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Even though the time reversal is unphysical !it corresponds to the complex conjugation of the density
matrix", for some restricted set of states it can be achieved unitarily, typically when there is a common
dephasing in a n-level system. However, in the presence of multiple phases !i.e., a different dephasing for each
element of an orthogonal basis occurs" the time reversal is no longer physically possible. In this paper we
derive the channel which optimally approaches in fidelity the time reversal of multiphase equatorial states in
arbitrary !finite" dimension. We show that, in contrast to the customary case of the universal-NOT on qubits !or
the universal conjugation in arbitrary dimension", the optimal phase covariant time reversal for equatorial states
is a nonclassical channel, which cannot be achieved via a measurement-and-preparation procedure. Unitary
realizations of the optimal time reversal channel are given with minimal ancillary dimension, exploiting the
simplex structure of the optimal maps.
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I. INTRODUCTION

Time reversal is not a physically achievable transforma-
tion on arbitrary quantum states, since it corresponds to a
positive, but not completely positive map #1$. However, if
restricted to special sets of states, time reversal can be easily
achieved by a unitary transformation, e.g., when generating
NMR spin echoes by turning over the fixed magnetic field
along the rotation axis, with all the spins rotating in the equa-
torial plane. For a general n-level system, this is possible
only when the levels are equally spaced, corresponding to a
common dephasing. However, more generally, when the lev-
els are not equally spaced, we have different dephasing for
each level, and in the presence of multiple phases the time
reversal is no longer physically possible.

The ideal time reversal of a generic state corresponds to
the complex conjugation !or, equivalently, transposition" of
the corresponding density matrix. Such transformation has
also recently attracted much interest in relation to the prob-
lem of entanglement, in regard to the so-called PPT !positive
partial transpose" criterion #2,3$. Since complex conjugation
cannot be achieved unitarily, one can try to approximate the
transformation with a physical channel, optimizing the fidel-
ity of the output state with the complex-conjugated input.
For the set of all pure states the resulting optimal channel is
“classical” #4,5$, in the sense that it can be achieved by state
estimation followed by state preparation. In this paper we
show that for multiphase equatorial states the optimal phase
covariant time reversal for equatorial states is a nonclassical
channel, namely it cannot be achieved via the measurement-
and-preparation procedure. We will see that the optimal
channels form a simplex !i.e., a convex set which is gener-
ated by convex combination of a finite set of extremal points,
e.g., a tetrahedron". Such a structure simplifies the search for

unitary realizations of the channels, which will be derived in
the following for minimal ancillary dimension.

The paper is organized as follows. In Sec. II we introduce
the notation, and derive the optimal multiphase conjugation
maps and the corresponding fidelity. In Sec. III we compare
the present optimal phase-covariant maps with the univer-
sally covariant ones, and discuss their relation with optimal
state estimation and phase estimation. In Sec. IV we analyze
the simplex structure of the set of optimal multiphase conju-
gation maps, and explicitly construct their unitary realiza-
tions with minimal ancilla dimension. Section V closes the
paper with some concluding remarks.

II. OPTIMAL MULTIPHASE CONJUGATION MAPS

In the following we will restrict attention to equatorial
states of a d-dimensional quantum system, defined as

%"!&# j'"( =
1
)d

!%0( + ei#1%1( + ei#2%2( + ¯ + ei#d−1%d − 1(" ,

!1"

expanded with respect to the fixed orthonormal basis

B ! &%0(, %1(, . . . , %d − 1(' !2"

of the Hilbert space H of the quantum system. We consider
transformations that treat all input states !1" in the same way,
namely that are covariant under the group U!1"$!d−1" of ro-
tations of d−1 independent phases &# j'. The state !1" can be
equivalently written as

%"!&# j'"( = U!&# j'"%"0( , !3"

where

%"0( = d−1/2*
i=0

d−1

%i( !4"

is a fixed real state and
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U!&# j'" = %0(+0% + *
j=1

d−1

ei#j%j(+j% !5"

is the generic element of U!1"$!d−1".
We now derive the channel—e.g., completely positive

trace-preserving map—T which optimally approximates the
!antilinear" multiphase conjugation on equatorial states,
namely

%"!&# j'"( =
1
)d

!%0( + ei#1%1( + ei#2%2( + ¯ " ! %"*!&# j'"(

=
1
)d

!%0( + e−i#1%1( + e−i#2%2( + ¯ " . !6"

The map T is covariant under the multiphase U!1"$!d−1"

group, namely

T„U!&# j'"%U†!&# j'"… = U*!&# j'"T!%"UT!&# j'" . !7"

In the above equation O* !OT" denotes the complex conjuga-
tion !transposition" of the operator O with respect to the
orthonormal basis !2" kept as real. Among all completely
positive trace-preserving !CPT" maps satisfying the covari-
ance condition !7", we single out those maps which maxi-
mize the fidelity between the output state and the ideally
transformed state in Eq. !6",

F#%"*!&# j'"(,T„%"!&# j'"(+"!&# j'"%…$

= Tr#%"*!&# j'"(+"*!&# j'"%T„%"!&# j'"(+"!&# j'"%…$ . !8"

Following Ref. #6$, we solve the optimization problem
under the covariance condition !7", using the positive opera-
tor R on H " H defined as

R = !T " I"%1((++1% , !9"

where I is the identity channel, and %1((=*i=0
d−1%i(%i( is the

maximally entangled vector on H " H relative to the ortho-
normal basis B in Eq. !2". The correspondence T↔R is one
to one and can be inverted as

T!%" = TrH2
#!1 " %T"R$ . !10"

In terms of the operator R the trace-preservation condition
for T reads

TrH1
#R$ = 1 !11"

and the covariance property of the map !7" becomes the in-
variance for R,

#R,U*!&# j'""2$ = 0. !12"

This, in turn, via the Schur lemma implies the following
block form for R,

R = #
&:equiv. classes

R&. !13"

The index & runs over the equivalence classes of irreducible
one-dimensional representations of U!&# j'""2 !without loss
of generality we suppressed the complex conjugation". The
equivalence classes with the respective characters are listed
in Table I.

Noticing that %"0(+"0%= %"0(+"0%*, and using Eqs. !3", !10",
and !12", we can rewrite the fidelity in Eq. !8" as

F = Tr#%"0(+"0%"2R$ . !14"

From Eq. !4", one has %"0(+"0%"2=d−2*i,j,k,l%i(+j% " %k(+l%, and
the fidelity !14" is equal to F=d−2*&*i,j,k,lrjl,ik

!&" , where rjl,ik
!&"

= +jl%R&%ik(. As argued in Refs. #7,8$, the maximum F is then
obtained when the off-diagonal terms of the operator R are
positive and as large as possible, namely when the blocks R&
are rank-one #9$, or in equations

R =
1
N,*

i
ci%ii(+ii% + *

i'j
cij!&ij%ij( + (ij%ji("!&ij

* +ij% + (ij
* +ji%"- ,

!15"

where N= !*ici+*i'jcij" /d is a normalization constant,
%&ij%2+ %(ij%2=1, and ci)0, cij )0, ∀i , j. The fidelity then
takes the form

F = Tr#%"0(+"0%"2R$

=
1
d2

d

*
i

ci + *
i'j

cij

$,*
i

ci + *
i'j

cij#%&ij%2 + %(ij%2 + 2 Re!&ij(ij
* "$-

=
1
d

1

*
i

ci + *
i'j

cij
,*

i
ci + *

i'j
cij#1 + 2 Re!&ij(ij

* "$-

=
1
d

+ 2

*
i'j

cij Re!&ij(ij
* "

d.*
i

ci + *
i'j

cij/ . !16"

Now, the maximum of Re!&ij(ij
* " is achieved when &ij =(ij,

implying %&ij%2=1/2 for all i , j. Therefore we choose &ij
=2−1/2. The fidelity becomes

TABLE I. Equivalence classes and respective characters of irre-
ducible one-dimensional representations of U!&# j'""2.

Equivalence classes Characters

%00( 1
%11( e2i#1

] ]
%ii( e2i#i

] ]
%01(, %10( ei#1

] ]
%ij( , %ji(, i! j ei!#i+# j", i! j

] ]
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F =
1
d

+

*
i'j

cij

d.*
i

ci + *
i'j

cij/ . !17"

In order to maximize F we put ci=0 for all i. The optimal
fidelity takes the following simple form:

F =
2
d

. !18"

Then, we impose the trace-preservation condition, obtaining

Tr1#R$ =
d

2*
i'j

cij
*
i'j

cij!%i(+i% + %j(+j%" ! *
i'j

bij!%i(+i% + %j(+j%"

0 1 , !19"

where

bij = d
cij

2*
i'j

cij

. !20"

Since the projector %0(+0%, for example, appears in the sum
!19" multiplied by *i=1

d−1bi0, the coefficients are constrained as
follows:

*
i=1

d−1

bi0 = 1, !21"

and, similarly, for the %j(+j%, element one has

*
i=0

j−1

bji + *
i=j+1

d−1

bij = 1. !22"

Rearranging the positive coefficients &bij'i'j into a square
matrix array, they define the lower-trianguar section of a
square matrix. Such a matrix can be uniquely completed to a
null-diagonal symmetric bistochastic matrix, that is, a sym-
metric null-diagonal matrix with non-negative entries, such
that all its rows’ and columns’ entries sum up to 1, namely all
its rows and columns are probability distributions.

Up to now the operator R is simplified as follows:

R = *
i'j

bij!%ij( + %ji("!+ij% + +ji%" , !23"

where the coefficients bij’s, uniquely defining a map T
achieving the optimal fidelity 2 /d, are the entries of a null-
diagonal symmetric bistochastic matrix. From Eq. !23" and
the reconstruction formula !10", an optimal phase covariant
transposition map can then be easily expressed in the Kraus
form as follows:

T!%" = *
i'j

bij!%i(+j% + %j(+i%"%!%i(+j% + %j(+i%" . !24"

Notice that the constraint !22" over &bij' is indeed very
strong: for qubits and qutrits it suffices to completely and
univocally determine the map. In the case of qubits the only
null-diagonal symmetric bistochastic matrix is

&bij' = .0 1

1 0
/ , !25"

and the optimal transposition map is the unitary transforma-
tion

T2!%" = *x%*x 0 %*, !26"

which clearly achieves F=1. For d=3 there is again a unique
choice for a null-diagonal symmetric bistochastic matrix,
which is given by

&bij' = 1 0 1/2 1/2

1/2 0 1/2

1/2 1/2 0
2 . !27"

For d)4 there exist many optimal maps. For example, for
d=4 we can parametrize the family of maps by varying two
positive parameters p1 and p2 such that 0+ p1+ p2= p12+1:

&bij' =1
0 p1 p2 1 − p12

p1 0 1 − p12 p2

p2 1 − p12 0 p1

1 − p12 p2 p1 0
2 . !28"

III. UNIVERSAL TRANSPOSITION AND MULTIPHASE
CONJUGATION

In Refs. #4,5$ it was shown that the fidelity of the optimal
universal transposition map is equal to the fidelity of the
optimal universal pure state estimation #10,11$, that for a
single input copy is given by

F =
2

d + 1
, !29"

which is always lower than the fidelity of optimal phase
covariant transposition !18", as expected. The equivalence
between transposition and state estimation means that an op-
timal universal transposition can be achieved by optimally
estimating the input state and then preparing the transposed
state. In this sense the optimal universal transposition is a
“classical” map.

In contrast to the universal case, the phase covariant trans-
position map cannot be achieved by phase estimation-and-
preparation. Indeed, the fidelity of optimal multiphase esti-
mation for a single input copy is given by #12$

F =
2d − 1

d2 , !30"

which is always smaller than the optimal fidelity of the phase
covariant transposition map !18". Hence the optimal phase
covariant transposition is a genuinely quantum channel. The
situation is particularly striking in the case of qubits, where it
is possible to perfectly transpose all equatorial states, while
the phase can never be measured exactly with finite re-
sources #13$.
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IV. CONVEX STRUCTURE AND PHYSICAL REALIZATION
OF OPTIMAL MAPS

In Sec. II we have shown that optimal multiphase conju-
gation maps are in one-to-one correspondence with null-
diagonal symmetric bistochastic !NSB" matrices, which form
a convex set. On the other hand, every bistochastic matrix is
a convex combination of permutation matrices—this is the
content of the Birkhoff theorem #14$. The null-diagonal and
symmetry constraints, however, force the convex set of NSB
matrices to be strictly contained into the convex polyhedron
of bistochastic matrices. This fact causes the extremal NSB
matrices to eventually lie strictly inside the set of bistochas-
tic matrices, generally preventing them from being permuta-
tions.

The geometrical study of the set of NSB matrices and its
extremal points can shed some light on the unusual feature
that there exist different “equally optimal” maps. The prob-
lem arises for dimension at least d=4. In this case the de-
composition of the matrix &bij' in Eq. !28" into extremal
components is

&bij' = p11
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0
2 + p21

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0
2

+ p31
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0
2 = p1P!1" + p2P!2" + p3P!3", !31"

where p1 , p2 , p3)0 and p1+ p2+ p3=1. A natural question is
now which optimal maps can be achieved with minimal re-
sources?

In order to physically realize a given CPT map E, one
needs to design a specific unitary interaction U and prepare
an ancilla in a specific state, say %0(+0%a, in such a way that

E!%" = Tra#U!% " %0(+0%a"U†$ . !32"

This is always possible #1,15$. The existence of equivalently
optimal maps allows us to choose between realizations with
either a smaller ancilla dimension, or a more flexible ancilla
state preparation.

More explicitly, for d=4, we define three unitaries U1, U2,
and U3 on C4 " C2 as

U1 ! .T10 T32

T32 T10
/, U2 ! .T20 T31

T31 T20
/, U3 ! .T30 T21

T21 T30
/ ,

!33"

where Tij = %i(+j%+ %j(+i%. Each of them realizes an extremal
optimal multiphase conjugation map #corresponding to pk
=1 in Eq. !31" for a given k$, namely

T4
!k"!%" = *

i'j
Pij

!k"Tij%Tij = Tra#Uk!% " %0(+0%a"Uk
†$ , !34"

where %0(+0%a is a fixed qubit ancilla state. Notice that the
ancilla must not necessarily be in a pure state, and the opti-

mal map is equivalently achieved for diagonal mixed ancilla
state &%0(+0%a+(%1(+1%a. By adding a control qutrit, we can
now choose among any of the optimal maps using the
controlled-unitary operator on C4 " C2 " C3,

U = U1 " %0(+0% + U2 " %1(+1% + U3 " %2(+2% . !35"

Any optimal multiphase conjugation map can now be written
as

T4!%" = Tra,b#U!% " %0(+0%a " *b"U†$ , !36"

where *b is a generic density matrix on C3. By superimpos-
ing or mixing the three orthogonal states &%0(, %1(, %2(' of the
qutrit we control the weights p1 , p2 , p3 in Eq. !31" via the
diagonal entries of *b.

Equations !33"–!36" can be generalized for higher even
dimensions #16$, with

Uk ! *
i,j=0

d/2−1

Tk#2i#2j,2i#2j " %i(+j%, k = 1, . . . ,d − 1,

U = *
k=1

d−1

Uk " %k(+k% ,

Td
!k"!%" = Tra#Uk!% " %0(+0%a"Uk

†$ ,

Td!%" = Tra,b#U!% " %0(+0%a " *b"U†$ , !37"

where Uk’s are unitary operators acting on Cd " Cd/2, U is a
control-unitary operator on Cd " Cd/2 " Cd−1, %0(+0%a is a fixed
!d /2"-dimensional pure state, and *b is a generic
!d−1"-dimensional density matrix. The minimum dimension
of the ancilla space required to unitarily realize an optimal
phase covariant transposition map is d /2, generalizing the
result for d=4, for which just a qubit is needed #see Eq.
!34"$. Notice that realization of phase covariant transposition
generally needs much less resources than realization of uni-
versal transposition: the dimension d /2 of the ancilla space
in the phase covariant case has to be compared with the
dimension d2 required in the universal case #5$.

As a final remark, notice that unitary realizations of CPT
channels are far from being uniquely determined #15$: here
we chose the controlled unitary structure because of its clear
geometrical interpretation in connection with the convex
structure of the polyhedron of optimal maps.

V. CONCLUSIONS

In this paper we have derived the channel which opti-
mally approaches in fidelity the time reversal of multiphase
equatorial states in arbitrary !finite" dimension. We show
that, in contrast to the customary case of the universal-NOT
on qubits !or the universal conjugation in arbitrary dimen-
sion", the optimal phase covariant time reversal for equato-
rial states is a nonclassical channel, which cannot be
achieved via a measurement-and-preparation procedure. We
have given unitary realizations of the optimal time reversal
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channel with minimal ancillary dimension, exploiting the
simplex structure of the optimal maps. The optimal channels
are related to null-diagonal symmetric bistochastic matrices.
For d)4 this gives a simplex structure of equivalently opti-
mal maps.
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