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1. INTRODUCTION
The possibility of employing quantum systems with a (fi-
nite) dimension higher than two in quantum information
has recently triggered much interest. In particular, it has
been shown that an increase in the dimension leads to a
better performance of various quantum information pro-
tocols, such as, for example, quantum cryptography1–3

and some problems in distributed quantum computing.4

Moreover, considerable experimental progress has been
recently reported in the generation, manipulation, and
detection of quantum systems with higher dimensions.5–7

In this work we consider the case of phase-covariant
transformations where the information is encoded into
phase properties of states with arbitrary finite dimension
d. Encoding information into phase shifts has important
applications in quantum computation and quantum infor-
mation. For example, it was shown that the existing
quantum algorithms can be described in a unified way as
quantum interference processes among different compu-
tational paths where the result of the computation is re-
trieved from a phase shift.8

We will describe in a unified framework the features of
multiuser phase-covariant transformations in arbitrary
dimension d, where typically an arbitrary number of in-
put systems N described by the same quantum state is
transformed into a larger number of output systems M,
which are still described by the same output density op-
erators. We will then specify this description to two tasks
of interest in quantum information, namely, cloning and
phase conjugation.

The no-cloning theorem9 states the impossibility of per-
fectly cloning unknown quantum states selected from a
nonorthogonal set and is the basis of the security of quan-
tum cryptography.10,11 Approximate quantum cloning has
been extensively studied in past years12 and has led to
relevant results in quantum cryptography. The eaves-
dropping strategies in quantum key distribution protocols

that are known to be optimal so far are actually based on
cloning attacks.2,3,13,14 Moreover, quantum cloning allows
one to study the sharing of quantum information among
several parties and it may be applied also to study the se-
curity of multiparty cryptographic schemes.15

Perfect phase conjugation of the density operator of an
unknown input state, or equivalently ideal time reversal,
is also forbidden by the laws of quantum mechanics. Such
a transformation has also recently attracted much inter-
est in connection with the problem of entanglement, in re-
gards to the so-called positive partial transpose
criterion.16,17 Since phase conjugation cannot be achieved
unitarily, one can try to approximate the transformation
with a physical channel, optimizing the fidelity of the out-
put state with the complex-conjugated input. In the case
of qubits !d=2", phase conjugation is unitarily equivalent
to the NOT operation.18 For the set of all pure states the
resulting universal optimal channel is classical,18,19

namely, it can be achieved by state estimation followed by
state preparation. In contrast, as we will show in this pa-
per, for equatorial pure states the optimal phase-
covariant conjugation map is a purely quantum transfor-
mation (for any number of input copies), generalizing to
the case of many copies the analogous result already
proved for a single input system.20

The paper is organized as follows. In Section 2 we de-
scribe in a unified framework the operation of multiuser
phase-covariant transformations in arbitrary finite di-
mension d. In Section 3 we review the concept of economi-
cal maps. In Sections 4 and 5 we derive the optimal
phase-covariant cloning and phase conjugation maps, re-
spectively, for equatorial input states, and show that for
some particular relations between the input and output
number of copies the optimal transformations can be
achieved economically. In Section 6 we prove a relation
between optimal multiple-phase estimation procedures
and the optimal cloning and phase conjugation maps. In
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Section 7 we summarize the results presented in this pa-
per. Some technical details of the derivations presented in
the paper are explained in the Appendixes.

2. PHASE-COVARIANT DEVICES
In this paper we consider quantum devices, or channels
(i.e., trace preserving completely positive maps21), from
states on an input quantum system Hin to states on a gen-
erally different output quantum system Hout, for which
we assume that an underlying global symmetry under the
action of the phase rotations group U!1" holds. More pre-
cisely, we will optimize the action of such devices on pure
d-dimensional input states of the form

#!!$"j%"& =
1

'd
!#0& + ei"1#1& + ei"2#2& + ¯ + ei"d−1#d − 1&",

!1"

where $#0& , . . . , #d−1&% is a fixed orthonormal basis of a
d-dimensional system H, and the "j’s are !d−1" indepen-
dent phases in the interval (0,2#". Notice that the choice
"0=0 is not restrictive, since an overall phase is negli-
gible. In the case of qubits, i.e., d=2, pure states as in Eq.
(1) all lie on one equator of the Bloch sphere and they
clearly form a set that is invariant under rotations
around the fixed axis orthogonal to this equator. These ro-
tations form a group that is isomorphic to the group U!1".
For generic dimensions d$2, this geometrical picture is
straightforwardly generalized by saying that pure states
in Eq. (1) form a set of states that is invariant under the
action of the unitary representation U$"j%= #0&)0 # +*j=1

d−1 # j&
)j #ei"j of the group U!1"%!d−1". In the following, with a little
abuse of terminology, we will call states of the form of Eq.
(1) as equatorial states, also in the case d$2. Notice that
starting from a fixed state #!0&=d−1/2*i # i&, usually called
seed, it is possible to span the whole invariant family by
applying the unitary operator U$"j%:

U$"j%#!0& = #!!$"j%"&. !2"

Since we are considering input states belonging to
phase rotations and group-invariant families, the natural
case for our analysis is then the framework of phase co-
variant channels, namely, channels E that automatically
propagate to the output the action of the group on the in-
put as follows:

E!Vg&Vg
†" = WgE!&"Wg

† , !3"

where Vg and Wg are unitary representations of U!1"%!d−1"

on the input and output space, respectively. More explic-
itly, when the input consists of N copies of an unknown
pure equatorial state, i.e., #!!$"j%"&!N, we have Vg=V$"j%
=U$"j%

!N. The choice of the output representation Wg will de-
pend on the task we want to optimize. For the moment,
just notice that both Vg and Wg are different unitary rep-
resentations of the same group U!1"%!d−1".

Since we are considering only pure input states of the
form #!&!N, we can restrict our attention to channels
whose input states have support on the symmetric sub-
space H+

!N of H!N, that is, Hin=H+
!N. Moreover, we also

require that the output states have support on the sym-

metric subspace, namely, Hout=H+
!M!H!M. In this way it

is guaranteed that the output single-site density opera-
tors are the same. For the following, we choose an ortho-
normal basis in the symmetric subspace H+

!N of the form

!4"

where P#
!N" denotes a permutation operator of the N sys-

tems, and n0 is the number of systems in state #0& ,n1 in
state #1&, and so on, with the constraint *i=0

d−1ni=N. The
notation #$mi%&M, with *i=0

d−1mi=M, denotes the analogous
symmetric state as in Eq. (4) for the output subspace
H+

!M. As a convention, in this paper we will consistently
use n’s for the input and m’s for the output.

A convenient formalism to deal with covariant channels
is the Choi–Jamiołkowski isomorphism22,23 between com-
pletely positive maps M from states on Hin to states on
Hout and positive operators RM on Hout ! Hin:

M ↔ RM = !M ! I"#'&)'#, !5"

where I is the identity channel and #'&=*k=1
d #k& ! #k& is

the (nonnormalized) maximally entangled vector in the
Hilbert space Hin ! Hin. With the notation introduced in
Eq. (4) we have

#'& = *
$ni%

#$ni%&N ! #$ni%&N. !6"

The correspondence (5) is one to one, the inverse formula
being

M!&" = Trin(!Iout ! &*"RM+, !7"

where Trin denotes the trace over Hin, Iout is the identity
matrix over Hout, and &* is the complex conjugate of & with
respect to the basis fixed by #'& in Eq. (6). The trace pres-
ervation condition is then given by Trout(RM+= Iin.

In terms of the Choi–Jamiołkowski operator, the cova-
riance condition of Eq. (3) can be rewritten as a commu-
tation relation24:

(RE,Wg ! Vg
*+ = 0, !8"

where Wg ! Vg
* is a new unitary representation of

U!1"%!d−1". Such a representation is generally reducible,
where, by Schur’s lemma, RE splits into a direct sum:

RE = "
(

RE
(, !9"

where the index ( labels the equivalence classes of the
one-dimensional25 irreducible representations of Wg ! Vg

*.
In Sections 4 and 5 we will specialize Eq. (8) to the cases
of N→M cloning and N→M phase conjugation, for which
Wg=U$"j%

!M and Wg= !U$"j%
* "!M, respectively.

3. ECONOMICAL MAPS
Let M be a completely positive, trace-preserving map
from states on Hin to states on Hout. From the Stinespring
representation theorem,26 it immediately follows that for
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every completely positive trace-preserving map it is pos-
sible to find an auxiliary quantum system with Hilbert
space L and an isometry V from Hin to Hout ! L ,V†V= Iin,
such that

M!&" = TrL(V&V†+. !10"

Starting from Eq. (10), it is always possible to construct
a unitary interaction U realizing M (Refs. 27 and 28) as
follows:

M!&" = TrL(U!& ! #a&)a#"U†+, !11"

where #a& is a fixed pure state of a second auxiliary quan-
tum system, say L!, such that Hin ! L!=Hout ! L. The Hil-
bert spaces L and L! are generally different, and actually
play different physical roles.

We define a trace-preserving completely positive map
M to be economical if and only if it admits a unitary form
U as

M!&" = U!& ! #a&)a#"U†, !12"

namely, if and only if the map can be physically realized
without discarding, i.e., tracing out, any resources. We
can simply prove that the only maps admitting an eco-
nomical unitary implementation U as in Eq. (12) are
those for which

M!&" = V&V† !13"

for an isometry V ,V†V= Iin. In fact, since !Iin
! )a # "U†U!Iin ! #a&"= Iin,U!Iin ! #a&" is an isometry from Hin
to Hout ! L. On the other hand, starting from Eq. (13) and
using the Gram–Schmidt method, one can extend any
isometry V from Hin to Hout ! L to a unitary U on the
same output space, and write it in the form V=U!Iin
! #a&" for a unit vector #a&!L! with Hin ! L!=Hout ! L.

Considering classical resources as free, the most gen-
eral definition of an economical map corresponds to hav-
ing a random unitary realization of the form

M!&" = *
i

piUi!& ! #a&)a#"Ui
†, !14"

where pi)0,*ipi=1. Using the same fixed ancilla state
#a& for all indices i is not a loss of generality, since in con-
structing the operators Ui’s there is always freedom in the
choice of the vector #a&. According to this more general
definition, all economical maps can always be written as a
randomization of the form of Eq. (13) as follows:

M!&" = *
i

piVi&Vi
†. !15"

4. PHASE-COVARIANT CLONING
In this section we derive the form of quantum channels C
that best approximate the ideal cloning map:

#!!$"j%"&!N ! #!!$"j%"&!M, !16"

with M$N, for all possible values "j! (0,2#". In this case
the choice of the unitary representation on the output
space is clearly Wg=U$"j%

!M. The commutation relation of
Eq. (8) can then be rewritten as

(RC,U$"j%
!M

! !U$"j%
* "!N+ = 0. !17"

From Eq. (17) it follows that RC splits into the block
form

RC = "
$mj%

R$mj%, !18"

where each set of values $mj% identifies a unique class of
equivalent irreducible representations of U$"j%

!M
! !U$"j%

* "!N.
The equivalent representations within each class can be
conveniently written, using the symmetrization conven-
tion as in Eq. (4), as

$#m0 + n0,m1 + n1,m2 + n2, . . . ,md−1 + nd−1&M

! #n0,n1,n2, . . . ,nd−1&N%$ni%, !19"

with *i=0
d−1ni=N and *j=0

d−1mj=M−N. The multiple index
$ni% runs over all orthonormal vectors of the symmetrized
basis for H+

!N. With this notation, Eq. (18) becomes

RC = *
$mj%

*
$ni!%,$ni"%

r
$ni!%,$ni"%

$mj% #$mj% + $ni!%&)$mj% + $ni"%#M ! #$ni!%&

%)$ni"%#N. !20"

We now have to adjust the parameters $r$ni!%,$ni"%
$mj% % de-

scribing a generic channel satisfying the commutation re-
lation of Eq. (17) to shape RC to optimally approximate
the ideal map [relation (16)]. Such an optimal approxima-
tion reasonably maximizes the fidelity FC between the
ideal output, namely, #!!$"i%"&!M, and the actual channel
output C!#!!$"j%"&)!!$"j%"#!N". By exploiting the inverse
formula of Eq. (7) and the commutation relation of Eq.
(17), one has

FC = Tr(#!0&)!0#!!N+M"RC+. !21"

Another commonly adopted figure of merit is the single-
site fidelity FC

1 between the ideal output #!!$"j%"& and the
actual single-site output TrM−1(C!#!!$"j%"&)!!$"j%"#!N"+,
namely,

FC
1 = Tr(#!0&)!0# ! I!!M−1"

! #!0&)!0#!NRC+. !22"

We point out that a channel C maximizing FC does not
necessarily also maximize FC

1.29,30

When the output number of copies takes the form M
=kd+N, with k!N and d the dimension of H, there exists
a unique channel maximizing at the same time both FC
and FC

1.31 Such a channel is described by the positive
rank-one operator

RC = #r$k%&)r$k%#, !23"

where

#r$k%& = *
$nj%

#k + n0, . . . ,k + ni, . . . &M ! #n0, . . . ,ni . . . &N,

*
j

nj = N. !24"

The corresponding single-site fidelity FC
1 takes the form
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FC
1 =

1

d
+

1

MdN+1*
$n̄j%

*
i!j

N!

n̄0 ! . . . n̄i ! . . . n̄j ! . . .

%'!n̄i + k + 1"!n̄j + k + 1"

!n̄i + 1"!n̄j + 1"
, M = kd + N, !25"

where, for the sake of symmetry of the formula, we have
chosen the multiple index n̄j such that *jn̄j=N−1. In the
case N=1, Eq. (25) is simplified as

FC
1 =

1

d
+

!d − 1"!M + d − 1"

Md2 , M = kd + 1, !26"

since *i!j!k+1"=kd!d−1"+d!d−1"= !d−1"!M+d−1". No-
tice that FC

1 is always strictly greater than the analogous
optimal fidelity for the universal cloner,29 that is, Funiv

1

= !2M+d−1" /M!d+1". This is due to the fact that we are
now imposing a covariance condition under the action of
U!1"%!d−1" that is a much looser condition32 than imposing
covariance under the action of the whole universal group
SU!d", and therefore there is more freedom in adjusting
free parameters to obtain better performances.

As a final remark, notice that, since RC is rank one, the
channel C acts as [this can be simply checked by using the
inverse formula of Eq. (7)]

C!&!N" = V&!NV†, !27"

where V is the isometry defined as

V#n0,n1, . . . ,ni, . . . &N = #n0 + k,n1 + k, . . . ,ni + k, . . . &M.

!28"

According to the definitions of Section 3, this implies that
C is an economical map, and therefore it does not require
additional resources other than the !M−N" input blank
copies to be unitarily realized. This is in contrast to what
happens in the universal case, for which M additional sys-
tems must be provided19,33 in addition to the N input cop-
ies.

5. PHASE CONJUGATION
Another basic device that is impossible to achieve in the
framework of quantum mechanics is the NOT gate, where
the Bloch vector of any input states is reversed, or equiva-
lently the phase conjugation operation. In this section we
will derive the form of the quantum channels N that op-
timally approximate the operation of phase conjugation:

#!!$"j%"&!N ! !#!!$"j%"&*"!M = #!!$− "j%"&!M, !29"

with M$N, for all possible values "j! (0,2#". The case
M=N=1 has been thoroughly analyzed.20 In the case of
phase conjugation the output unitary representation of
U!1"%!d−1" must be chosen as Wg= !U$"j%

* "!M and the com-
mutation relation of Eq. (8) becomes

(RN,!U$"j%
* "!!M+N"+ = 0. !30"

As in the case of phase-covariant cloning, Eq. (30) implies
a decomposition of RN into the block form RN= " $mj%R$mj%,
where each set of values $mj% identifies a unique class of
equivalent irreducible representations of !U$"j%

* "!!M+N".

The equivalent representations within each class can be
conveniently written as

$#m0 − n0,m1 − n1,m2 − n2, . . . ,md−1 − nd−1&M

! #n0,n1,n2, . . . ,nd−1&N%$ni%, !31"

with *i=0
d−1ni=N and *j=0

d−1mj=M+N. It is clear that expres-
sion (31) is well defined only when mi)ni, for all i. In the
following we will see that, when the analytical optimiza-
tion is possible, such a condition is always satisfied.

The figure of merit that we will consider to approxi-
mate the phase conjugation channel is the single-site fi-
delity

FN
1 = Tr(#!0&)!0# ! I!!M−1"

! #!0&)!0#!NRN+, !32"

where

RN = *
$mj%

*
$ni!%,$ni"%

r
$ni!%,$ni"%

$mj% #$mj% + $ni!%&)$mj% + $ni"%#M ! #$ni!%&

%)$ni"%#N. !33"

Exploiting cumbersome combinatorial calculations
similar to those reported in previous work,31 it can be
shown that, in the case M=kd−N, with k!N)N and d
the dimension of H, there exists a unique channel maxi-
mizing FC

1. Such a channel is described by the positive
rank-one operator

RN = #r$k%&)r$k%#, !34"

where

#r$k%& = *
$nj%

#k − n0, . . . ,k − ni, . . . &M ! #n0, . . . ,ni . . . &N,

*
j

nj = N, !35"

and it acts as an isometrical embedding

N!&!N" = V&!NV†, !36"

where the isometry V is defined as

V#n0,n1, . . . ,ni, . . . &N = #k − n0,k − n1, . . . ,k − ni, . . . &M.

!37"

Therefore, the optimal phase conjugation map for the out-
put number of copies M=kd−N can also be realized eco-
nomically. Its single-site fidelity FN

1 is given by

FN
1 =

1

d
+

1

MdN+1*
$n̄j%

*
i!j

N!

n̄0 ! . . . n̄i ! . . . n̄j ! . . .

%'!k − n̄i"!k − n̄j"

!n̄i + 1"!n̄j + 1"
, M = kd − N, !38"

where *jn̄j=N−1. Since *i!jk=kd!d−1"= !d−1"!M+1" in
the case N=1, the above expression is simplified as

FN
1 =

1

d
+

!d − 1"!M + 1"

Md2 , M = kd − 1. !39"

Notice that for qubits, FN
1 =FC

1. This is due to the fact that,
for equatorial qubits, perfect phase conjugation can be
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achieved unitarily by a # rotation along the x axis.18,20

Optimal phase conjugation therefore is equivalent to op-
timal phase-covariant cloning followed by such a rotation,
which does not decrease the cloning fidelity. In all the
other cases with d$2,FN

1 is always strictly smaller than
FC

1. Actually, in these cases phase conjugation can be per-
formed only approximately and therefore the global trans-
formation corresponding to a generation of many phase-
conjugated copies is worse than just cloning them.
However, in the limit of a large number of output copies,
i.e., M→*, they both tend to the same limit, as we will
show in Section 6.

6. RELATIONS WITH OPTIMAL PHASE
ESTIMATION
Both the cloning fidelity FC

1 in Eq. (25) and the phase con-
jugation fidelity FN

1 in Eq. (38), in the limit M→*, that is,
k→* with M,kd, take the form

F1 =
1

d
+

1

dN+2*
$n̄i%

*
i!j

N!

n̄0 ! . . .

1

'!n̄i + 1"!n̄j + 1"
,

%*
i

n̄i = N − 1. !40"

Equation (40) coincides with the single-site fidelity FP
1 of

optimal phase estimation on N copies of equatorial
states.34 For all possible values of N and M, the following
relations then hold:

FC
1 ) FN

1 ) FP
1 , lim

M→*

FC
1 = lim

M→*

FN
1 = FP

1 . !41"

Inequalities (41) are illustrated in Fig. 1, where the opti-
mal fidelities of phase-covariant cloning and phase conju-
gation are reported for equatorial states with d=5 and
N=1. First, let us notice that phase-covariant conjuga-
tion, contrary to the case of universal transposition19 for
which it is known that the optimal strategy trivially con-
sists of an estimation followed by a suitable preparation,
achieves a fidelity FN

1 that is always greater than the fi-
delity FP

1 achievable by means of a measure-and-prepare
scheme. Moreover, inequalities (41) confirm the general
fact that cloning fidelity, in the limit of an infinite number
of output copies, tends to state estimation fidelity, and
shows that this also holds for other symmetrical covariant

devices, such as phase conjugation.
Here we prove that not only the fidelities FC

1 and FN
1

tend to the phase estimation fidelity FP
1 , but also that op-

timal phase-covariant cloning C and phase conjugation N
maps tend, in the limit, to the phase estimation map P
[which estimates the phases $"j% and reprepares the state
#!!$"j%"&]. This is clearly a much stronger statement than
that concerning just fidelities.35,36 The main ingredient
we need for the proof is that the single-site output state
coming from the channel C can be parametrized by a
shrinking parameter +C as

TrM−1(C!#!!$"j%"&)!!$"j%#"!N"+

=+C#!!$"j%"&)!!$"j%#" + !1 − +C"
I

d
, !42"

with +C= !dFC
1−1" / !d−1". Analogous formulas hold for

phase conjugation N and phase estimation P, as a conse-
quence of the phase-covariant property of the maps (for
the explicit calculations, see Appendixes A and B).

The proof then goes through a concatenation argument.
Imagine performing an optimal phase estimation34 over N
copies of the unknown state #!!$"j%"&. After obtaining the
optimal estimated value $"j% of the phases, it is possible to
prepare M copies of the state #!!$"j%"&. This procedure is,
by definition, a suboptimal phase-covariant N→M clon-
ing: The fidelity of such M copies must be smaller than (or
at most equal to) the fidelity of the output of an optimal
phase-covariant cloner, that is,

FP
1 !N" , FC

1!N,M", ∀ N,M. !43"

(We put in parentheses the dependence of the fidelities on
the input number of copies N and the output number M.)

The opposite direction can be proved by concatenating
the optimal N→M phase-covariant cloner with the opti-
mal state estimation described in Refs. 37 and 38. Since a
state estimation implies a phase estimation, it is possible
to interpret the whole procedure as a suboptimal phase
estimation: The single-site fidelity F̄1!N ,M" obtained in
this suboptimal way must be smaller than or equal to the
optimal phase estimation fidelity FP

1 !N" for all possible
values of M. The state estimation map S works as
follows38:

S!&!M" = +S& + !1 − +S"
I

d
. !44"

Applying S to the output of the phase-covariant N→M
cloner, we get

S!C!#!!$"j%"&)!!$"j%"#!N"" = +STrM−1(C!#!!$"j%"&)!!$"j%"#!N"+

+ !1 − +S"
I

d
. !45"

Since we assumed that the output state &M of a phase-
covariant cloner has support on the symmetric subspace,
it can be linearly decomposed as &M=*i-i #!i&)!i#!M with
*i-i=1.39,40 Therefore the above expression can be written
as

Fig. 1. Comparison between single-site fidelities of phase cova-
riant 1→M optimal cloning (solid curve) and phase conjugation
(dotted curve) for d=5. Both curves tend to the limit of 9/25
=0.36, that is, the fidelity of optimal phase estimation.
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S!C!#!!$"j%"&)!!$"j%"#!N"" = +S+C#!!$"j%"&)!!$"j%"#

+ !+S!1 − +C" + !1 − +S""
I

d
. !46"

Noticing that the shrinking factor +S=M / !M+d" (Ref. 38)
approaches unit for M→*, Eq. (46) implies that

lim
M→*

F̄!N,M" = lim
M→*

FC!N,M"; !47"

and according to the previous remark about the subopti-
mality of this phase estimation procedure, one has

lim
M→*

FC!N,M" , FP!N", ∀ N. !48"

Inequality (48) together with inequality (43) prove in-
equalities (41).

The above argument can also be applied to the case of
phase conjugation. Actually, a suboptimal phase-
covariant conjugation map can be achieved by first per-
forming an optimal phase estimation on the input equa-
torial states, which gives the estimated values $"j% for the
phases, and then preparing M copies of the state
#!!$−"j%"&. Moreover, a suboptimal phase estimation can
be realized by first applying an optimal N→M phase-
covariant conjugation device and then performing optimal
state estimation on the M output states. In this way we
would be able to estimate the !d−1" phase values of the M
output states and we would have an estimate of the
phases of the N input states just by changing the signs.
The comparison of the above two procedures allows us to
establish the equivalence of optimal phase estimation and
optimal phase-covariant transposition in the limit of an
infinite number of output copies.

7. CONCLUSIONS
In this paper we have studied the efficiency of phase-
covariant multiuser channels in an arbitrary finite di-
mension. In particular, we have derived the form of the
channels that optimally approach quantum cloning and
phase conjugation for multiphase equatorial states. We
have shown that for certain relations between the input
and output number of copies, the optimal transformations
can be achieved economically. We have derived a relation
between the above-mentioned transformations and opti-
mal multiphase estimation procedures. In the case of
phase conjugation we have shown that, in contrast to the
customary case of the universal-NOT on qubits (or the
universal conjugation in arbitrary dimension), the opti-
mal phase-covariant transformation for equatorial states
is a nonclassical channel, which cannot be achieved by a
measurement or preparation procedure.

APPENDIX A: SINGLE-SITE REDUCED
OUTPUT STATE OF OPTIMAL PHASE
ESTIMATION
The phase estimation channel P working over N copies of
the input state #!!$"j%"& can be regarded as a machine pre-

paring the state #!!$"j%"& according to the estimated phase
values $"j%. The output state #!!$"j%"& is prepared with
probability density:

p!$"j%" = #)!!$"j%"!N#e!$"j%"&#2, !A1"

where

#e!$"j%"& = U$"̄j%
!N*

$ni%
#$ni%&N, *

i
ni = N, !A2"

namely, a generalized Susskind–Glogower state,41 and
#e!$"j%"&)e!$"j%"# be the positive operator valued measure
density of the optimal (multiple-) phase estimation34 over
N copies. Using the formalism of quantum operations, the
single-site reduced output state of such an apparatus can
be simply written as

P!#!!$"j%"&)!!$"j%"#!N" =- d$"j%

!2#"d−1p!$"j%"#!!$"j%"&)!!$"j%"#.

!A3"

By covariance, we can exploit the calculations only for
the input #!0& and then generalize trivially to all possible
input states #!!$"j%"& considered here. From Eqs. (A1) and
(A3), the starting point is

P)!0#)!0#!N =- d$"j%

!2#"d−1 Tr()!0##!0&!N#e!$"j%"&)e!$"j%"#+

%#!!$"j%"&)!!$"j%"#

= TrN.I ! #!0&)!0#!N- d$"j%

!2#"d−1 #!!$"j%"&

%)!!$"j%"# ! #e!$"j%"&)e!$"j%"#/ . !A4"

Recalling the orthogonality relation

- d.

2#
exp(i!m − n".+ = /mn, ∀ m,n ! Z, !A5"

and the explicit expression for #e!$"j%"&)e!$"j%"#,

#e!$"j%"&)e!$"j%"# = U!$"j%"!N. *
$ni!%,$nj"%

#$ni!%&)$nj"%#/U†!$"j%"!N,

!A6"

we have

- d$"j%

!2#"d−1 #!!$"j%"&)!!$"j%"# ! #e!$"j%"&)e!$"j%"#

=*
$ni%

*
i,j

#i&)j#

d
! #$ni%&)n0, . . . ,ni − 1, . . . ,nj + 1, . . . #.

!A7"

Substituting Eq. (A7) into Eq. (A4), we get the formula we
were looking for, namely,
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P!#!0&#!0#" =
I

d
+

1

dN+1*
$ni%

*
i!j

N!

n0 ! . . .

1

'!ni + 1"!nj + 1"
#i&)j#,

%*
j

nj = N − 1, !A8"

hence the single-site fidelity of Eq. (40) of multiphase es-
timation.

APPENDIX B: SINGLE-SITE REDUCED
OUTPUT STATE OF OPTIMAL
PHASE-COVARIANT CLONING AND
OPTIMAL PHASE CONJUGATION
Here we explicitly derive the general form of the reduced
output state of the phase-covariant N→M cloner in Eq.
(42). (The phase conjugation case is completely analo-
gous.) From Eqs. (7) and (23),

TrM−1(C!#!0&)!0#!N"+

=TrM−1,N.I!M
! #!0&)!0#!N *

$ni!%,$nj"%

#n0! + k, . . . &)n0" + k, . . . #M

! #n0!, . . . &)n0", . . . #N/ =
1

dN *
$ni!%,$nj"%

.0 N

n0! ;n1! ; . . .1
%0 N

n0" ;n1" ; . . .1/1/2

%TrM−1(#n0! + k, . . . &)n0" + k, . . . #M+

=
1

dN *
$ni!%,$nj"%

.0 N

n0! ;n1! ; . . .10 N

n0" ;n1" ; . . .1/1/2.0 M

n0! + k; . . .1
%0 M

n0" + k; . . .1/−1/2

TrM−1(#n0! + k̃, . . . &)n0" + k̃, . . . #M+

= Tdiag + Toff-diag, !B1"

where

!B2"

is a nonnormalized vector, with the notation of Eq. (4). To
make the calculation clearer, we split Eq. (B1) in its diag-
onal part,

Tdiag =
1

dN *
$ni!%,$nj"%

*
i
.0 N

n0! ;n1! ; . . .10 N

n0" ;n1" ; . . .1/1/2

%.0 M

n0! + k; . . .10 M

n0" + k; . . .1/−1/2

%TrM−1(#i&)i# ! #n0! + k, . . . ,ni! + k − 1, . . . &)n0"

+ k, . . . ni" + k − 1, . . . #+

% .0 M − 1

n0! + k; . . . ;ni! + k − 1; . . .1

%
M − 1

n0" + k; . . . ;ni" + k − 1; . . .1/1/2

=
1

MdN*
$ni%

N!

n0 ! n1 ! . . .*i
!ni + k"#i&)i#, !B3"

and its off-diagonal part,

Toff-diag =
1

MdN*
$ni%

*
i!j

N!

n0 ! . . . !ni − 1" ! . . . nj ! . . .

%'!ni + k"!nj + k + 1"

ni!nj + 1"
#i&)j#

=
1

MdN*
$n̄i%

*
i!j

N!

n̄0 ! . . . n̄i ! . . . n̄j ! . . .

%'!n̄i + k + 1"!n̄j + k + 1"

!n̄i+1"!n̄j + 1"
#i&)j#, !B4"

with the constraints *jnj=N and *jn̄j=N−1.
First, notice that the reduced state is correctly normal-

ized since *$ni%N ! / !n0! . . . "=dN and *i!ni+k"=M, and that
the fidelity with respect to #!0& is precisely FC

1!N ,M" in Eq.
(25), since

Tr.#!0&)!0#*
i

ni + k

M
#i&)i#/ =

1

d
, !B5"

Tr.#!0&)!0#*
i!j
'!n̄i + k + 1"!n̄j + k + 1"

!n̄i + 1"!n̄j + 1"
#i&)j#/

=
1

d*
i!j
'!n̄i + k + 1"!n̄j + k + 1"

!n̄i + 1"!n̄j + 1"
.

!B6"

Moreover, looking at the expressions of Tdiag and Toff-diag
involving a sum over all possible multiple indices $ni%, one
can recognize that the diagonal entries are all multiplied
by the same coefficient, as well as the off-diagonal ones.
The reduced output state can then be written as

TrM−1(C!#!0&)!0#!N"+ = +C!N,M"#!0&)!0# + !1 − +C!N,M""
I

d
.

!B7"
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