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Abstract. – We address the problem of achieving a universal measuring apparatus that
allows to estimate the expectation value of any arbitrary operator by changing only the data
processing of the outcomes. The “universal detector” performs a joint measurement on the
system and on a suitably prepared ancilla. We characterize such universal detectors, and show
how they can be obtained either via Bell measurements or via local measurements and classical
communication between system and ancilla.

Quantum technology is nowadays turning from the stage of experimental setup design to
that of quantum system engineering. The aim is to produce tools for communication, infor-
mation processing, and storage, which rely on the principles of quantum mechanics, with the
chance of achieving much higher speeds and capacities than those of classical devices. In this
scenario, a new kind of quantum lab can be devised, in which universality and programmability
are crucial features, with different tasks achieved by a basic set of devices.

A “universal detector” would allow the estimation of ensemble averages of arbitrary op-
erators using a single measuring apparatus, and by changing only the data processing of the
outcomes, according to which ensemble average is estimated. Such a device would be very
useful for many kinds of quantum information processing tasks, such as in quantum com-
putation [1, 2], teleportation [3, 4], entanglement detection [5], and entanglement distillation
protocols [6]. In some way the universal detector is similar to a quantum tomographic appara-
tus [7]: however, the latter would typically require a quorum of observables —corresponding
to a set of devices or a single tunable device— whereas the universal detector would just
measure a fixed single observable on an extended Hilbert space including an ancilla.

In this letter, we introduce the general concept of universal detector, and characterize uni-
versal detectors via a necessary and sufficient condition written in terms of spanning sets of
operators. We then show how such universal detectors can be achieved via Bell measurements
—i.e. measurement that are described by projectors on maximally entangled states. The use-
fulness of Bell measurements is not surprising. In fact, quantum teleportation, dense coding,
entanglement swapping [3, 4], high-sensitivity measurements [8], tomography of quantum op-
erations [9], some types of quantum cryptography [10], and many other applications [11–13]
require preparation of entangled states and/or Bell measurements. However, entanglement
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is not an essential ingredient to build a universal detector, since, as we will show in the fol-
lowing, the universal observables of ref. [14] also enter the present framework as a type of
universal detector described by a POVM that is based on local measurements and classical
communication between system and ancilla.

Let us start by defining the concept of universal detector, or, more abstractly, of universal
POVM. We are considering a quantum system in a Hilbert space H, coupled to an ancilla
with Hilbert space K. A POVM {Πi}, Πi ≥ 0 and

∑
i Πi = IH ⊗ IK on the Hilbert space

H ⊗ K is universal for the system iff there exists a state of the ancilla ν such that for any
operator O one has

Tr[ρO] =
∑

i

fi(ν,O)Tr[(ρ⊗ ν)Πi], (1)

where fi(ν,O) is a suitable function of the outcome i and the operator O, which we will refer
to as the data processing. The detector will be named universal when it is described by a
universal POVM. In order to give a necessary and sufficient condition for universality, we need
to introduce some notation, and the concept of spanning set of operators. We will use the
following symbols for bipartite pure states in H⊗K:

|A〉〉 =
dimH∑
n=1

dimK∑
m=1

Anm|n〉 ⊗ |m〉, (2)

where |n〉 and |m〉 are fixed orthonormal bases for H and K, respectively. Equation (2) exploits
the isomorphism [15] between the Hilbert space of the Hilbert-Schmidt operators A, B from
K to H, with scalar product 〈A,B〉 = Tr[A†B], and the Hilbert space of bipartite vectors
|A〉〉, |B〉〉 ∈ H ⊗K, with 〈〈A | B〉〉 ≡ 〈A,B〉. It is easy to show the following identities [15]:

A ⊗ B|C〉〉 = |ACBτ 〉〉,
TrK[|A〉〉〈〈B |] = AB†,
TrH[|A〉〉〈〈B |] = AτB∗, (3)

where τ and ∗ denote transposition and complex conjugation with respect to the given bases,
respectively.

A spanning set for operators A from K to H [16] is a set {Ξi} that, along with a dual set
{Θi}, provides expansions for A in the form

A =
∑

i

Tr
[
Θ†

iA
]
Ξi. (4)

The completeness relation of the spanning set and its dual reads∑
i

〈ψ|Ξi|φ〉〈ϕ|Θ†
i |η〉 = 〈ψ | η〉〈ϕ | φ〉, (5)

for any φ, ϕ ∈ H and ψ, η ∈ K. For continuous sets, the sums in eqs. (4) and (5) are replaced
by integrals.

Let us now consider a universal POVM on H⊗K. The elements {Πi} can be diagonalized
as follows:

Πi =
ri∑

j=1

∣∣Ψ(i)
j

〉〉〈〈
Ψ(i)

j

∣∣, (6)
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where the vectors |Ψ(i)
j 〉〉 have norm equal to the j-th eigenvalue of Πi, and ri is the rank of

Πi. From the normalization condition
∑

i Πi = IH ⊗ IK, it follows that the set of operators
{Ψ(i)

j } from K to H must be a spanning set itself.
The characterization of universal POVMs is then given by the condition that there exists

a density operator ν for the ancilla such that the following operators:

Ξi[ν] ≡
ri∑

j=1

Ψ(i)
j ντΨ(i)†

j (7)

are a spanning set for operators on H. In fact, using eq. (6), eq. (1) rewrites

Tr[ρO] =
∑

i

fi(ν,O)Tr

[
ρ

ri∑
j=1

Ψ(i)
j ντΨ(i)†

j

]
, (8)

and this is true independently of ρ iff

O =
∑

i

fi(ν,O)Ξi[ν]. (9)

From linearity one has
fi(ν,O) = Tr

[
Θ†

i [ν]O
]
, (10)

where Θi[ν] is a dual set of Ξi[ν]. Hence, after finding a dual set for Ξi[ν], the data processing
function is easily evaluated via eq. (10).

We will now focus attention on Bell POVMs on H⊗H. In the notation of eq. (2), maximally
entangled vectors correspond to unitary operators [15], and thus a Bell POVM has elements
of the form

Πi =
αi

d
|Ui〉〉〈〈Ui |, (11)

where d is the dimension of H, αi are suitable positive constants and Ui are unitaries. When
the POVM is orthogonal, one has αi = 1 and Tr[U†

i Uj ] = dδij . Particular cases of Bell POVMs
are those in which Ui are a unitary irreducible representation (UIR) of some group G. As an
example, consider a projective UIR of an Abelian group, which therefore satisfies the relation

UαUβU†
α = eic(α,β)Uβ . (12)

In this case, the Bell POVM is orthogonal, with number of elements equal to the cardinality
of the group d2. One can show that a suitable ν always exists such that the set of Ξα[ν] =
1
dUαντU†

α is a spanning set. In fact, for any ν such that Tr[U†
αν

τ ] (= 0 for all α, using the
identity

d2∑
α=1

eic(α,γ)eic(β,α) = d2δγβ , (13)

one has

O =
1
d

d2∑
β=1

Tr
[
U†

βO
]
Uβ =

1
d3

d2∑
β,α,γ=1

Tr
[
U†

βO
]

Tr
[
U†

βν
τ
]Tr

[
U†

γν
τ
]
Uγeic(α,γ)eic(β,α)

=
1
d2

d2∑
α,β=1

Tr
[
U†

βO
]

Tr
[
U†

βν
τ
]eic(β,α)Uαν

τU†
α. (14)
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The dual set is then given by

Θα[ν] =
1
d

d2∑
β=1

Uβ

Tr
[
Uβν∗]e−ic(β,α), (15)

and it is unique since the unitaries Uβ are linearly independent. By identifying U1 ≡ I, a
possible choice of the ancilla state is

ν =
1
d
I +

1
d(d2 − 1)

∑
α>1

Uα. (16)

For an explicit example, consider the group Zd ×Zd and its d-dimensional projective UIR,

Um,n =
d−1∑
k=0

e
2πi

d km|k〉〈k ⊕ n|, m, n ∈ [0, d − 1], (17)

which gives the Bell measurement used in the teleportation schemes of ref. [3]. The composi-
tion and orthogonality relations of the set are given by

Um,nUp,qU
†
m,n = e

2πi
d (np−mq)Up,q, (18)

Tr
[
U†

p,qUm,n

]
= dδmpδnq. (19)

Using eqs. (10), (15), (18) and (19), one easily evaluates the data processing function for any
operator O in the form

fm,n(ν,O) = e
2πi

d (mq−np)
∑
p,q

Tr
[
U†

p,qO
]

Tr
[
U†

p,qντ
] . (20)

The ancilla can also be prepared in the following pure state:

|ψ〉 =

√
1 − |α|2
1 − |α|2d

d−1∑
n=0

αn|n〉, (21)

for any α with 0 < |α| < 1.
As an example for the infinite-dimensional case, consider the displacement operators for a

bosonic mode a, namely D(α) = exp[αa†−α∗a], with α ∈ C. Such operators are the elements
of a projective UIR of the Weyl-Heisenberg group, and generate the Bell measurement corre-
sponding to the continuous variables teleportation schemes of refs. [4, 17]. The composition
and orthogonality relations write

D(α)D(β)D†(α) = e2i Im(αβ∗)D(β), (22)
Tr

[
D†(α)D(β)

]
= πδ(2)(α− β), (23)

where δ(2)(α) ≡ (1/π2)
∫

C
d2γeαγ∗−α∗γ denotes the Dirac-delta on the complex plane. The

processing function is given by

fα(ν,O) =
∫

C

d2β

π
eα∗β−αβ∗ Tr

[
D†(β)O

]
Tr

[
D†(β)ντ

] . (24)
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The Dirac vectors |D(z)〉〉 are the eigenvectors with eigenvalue z of the “current” Z = a −
b†, which in the case of e.m. radiation is the Bell observable of heterodyne [18], eight-port
homodyne [19, 20] or six-port homodyne detectors [21], whereas for atoms coupled with two
light fields the observable is achieved by measuring the corresponding phase-shifts [22]. The
present infinite-dimensional case, however, needs care in checking convergence of the integral
in eq. (24). For example, if we take the vacuum state ν = |0〉〈0|, the universal measurement
will be the phase-space averaging with the so-called Q-function Q(z) = 1

π 〈z|ρ|z〉 (|z〉 coherent
state), and we know that this gives expectations only for operators admitting anti-normal
ordered field expansion [23]. In particular, the matrix elements of the density operator cannot
be recovered in this way [7]. Therefore, in infinite dimensions the universality can be limited
by convergence.

There are universal Bell POVMs also from non-Abelian groups. For example, the SU(2)
group corresponds to a non-orthogonal POVM [17]. Consider the j-dimensional UIR of
the SU(2) group [24], parameterized as U(ψ,-n) = exp[iψ -J · -n], where ψ ∈ [0, 2π), -n =
(sin θ cosϕ, sin θ sinϕ, cos θ) is a unit vector on a sphere S2, and Jα are customary angular
momentum operators. The projectors on maximally entangled states

Π(ψ,-n) = |U(ψ,-n)〉〉〈〈U(ψ,-n)| (25)

provide the resolution of the identity [17]

2j + 1
4π2

∫ 2π

0
dψ sin2 ψ

2

∫
S2

d-nΠ(ψ,-n) = IH ⊗ IH. (26)

Notice, however, that the states |U(ψ,-n)〉〉 are not orthogonal, namely the set is overcomplete
for H ⊗ H. The universality of this POVM can be proved by invoking the fact that the
projectors on spin coherent states |ψ,ϕ;m〉 are also an operator spanning set. In fact, spin
coherent states are obtained by applying the unitary operators

D(ψ,ϕ) = ei ψ
2 (J+e−iϕ+J−eiϕ) (27)

on a fixed eigenstate |m〉 of Jz, namely |ψ,ϕ;m〉 .= D(ψ,ϕ)|m〉. Notice that the operators in
eq. (27) do not form a group, nevertheless one has the completeness relation

2j + 1
4π

∫ 2π

0
dψ

∫ π

0
dϕ sin(ϕ)|ψ,ϕ;m〉〈ψ,ϕ;m| = IH, (28)

and the P -representation for any operator O,

O =
2j + 1

4π

∫ 2π

0
dψ

∫ π

0
dϕ sin(ϕ)PO(ψ,ϕ)|ψ,ϕ;m〉〈ψ,ϕ;m|. (29)

Explicit constructions for the function PO(ψ,ϕ) can be found in ref. [24]. The above expan-
sion is similar to the P -function representation of quantum optics; however, here the function
PO(ψ,ϕ) is always well defined, due to the finite dimensionality of the Hilbert space. The uni-
versality of the Bell POVM in eq. (25) is now proved by showing that there exists a state ν
such that U(ψ,-n)ντU†(ψ,-n) is a spanning set. In fact, using the following SU(2) change of
parameterization:

U
(
ψ,-n

)
= D

(
ψ′, ϕ′)e2iθ′Jz , (30)

according to eq. (29), for any ντ = |m〉〈m|, the operators

U
(
ψ,-n

)
ντU†(ψ,-n

)
= D

(
ψ′, ϕ′)ντD†(ψ′, ϕ′) (31)
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make a spanning set [25].
Another interesting example is represented by the group SU(d). In this case, the universal-

ity of the corresponding Bell POVM is proved by constructing the dual set of Ξα[ν] = UαντU†
α.

From eq. (5), one can check that a dual set for Ξα[ν], for any state ν on H, is given by

Θα[ν] = UαξU
†
α, (32)

for arbitrary ξ with Tr[ξ] = 1 and Tr[ντξ†] = d. For example, for pure ντ = |φ〉〈φ|, one
can take

ξ =
1

1 − F

[
(d − F )|φ〉〈φ| − (d − 1)|ψ〉〈ψ|], (33)

with any state |ψ〉 with F ≡ |〈ψ | φ〉|2 < 1. The corresponding data processing function is

fα(|φ〉〈φ|, O) =
1

1 − F

[
(d − F )〈φ|U†

αOUα|φ〉 − (d − 1)〈ψ|U†
αOUα|ψ〉

]
. (34)

All previous examples presented universal POVMs which are Bell measurements. However,
by enlarging the ancillary Hilbert space, one can obtain separable POVMs that are universal.
The following example was first introduced in ref. [14]. Let us consider a spanning set {C(l), l =
1, 2, . . . , L}, for operators on H such that all C(l) are normal, namely they have orthogonal
eigenvectors |ck(l)〉, and

C(l) =
∑

k

ck(l)|ck(l)〉〈ck(l)|. (35)

Notice that necessarily one has L ≥ (dim(H))2. By taking an ancillary Hilbert space K, with
dim(K) = L, and an orthonormal basis {|l〉}, one can write the following orthogonal POVM
for H⊗K:

Πk,l = |ck(l)〉〈ck(l)| ⊗ |l〉〈l|, (36)

which can be achieved by local measurement and classical communication between system and
ancilla. The universality of Πk,l easily follows by using eq. (1) with the processing function

fk,l(ν,O) =
Tr

[
C†(l)0

]
〈l|ν|l〉 ck(l), (37)

with the condition 〈l|ν|l〉 (= 0 for all l.
The form of the above separable universal POVMs opens some questions on the general

structure of universal POVMs. For example, it is possible that also universal Bell POVMs
could be constructed using general unitary spanning sets that are not a group representation,
and the role of such symmetry is probably not essential. Also, it is likely that when the ancilla
space has the same dimension of the system, then the universal POVM must be Bell. Moreover,
a general classification of universal POVMs along with the pertaining ancilla states and data
processing functions is needed for performance optimization. Finally, the possibility of weakly
universal POVMs, in which the ancilla state depends on the operator to be estimated, sets a
link with the related problem of “programmable” detectors [26].
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