‘H Available online at www.sciencedirect.com

SCIENCE dmnec-r@
?3% C PHYSICS LETTERS A
ELSEVIER Physics Letters A 312 (2003) 315-318

www.elsevier.com/locate/pla
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Abstract

We explicitly construct a large class of unitary transformations that allow to perform the ideal estimation of the phase-shift
on a single-mode radiation field. The ideal phase distribution is obtained by heterodyne detection on two radiation modes after
the interaction.
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The quantum estimation of an unknown phase [7] for this kind of measurement. However in the
shift—the so-called quantum phase measurement—issingle-mode case, no feasible scheme that can pro-
the essential problem of high sensitive interferometry, vide the optimal phase measurement has been devised
and has received much attention in quantum optics [1]. yet.

For a single-mode electromagnetic field, the measure- The most general and concrete approach to the
ment cannot be achieved exactly, even in principle, problem of the phase measurementis quantum estima-
due to the lack of a unique self-adjoint operator [2]. tion theory [8], a framework that has become popular
In fact, the absence of a proper self-adjoint operator only in the last ten years in the field of quantum infor-
is mainly due to the semi-boundedness of the spec- mation. Quantum estimation theory provides a more
trum of the number operator [3,4], which is canoni- general description of quantum statistics in terms of
cally conjugated to the phase in the sense of a Fourier- POVMs (positive operator-valued measures) and gives
transform pair [5]. the theoretical definition of an optimized phase mea-

This observation opened the route for an exact surement. The most powerful method for deriving the
phase measurement in terms of two-mode fields, optimal phase measurement was given by Holevo [9]
where a phase-difference operator becomes conju-in the covariant case. In this way the optimal POVM
gated to an unbounded number-difference operator for phase estimation has been derived for a single-
[6]. In fact, a concrete experimental setup using un- mode field. More generally, the problem of estimat-
conventional heterodyne detection has been suggestedng the phase shift has been addressed in Ref. [10] for

any degenerate shift operator with discrete spectrum,
either bounded, bounded from below, or unbounded,
mspondmg author. extending the Holevo method for the covariant esti-
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As already stated, quantum estimation theory pro-
vides the optimal POVM for the phase measure-
ment. This writes in terms of projectors on Susskind—
Glogower states [11]

ol
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where [¢'?) = > ¢ |n). Notice that the states
le’¢) are not normalizable, neither orthogonal, how-
ever they provide a resolution of the identity, and thus
guarantee the completeness of the POVM, namely

du(p) =

2

/du(¢)=1.

0
For a system in state, the POVM in Eq. (1) gives the

ideal phase distributiop(¢) according to Born’s rule

d . .
=Tr[du(p)p] = %(6"%!6’“’). ®)

In this Letter we will explicitly construct some unitary
transformations that allows to perform the ideal phase
measurement described by the POVM in Eq. (1). First,
we will introduce an isometry7 which enlarges the
Hilbert space of the system (s&y, for modea) to
the tensor produck, ® H; for two modesz andb.
Then, we will prove that the exact measurement of the
complex photocurrenZ = a — b' provides through
its marginal distribution the ideal probability density
p(p) of Eq. (3). Finally, we will construct a large
class of unitary operators cH, ® H, ® H., where
‘H. denotes the Hilbert space of an ancillary arbitrary
system, such that the isomet¥yis realized with unit
probability.

We start by introducing the eigenstates of the
heterodyne photocurredit=a — b [7,12,13]

Z’D(z)))gb =z|D(z)))ab, 4)

where D(z) = exp(zaT — z*a) denotes the displace-
ment operator. Here and in the following we use the
notation [14] for bipartite pure states 6t), ® Hy

2

p(p)

1ANap="Y_ Aumln)a ® m)p

n,m=0

= AR Ip| 1) gy = 1a ® AT|1)) . ®)

whereA™ denotes the transposed operator with respect
to some pre-chosen orthonormal basis. The states
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|D(z)))ap are orthogonal in Dirac sense over the
complex plane, namely

A(P@[DB))),,

=8P (a — B)

=nd(Rea — ReB)s(Ima — Im B). (6)
They also provides a basis fbf, ® H,, as follows

d’z
| S0 usllD@] = e 1 @)
C
The measurement of the complex photocurr&nt
can be performed through unconventional heterodyne
detection [13] with both the signal and the image-
bandb non-vacuum (in usual heterodyne detection the
image-band mode is in the vacuum, thus providing the
well-known coherent-state POVM). The measurement
of Z is also equivalent to two separate homodyne
measurements on mod%(b + a). In fact, consider

the 50’50 beam splitter operataR = exp{%(cﬁb —
ab™)] that realizes the unitary transformation

()-50 0

V2 \1
Upon denoting with|x), and|y), the eigenstates of
the quadratureX, = (a + a")/v/2 andy, = (ib" —

ib)/~/2, one has the following identity [15]

R(IX)aa(x| ® 1y)65(y)RT
= [DG+ i)y apl(D +i0)]- ©)

Notice also that this kind of measurement is performed
in the teleportation protocol for continuous variable of
Braunstein—Kimble scheme [16,17].

We can now write the isometry such that the
transformation

T(p)=VpV", (10)

maps the state of the systeme H, to a two-mode
state inH, ® Hy. The operatol has the form
V=

d?a f(jal)|D(@)),, (e 9.

\/_/ aba (11)
By choosmg f(®) as an arbitrary function satisfying
the condition

+00

fdtt|f(t)|2=—

0

(12)
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it follows that V is an isometry, namely 'V = 1,.

It is easy to check that the transformation (10) has
the following covariance symmetry
T(eiGaTapefiQaTa)

. 1 cn1t . + ot

=e’9“ a ®e—19b bT(p)e—lQa a ®et€b b‘ (13)

We can now evaluate the probability density of getting
outcomez € C through the measurement of the pho-
tocurrentZ. One has

1 o o~
p(z) = - Tr[V,oVT|D(z)))ab ab((D(Z) ]

1 4 .
3|71 (e ole?),.

@ =argz.

(14)

From condition in Eq. (12), it follows that the marginal
distribution on the statistical variable= argz corre-
sponds to the ideal distribution of the phase for any
input statep.

In the following we explicitly construct some uni-
tary realizations of the map in Eq. (10). We start by
defining the operators ig(H, ® Hp)

V=V(L®xl), V=LV (15)

where |x) is an arbitrary normalized state K,
and the tensor notatiofy ® (x| represents a linear
operator fromH, ® H, to H, (the bra,(x| can
be regarded as a linear functional frory, to C).
Similarly, I, ® |x)» represents an operator frohd,
to H, ® H,. Notice that bothV VT and VTV are
projectors, namely

vvivvi=vvT, vivvty =viy, (16)

Upon introducing an arbitrary Hilbert spaéé. (also
finite-dimensional), we construct the following opera-
tor

U=veww —view'w+ (1 -viv)ew!
+(1-vvhew, an

where W is a linear operator inH.. Under the
conditions

wi=(wh?=0,  wwi+ww=r, @18

one can easily check tha¥ W and WTw are pro-
jectors orthogonal each other, atidis unitary. Con-
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unitaryU and traced over the ancillary spakg. One
has
Tr[U(p @0 @ w)U]
=Vip@a)VI TI[wwiy]
+Vpa)(I - VvV TWik]
+Vip®@o)V TI[Wiwu]
—Vip®a) (1 -VIV)THWu
—(I=V'V) @)V TI[W ]
+(I=VIV)pea) (1 -VIV)TI{Wwwy]
+ (I =VvV)e@a)VITrIWpu]
+({I=vVNpea) (1 - vV TIIW W]
(19)
The map in Eq. (10) can then be achieved by the
unitary transformatiof/, by taking

o =1X)bnixl, (20)

andu such that

Twwiu]=1,  Trwul=Tr[Wwu]=0. (21)

We summarize the conditions on the measurement
scheme:f (1), |x), W, n in Egs. (11), (15), (17), (19)
are arbitrary, provided that conditions (12), (18), (21)
are satisfied.

As an example, consider the case in which the space
‘H. pertains to a radiation mode One can take

o0
W=3"12n)cc(2n+1],

M= |O)cc<0|» (22)
n=0
thus obtaining
T(P)=Tr[U(p® 1x)b5(x1 ®10)c0)UT].  (23)

We notice that the “pseudo-spin” operatd¥ in
Eq. (22) has been introduced also in Refs. [18,19]
in the context of Bell’s inequalities for continuous
variable.

The result in Eq. (23) is similarly obtained for a
qubit system irH,, with W = |0). (1.

In conclusion, a large class of unitary realizations
of the ideal phase measurement of a single-mode
radiation field has been presented. These unitary

sider now the transformation of the system prepared in evolutions act on the Hilbert spadé, ® H, ® H,,

a stateo ® o ® u which has been evolved through the

where H, and H; are referred to radiation modes,
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and H,. pertains to an arbitrary system. By suitably
preparing the state of the systemsHfp andH,, the
ideal phase distribution for the input statee H,

is obtained through heterodyne detection performed (8]

after the interaction on modesandb.
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