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Using Entanglement Improves the Precision of Quantum Measurements
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We show how entanglement can be used to improve the estimation of an unknown transformation.
Using entanglement is always of benefit in improving either the precision or the stability of the mea-
surement. Examples relevant for applications are illustrated, for either qubits or continuous variables.
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Entanglement is certainly the most distinctive feature
of quantum mechanics. The quantum nonlocality due to
entanglement, which has puzzled generations of theoreti-
cians since the work of Einstein, Podolsky, and Rosen [1],
in the last decade eventually has been harnessed for prac-
tical use in the new quantum information technology [2,3].
Entanglement has become the essential resource for quan-
tum computing, quantum teleportation, and secure cryp-
tographic protocols [3]. Recently, entanglement has been
proved as a valuable resource for improving optical reso-
lution [4], spectroscopy [5], quantum lithography [6], and
has shown to be a crucial ingredient for making the to-
mography of a quantum device [7], with a single input
entangled state playing the role of all possible states at the
input of the device—another manifestation of the quantum
parallelism, the feature of entanglement that is the core of
quantum computing algorithms [8,9].

In this Letter we will show how in general entangle-
ment can be used to improve quantum measurements, for
either precision or stability. The measurement scheme
will be considered in the general framework of quan-
tum estimation theory [10], in which one needs to es-
timate the parameter u of the density operator ru on
the Hilbert space H as the result of a unitary transfor-
mation r ! ru � UurU

y
u —more generally a quantum

operation Qu could be considered, with ru � Qu�r�, cor-
responding to a parameter of any physical (amplifying,
measuring, etc.) device. This situation for known input
state r is very common in practice, e.g., in interferome-
try [11], and more generally whenever the measurement is
indirect, resorting to the detection of a change in an ancil-
lary part of the measuring apparatus. In this scenario we
will consider the use of an entangled input state R in place
of r, with the unknown transformation Uu acting locally
only on one side of the entangled state. In tensor notation,
R ! Ru � Uu ≠ IRU

y
u ≠ I. The situation is depicted in

Fig. 1. As we will see in this Letter, the entangled con-
figuration is better than the conventional one, for either
precision or stability of the measurement. This is due to
the fact that, in some sense, the input entangled state is
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equivalent to many input states in “quantum parallel.” In
the following we will examine different measurement situ-
ations separately, and we will draw general conclusions at
the end.

Covariant measurements.— In a covariant measurement
the parameter u is the element g [ G of a group G of
transformations. This kind of measurement has been thor-
oughly analyzed in Ref. [12].

Let us first illustrate the mechanism of entanglement
on a simple example. We want to discriminate among
the four unitary transformations represented by the Pauli
matrices s0 � I, s1 � sx, s2 � sy , s3 � sz . As
is well known, they form a unitary discrete group [13].
By applying the four transformations to any single-qubit
input state jc� [ C2 we always obtain four linearly
dependent states, which makes the conventional scheme
in Fig. 1 useless for a reliable discrimination. On the
contrary, if we apply the four matrices to the maximally
entangled input state 1

p
2
jI‡ we obtain the four Bell states

sj ≠ I
1
p

2
jI‡ � 1

p
2
jsj‡, which are mutually orthogonal.

Here we use the notation jA‡ �
P
ij Aij ji� jj� � A ≠ jI‡,

which puts vectors jA‡ [ H ≠ H into correspondence
with operators A on H , Aij denoting the matrix elements
of A on the fixed basis �ji�� for H , and I being the

FIG. 1. Measurement schemes considered in the present Letter.
The parameter u of the density operator ru is estimated as
the result of a unitary transformation r ! ru � UurU

y
u (up

figure). In this scenario the use of an entangled input R in place
of r is considered, with the unknown transformation Uu acting
locally on one Hilbert space only (down figure).
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identity operator. This simple example is very instructive:
the discrimination among the four Pauli transformations
sj , which is impossible with a single qubit input state,
becomes possible and exact when applying sj to a
maximally entangled state. The mechanism is clear: using
an entangled state instead of a single qubit doubles the di-
mension of the Hilbert space Hout spanned by the output
states, allowing perfect discrimination of the four sj . This
example can be generalized easily to any dimension d,
when discriminating among the d2 unitary transformations
U�m,n� �

Pd21
k�0 e

2pikm�djk� �k © nj, n and m ranging in
0 �d 2 1�, and © denoting addition modulo d [14]. Now,
using the maximally entangled state 1

p
d
jI‡ at the input

will produce the d2 orthogonal output states 1
p
d
jU�m, n�‡,

which allows perfect discrimination among all U�m, n�,
whereas a nonentangled input jc� [ H would output d2

linearly dependent states in the d-dimensional H . More
generally, let us consider a set of unitary transformations
�Ug�, g [ G that form a (projective) representation of
the group G, i.e., UgUh � v�g,h�Ugh, where v�g,h� is
a suitable phase [15]. For simplicity let us consider the
case of an irreducible representation (the reducible case is
technically more complicated, and needs the knowledge
of all irreducible components on invariant subspaces). For
every operator O on H , from the Schur’s lemma one has
the trace identity

	UgOUy
g 
G � Tr 	O
 , (1)

where 	f�g�
G denotes the group averaging 	f�g�
G �
d
jGj

P
g[G f�g� with suitable normalization, with jGj the

cardinality of G. Equation (1) generalizes to the continu-
ous case for group averaging 	f�g�
G �

R
G dg f�g�, dg

being a (normalized) invariant measure on G. For a gen-
eral input state jE‡ [ H ≠ H , the Hilbert space Hout
spanned by the output states is the support of the op-
erator O � 	jCg‡ †Cgj
G, with Cg � UgE. One has
O � I ≠ Tr1	jE‡ †Ej
 � I ≠ �EyE�T , Tr1 representing
the partial trace over the first Hilbert space, and T de-
noting transposition with respect to the basis �ji�� for H .
Therefore, dim�Hout� � d 3 rank�E�, and since rank�E�
is equal to the Schmidt number of jE‡ [3], we conclude
that an entangled input always increases the dimension of
Hout; i.e., it improves the precision of the measurement.

Since the Schmidt number does not depend on the
actual amount of entanglement of jE‡, a more refined
goodness criterion can be given in terms of the Holevo
bound [3] x � S� 1

d 	jCg‡ †Cgj
G� 2
1
d 	S�jCg‡†Cgj�
G

for the information accessible from the measurement, S
denoting the von Neumann entropy. Equation (1) gives
x � logd 1 S	EyE
; i.e., the bound is increased exactly
of the amount of entanglement S	EyE
 of the input state.

With the measurement problem addressed in a maxi-
mum likelihood strategy, it is easy to see that the optimal
POVM dPg is of the form
270404-2
dPg � dg�Ug ≠ I�P�Uy
g ≠ I� , (2)

with P $ 0 a positive operator on H ≠ H normalized as
Tr1	P
 � I. By covariance, the maximum average likeli-
hood is equal to †EjPjE‡ # d, since normalization limits
the maximum eigenvalue of P below d. The bound is satu-
rated for E � d21�2U, with U unitary, i.e., for maximally
entangled input, and P � jU‡†Uj.

Another way to see the optimality of a maximally
entangled input is to notice that the average overlap
V�E� � 	j†CgjE‡j2
G � Tr 	�EyE�2
 is a Schur convex
function of the reduced density operator EyE. Follow-
ing Ref. [16], this implies that if jA‡ ¡ jB‡ �jA‡ is
“majorized” by jB‡�, then V�A� # V�B�, whence the
minimum averaged overlap between output states comes
from a maximally entangled input, since this is majorized
by any other state. That the optimal estimation strategy to
discriminate among unitaries needs entangled inputs has
also been noticed in Ref. [17].

As an example in infinite dimensions, consider the
problem of estimating the displacement of a harmonic
oscillator in the phase space, i.e., the parameter a [ �
of the transformation r ! ra � D�a�rDy�a�, where
D�a� � exp�aay 2 aa� is the displacement operator for
annihilation and creation operators a and ay, respectively
(in this case G is the Weyl-Heisenberg group). For unen-
tangled r, an estimation of a isotropic on � is equiva-
lent to an optimal joint measurement of position and
momentum, which, as well known, is affected by an un-
avoidable minimum noise of 3 dB [18]. Here the optimal
state (for fixed minimum energy) is the vacuum, and
the corresponding conditional probability of measuring z
given a is p�z ja� � p21 exp	2jz 2 aj2
. Now, con-
sider the case in which the estimation is made with D�a�
acting on the entangled state

jE‡ �
q

1 2 jxj2
X̀
n�0

xnjn� jn� , (3)

with jxj # 1 [the state (3) can be achieved by paramet-
ric down-conversion of vacuum]. Here we can use the
orthonormal resolution of the identity jD�z�‡†D�z�j of
eigenvectors jD�z�‡ of Z � a ≠ I 2 I ≠ ay with eigen-
value z (this is just a heterodyne measurement [19]), now
achieving p�z ja� � �pD2�21 exp	2D22jz 2 aj2
, with
variance D2 � 12jxj

11jxj that, in principle, can be decreased at
will with the state (3) approaching an eigenstate of Z (by
increasing the gain of the down-converter).

Measurement in the presence of noise.—What happens
if the estimation is performed in the presence of noise,
namely the channel before and after the unknown trans-
formation is affected by noise? Here it is instructive to
reconsider the problem of estimating the displacement of
a harmonic oscillator in the phase space in the presence
of Gaussian displacement noise, which maps states as
follows:
270404-2
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r ! Gn�r� �
Z

�

d2g

pn
exp	2jgj2�n
D�g�rDy�g� .

(4)

The variance n of the noise if usually referred to as
“mean thermal photon number.” The case of Gaussian
displacement noise is particularly simple, since one has
the composition law Gn ± Gm � Gn1m, and, moreover
Gn 	D�a�rDy�a�
 � D�a�Gn �r�Dy�a�. Therefore, if
the measurement is made on the entangled state (3),
one can easily derive a Gaussian conditional probability
distribution with variance d2 � D2 1 2nT , where nT is
the total Gaussian displacement noise before and after
the displacement D�a�, and the noise is doubled since it
is supposed equal on the two entangled Hilbert spaces.
On the other hand, in the measurement scheme with
unentangled input (note that the optimal is the vacuum),
one has d2 � 1 1 nT . One concludes that the entangled
input is no longer convenient above one thermal photon
nT � 1 of noise. This is exactly the threshold of noise
above which the entanglement is totally degraded to a
separable state [20], and therefore the quantum capacity
of the noisy channel vanishes [21].

Discrimination between two unitaries.—What about
when one discriminates between only two unitary trans-
formations? It is clear that here using an entangled input
as in Fig. 1 would be of no benefit, since it is useless to
increase the dimensionality of Hout. However, we will
see that in this case a multipartite entanglement would
allow perfect discrimination for a finite number of copies
of the transformation to be determined.

In an optimized strategy [10] the minimum error proba-
bility in the discrimination of the two output states U1jc�
and U2jc� for any (also entangled) input state jc� is

PE �
1
2

	1 2

q
1 2 4p1p2j�cjU

y
2U1jc�j2 
 , (5)

p1 and p2 being the a priori probability of the two trans-
formations. For simplicity, in the following we set p1 �
p2 �

1
2 . Clearly, the optimum input states jc� are those

minimizing the overlap j�cjU
y
2U1jc�j. It is easy to show

that the minimum overlap is given by [22]

min
kck�1

j�cjU
y
2U1jc�j � r�Uy

2U1� , (6)

where r�W� denotes the distance between the origin of
the complex plane and the polygon whose vertices are the
eigenvalues of the unitary operator W . Moreover, opti-
mizing the overlap over entangled jc� gives again Eq. (6)
[23]. From the rule of the minimum overlap (6) we
conclude that the discrimination is perfect if and only if
z � 0 [ K�Uy

2U1�, namely the polygon of the eigenval-
ues of W � U

y
2U1 encircles the origin. Then, it is obvi-

ous that an entangled input as in Fig. 1 would be of no
use, since W and W ≠ I have the same spectrum. How-
ever, the situation changes dramatically if one hasN copies
270404-3
of the unitary transformation U � U1,2 to be determined,
and a N-partite entangled state is available for a measure-
ment scheme as in Fig. 2. Now the spectrum of W≠N

must be considered, and the angular spread D�W � of the
eigenvalues is increased as D�W≠N � � min���ND�W�, 2p���
[D�W� is the angle subtended at the origin by the polygon
of eigenvalues of W ]. There, the discrimination is always
exact for sufficiently many uses N . This result should be
compared to the case of state discrimination. There, for
nonorthogonal states the probability of failure is always
nonvanishing for any N . Here, instead, for nonorthogo-
nal transformations the discrimination among unitaries is
always exact for N sufficiently large. It is clear that the
above arguments could be extended to the case of multiple
testing, whenever the strategy leads to an overlap criterion
(as, for example, in Ref. [24]). That exact discrimination
between unitaries is virtually possible, for a finite number
N of uses has also been noticed in Ref. [25].

Improving the stability of the measurement.— In the
instances in which the optimal discrimination between
transformations is already optimized by an unentangled
input, an entangled state can still be better in achieving
a more stable sensitivity. We have seen that an unen-
tangled input is already optimal in the discrimination of
(one use of) two unitaries. An unentangled input is also
optimal in the covariant measurement for Abelian �, since
the irreducible representations are one dimensional. Con-
sider, for example, the problem of distinguishing among
displacements on a fixed direction of the phase space,
say D�x�, with x [ �. In this case one could use a
squeezed state jx0�s � exp� s2 	�ay�2 2 a2
�D�x0� j0�, with
s . 0, i.e., squeezed in the direction of the “quadrature”
X �

1
2 �ay 1 a�. Then, a conditional Gaussian proba-

bility with variance �DX2� �
1
4e

22s is obtained, which
can be narrowed at will by using ns � sinh2s squeez-
ing photons. However, if the phase of the quadrature is
slightly mismatched, and the quadrature Xf �

1
2 �ayeif 1

ae2if� is measured instead, then the variance becomes

FIG. 2. When testing between two unitaries U � U1,2 it is
possible to achieve perfect discrimination even for nonorthogo-
nal U1 and U2 for sufficiently large number N of copies of the
unitary transformation, if a N-partite entangled state is available
for a measurement scheme as figure (see text).
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�DX2
f� �

1
4 �e2s sin2f 1 e22s cos2f�, and the sensitivity

is exponentially unstable. Using the entangled input in
Eq. (3), instead, gives the same Gaussian noise D2 �
12jxj
11jxj , independently of f, by using n � 2jxj2��1 2 jxj2�
down-converted photons.

Further generalizations and conclusions.—Up to now
we have focused our analysis only on discrimination
among unitaries; however, we could have considered
more generally nonunitary quantum operations, to see
that entanglement is still a useful resource for improving
the measurement. For the case of two operations Q1
and Q2 the distinguishability is related to the completely
bounded (cb) norm [21] kp1Q1 2 p2Q2kcb which is the
supremum over all possible entangled input states of the
trace distance between the output states. Since the cb
norm is equivalent to the usual trace norm for completely
positive maps, it follows that an unentangled state already
achieves optimality in the special case that the difference
p1Q1 2 p2Q2 is completely positive.

In conclusion, we have seen that entanglement is a
useful resource for upgrading the quantum measurements
which are based on the estimation of a quantum transfor-
mation. It is always of benefit, in improving either preci-
sion or stability. In many cases the measurement precision
becomes in principle unbounded, even when the conven-
tional measurement is noise limited. The upgrading is ef-
fective in the presence of noise, below the threshold of total
entanglement degradation.
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