

)3/2( 2

π

)3/4∫
dn

∞∫
0

dy y2e2ik·nxye−λ2y2〈m|V (n)e−itJ3yV †(n)|m〉

(8)=
(

λ

π

)3/2( 2

π

)3/4∑
m′

∫
dn

∣∣〈m|V (n)|m′〉∣∣2
∞∫

0

dy y2e−im′ty+2ik·nxye−λ2y2
.

The function|〈m|V (n)|m′〉|2, wheren points in the direction(θ,φ), does not depend onφ. In fact, if n′ is a unit
vector pointing in the direction(θ,φ+δ), one hasV (n′) = exp[iδJ3]V (n)exp[−iδJ3], and thus|〈m|V (n′)|m′〉|2 =
|〈m|V (n)|m′〉|2 .= gm′

m (cosθ). Since〈m|Ωλ(xk)|m〉 is equal to its real part, the last integral in Eq. (8) can be
replaced with its real part. Definingη = cosθ , and integrating onφ, Eq. (8) becomes

〈m|Ωλ(xk)|m〉

= 2π

(
λ

π

)3/2( 2

π

)3/4∑
m′

1∫
−1

dηgm′
m (η)

(−1)

4x2
∂2
η

1

2

∞∫
−∞

dy ei(2ηx−m′t )ye−λ2y

(9)= (−1)

4x2

(
2

π

)3/4

λ1/2
∑
m′

1∫
−1

dηgm
m′(η)∂2

η exp

[−(2ηx − m′t)2

4λ2

]
.



236 G.M. D’Ariano et al. / Physics Letters A 292 (2002) 233–237

Using the partial integration rule
∫
g ∂2f = g ∂f − f ∂g + ∫

∂2g f , and keeping the termg ∂f , which is the only
one that survives in the limitλ → 0, one finds

〈m|Ωλ(xk)|m〉 λ→0≈ 1

4x2

(
2

π

)3/4

λ1/2
∑
m′

∣∣〈m|V (n)|m′〉∣∣2 x

λ2

× (2x cosθn − m′t)exp

[
− (2x cosθn − m′t)2

4λ2

]∣∣∣∣
n=k

n=−k

(10)= 1

2

(
2

π

)3/42x − mt

xλ3/2
exp

[−(2x − mt)2

4λ2

]
,

where we used|〈m|V (±k)|m′〉|2 = δm,±m′ . From this result one has

(11)〈m|Ω†
λ(xk)Ωλ(xk)|m〉 λ→0≈ 1

πx2

(
1√
2πλ

+ λ

4
√

2π
∂2
x

)
exp

[
− (2x − mt)2

2λ2

]
.

Recalling Eqs. (5), (7), and (1), the POVM writes

(12)Π(dx) ≈ 1

π

1√
2πλ

exp

[
− (2x1 − tJ · n)2

2λ2

]
dx dn.

Notice that

(13)〈m|Π(dx)|m〉 →
{

1
π
δ(2x − mt), if mt �= 0,

1
2π δ(2x), if mt = 0,

where the two different results are due to the fact thatx � 0, so that in the case ofmt = 0 only a half of the Gaussian
must be considered. Notice also that depending on the chosen sign oft , only a definite sign ofm will contribute
for mt �= 0. Therefore, in the limitλ → 0, Eq. (12) becomes

(14)Π(dx) = 1

2π

∑
m,mt�0

(
1− 1

2
δm,0

)
δ

(
x − mt

2

)
|n,m〉〈n,m|dx dn.

Eq. (14) shows that only outcome vectorsx with |x| = mt/2 have non-vanishing probability, whence we can also
easily express the transformation of the spin state due to the measurement

ρ → Idx,dn(ρ)

Tr[Idx,dn(ρ)] ,

(15)

Idx,dn(ρ) = Ω(x)ρΩ†(x) dx dn = 1

2π

∑
m,mt�0

(
1− 1

2
δm,0

)
δ

(
x − mt

2

)
〈n,m|ρ|n,m〉|n,m〉〈n,m|dx dn.

Taking the marginal POVM—i.e., integrating Eq. (14) overx—for j = 1/2 one has

(16)Π ′(dn) = 1

2π
|n,1/2〉〈n,1/2|dn,

which is the coherent-spin POVM for spin-1/2. For largerj � 1/2, instead, we get a “mixed” POVM which is not
the optimal coherent-spin one.
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4. Conclusions

We have presented a first model for a physical realization of the measurement of the spin direction, corres-
ponding to the coherent-spin POVM, which also represents the optimal estimation of spin rotation angles. In
our Arthurs–Kelly model, the spin is coupled with three radiation modes that are homodyne detected after the
interaction. In the limit of highly squeezed radiation the coherent-spin POVM is achieved only for spinj = 1/2.
On the present model we have seen which difficulties we need to face in a quantum measurement of the spin
direction, and we hope to have opened the route for a concrete experimental scheme to achieve this new kind of
quantum measurement.
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