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Abstract
Causality has often been confused with the notion of determinism. It is mandatory to separate the
two notions in view of the debate about quantum foundations. Quantum theory provides an
example of causal non-deterministic theory. Here we introduce a toy operational theory that is
deterministic and non-causal, thus proving that the two notions of causality and determinism are
totally independent.
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1. Introduction

Causality is the subject of a very extensive literature,
encompassing hundreds of contemporary books and technical
articles. It hits a wide spectrum of disciplines, ranging from
pure philosophy to law, economics, natural sciences, and, in
particular, physics. Perhaps the most natural connection with
physics is in philosophy, from the early work of Aristotle, to
the cornerstone of René Descartes, who broke the ground for
the modern view of David Hume and Immanuel Kant, up to
the contemporary works on physical causation of Wesley
Salmon [1] and Phil Dowe [2].

The recent reconsideration of the foundations of physics,
with particular focus on quantum theory, has brought research
in theoretical physics to explore issues in the territory shared
with philosophy. A paradigmatic case is the issue of realism
raised by the founding fathers von Neumann [3] and Einstein
[4] in regard of the completeness of quantum theory.

The problem of causality has remained in the realm of
philosophy, and stayed only in the background of physics,
without the status of a physical law or the rank of a principle.
Most of the time causality creeps in the form of ad hoc
assumptions based on empirical evidence—like the discard of
advanced potentials in electrodynamics or the Kramers–
Kronig relations—or it is part of the interpretation of the
theory—e.g. in special relativity—or else it is hidden in the
theoretical framework, as in Hardy axiomatization of quan-
tum theory [5].

A notion that is traditionally connected with causality in
physics and philosophy is determinism, which is deeply

entangled with causality, to the extent that the two are often
merged into causal determinism, or even confused, as in the
exemplar quotation from Max Planck: ‘An event is causally
determined if it can be predicted with certainty’ [6]. This
confusion between the two notions is the source of the typical
misleading way of regarding quantum correlations as ‘spooky
action at a distance’—the commonplace of perfect Einstein-
Podolsky-Rosen (EPR) correlations interpreted as causation.

The advent of quantum mechanics has led us to consider
the alternative point of view of contemplating causal relations
as intrinsically probabilistic [7]. Although a probabilistic
context for causal relations had already been considered by
several authors [1, 2, 8], a precise mathematical formulation
has been given only recently in the context of the operational
axiomatization of quantum theory [9]. The main ingredient is
the notion of test, which includes not only a complete set of
alternative events, but also the specification of input and
output systems, which encompass the possibility of con-
comitant causes and multiple effects, allowing for a network
description as in [8]. The famous criticism of causality by
Bertrand Russell [10] was indeed addressed against its
deterministic notion, along with the overlooking of con-
comitant causations. All such criticisms are completely
overcome by the operational-probabilistic formulation.

The property of causality within classical theory is tri-
vialized by the irrelevance of the notion of measurement,
which is identified with that of state itself. Complementarity is
the feature that breaks the classical identification between
observation and preparation (measurement and state). In the
operational-probabilistic framework measurements and states
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correspond to special tests: the observation and the prepara-
tion tests. Causality is defined as the independence of the
probability of the preparation test from the choice of the
observation test: this definition of causality distills all the
intuitive guises in which it appears in physics, with an inti-
mate relation with the Einsteinian notion. In this formulation
it is the first axiom of quantum theory in the derivation of
[11]. A preliminary version of the present causality postulate
has been given in [12] rephrased as no-signaling from the
future, of which the first embryo can be found in a footnote in
[13]. One can easily realize that the present formulation of
causality is the only possible one, and covers even the original
intuitive notion by Hume. The new mathematical definition of
causality exhibits its full conceptual power in providing a
non-trivial technical characterization of causal theories in
terms of the uniqueness of the deterministic effect [9], as we
will also review in this paper.

In the same framework we can also naturally introduce a
precise notion of determinism, which must be taken as
separate from that of reversibility of the evolution. The notion
of determinism arose within the clockwork-universe vision of
classical mechanics, assessing that the state of a system at an
initial time completely determines the state at any later time.
Classical mechanics, however, identifies the state (the point in
the phase-space) with the measurement-outcome, while the
two notions are radically different in quantum theory, and
more generally in operational probabilistic theories [9, 11].
These allow us to define determinism outside the framework
of classical mechanics which is already deterministic, avoid-
ing the confusion between state and measurement-outcome.
In a probabilistic context [9] determinism is identified with
the property of a theory of having all probabilities of physical
events equal to either zero or one—a definition which has no
causal connotation.

Quantum theory provides a relevant example of opera-
tional probabilistic theory that is causal and not deterministic.
In this paper we introduce a toy theory that is deterministic

and non-causal. The purpose is to prove in this way that
neither does causality imply determinism, nor determinism
imply causality, namely that the the two notions are logically
independent. In the concluding section we will further discuss
the relation between the definition of causality in section 2
and the customary problem of physical causation along with
the cause–effect connection.

2. Review on operational probabilistic theories

Before starting we need to review the basic definitions and
notations for operational probabilistic theories (OPTs). For a
detailed discussion see [9]. The basic notion in the operational
framework is that of test. A test  = { }i describes an
elementary operation which generally produces the readout of
an outcome i, heralding the occurrence of an event i. Tests
are also specified by an input and an output label, e.g.A, B,
which identify the system types (systems, for short). The test
 and its building events  ∈i can be represented by
means of boxes as and respec-
tively. The role of labelling input and output systems is to
provide rules for connecting tests in sequences: an output wire
labeled A can be connected only to an input wire with the
same label A. Notice that the input/output relation has no
causal connotation, and does not entail an underlying ‘time
arrow’. Here ‘input/output’ has to be understood as a func-
tional dependence, namely the relation that links the variable
x to the function evaluation f x( ). As will be clear shortly,
only in a causal theory is it possible to understand the input/
output relation as a time-arrow.

The event  ○j i belonging to the sequential compo-
sition  ○ of the tests  and  is represented as

(a similar graphical representation

holds also for the test  ○ itself). For every system A there
exists a unique singleton test { }A such that
   ○ = ○B A for every event  with input A and
output B. For every couple of systems (A, B) we can form the
composite system =C : AB, on which we can perform tests
 ⊗ with events  ⊗i j in parallel composition repre-
sented as follows

and satisfying the following condition:

       ⊗ ○ ⊗ = ○ ⊗ ○( ) ( ) ( ) ( ).h k i j h i k j

Notice that here ⊗ is a formal symbol for parallel composi-
tion, and not the usual tensor product of linear spaces. There
is a special system type I, the trivial system, such that

= =AI IA A. The tests with input system I and output A are
called preparation-tests of A, while the tests with input sys-
tem A and output I are called observation-tests of A. Pre-
paration-events of A are denoted by the symbols ρ∣ )A or

and observation-events by ∣c( A or . Note that
the words preparation-test and observation-test have an

Figure 1. The closed circuit in the figure represents the joint
probability Ψ∣i i i GPr[ , ,... , ,..., ]1 2 8 of outcomes i i i, ,...1 2 8
conditioned by the choice of tests Ψ G, ,..., . Since the output
of the event i2 is connected to the input of the event i5 through
the system F, the event i2 immediately precedes the event i5

( ≺i i12 5). Similarly, since between the event i3 and the event i6

there is i5 such that   ≺ ≺i i i1 13 5 6, the event i3 precedes the
event i6 ( ≺i i3 6). If the closed circuit of the figure belongs to a
causal theory, we have e.g. that the marginal probability of the event
 ∈i5 cannot depend on the choice of any test  such that  ⊀ ,
i.e.        Ψ Ψ∣ = ∣i iGPr[ , , , , , , , ] Pr[ , , ]5 5 .
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intrinsic causal connotation (usually one observes something
that has been prepared, and not vice versa), however, here the
two words should be taken only as technical terms. The two
terms recover their usual meaning in a causal theory—the
commonly studied case—and our abuse of terminology is for
the sake of limiting temporary technical words.

An arbitrary complex test obtained by parallel and
sequential composition of box diagrams is called a circuit. A
circuit is closed if its overall input and output systems are the
trivial ones. Figure 1 is an example of closed circuit. Given a
circuit we say that an event  is immediately connected to the
input of , and write  ≺1 , if there is an output system of
 that is connected with an input system of ; e.g. referring
to the circuit in figure 1  ≺i i12 5. We can moreover intro-
duce the transitive closure ≺ of the relation ≺1, and we say
that  is connected to the input of  if  ≺ (e.g. ≺i i3 6).
The two relations ≺1 and ≺ can be trivially extended from
events to tests.

A theory is probabilistic if every closed circuit represents
a probability distribution; e.g. the closed circuit in figure 1
represents the probability Ψ∣i i i GPr[ , ,... , ,..., ]1 2 8 of out-
comes i i i, ,...1 2 8 conditioned by the choice of tests

Ψ G, ,..., 3. In probabilistic theories we can quotient the set
of preparation-events of A by the equivalence relation
ρ σ∣ ∼ ∣ ⇔) )A A the probability of preparing ρ∣ )A and mea-
suring ∣c( A is the same as preparing σ∣ )A and measuring

∣c( A for every observation-event ∣c( A of A (and similarly for
observation-events). The equivalence classes of preparation-
events and observation-events of A will be denoted by the
same symbols as their elements ρ∣ )A and ∣c( A, respectively,
and will be called state ρ∣ )A and effect ∣c( A. For every system
A, we will denote by St(A), Eff(A) the sets of states and
effects, respectively. States and effects are real-valued func-
tionals on each other, and then they can be naturally
embedded in reciprocally dual real vector spaces, 5St (A) and

5Eff (A), whose dimension DA is assumed here to be finite.
The application of the effect ∣c( i A on the state ρ∣ )A is written
as ρ∣c( )i A and corresponds to the closed circuit
denoting therefore the probability of the ith outcome of the
observation-test = ∣ η∈cc {( A}i i performed on the state ρ of
system A, i.e. ρρ∣ = ∣c c( ) : Pr[ ]i iA .

Any event with input system A and output system B
induces a collection of linear mappings from 5St (AC) to

5St (BC), for varying system C. Such a collection is called
transformation from A to B. The set of transformations from
A to B will be denoted by Transf(A, B), and its linear span by

5Transf (A, B). The symbols  and denoting the

event  will be also used to represent the corresponding
transformation.

We now introduce a precise notion of determinism
through the following definition [9].

Definition 1 (ODT). An operational deterministic theory
(ODT) is an OPT with all closed circuits having probabilities
0 or 1.

One cannot forbid the construction of the ‘statistical’
version of an ODT (as it happens for classical mechanics) by
considering the OPT which is the convex closure of the ODT.

Given a set S the convex cone λS is the conic hull of S,
namely the set of all conic combinations of elements of S.
With obvious notation we have the cones λSt(A), λEff(A),
and λTransf(A, B). The elements on the extremal rays of the
cones are called atomic. In the following, we will use the
Greek letters to denote states and Latin letters to denote
effects. Moreover, in the rest of the paper we will not specify
the system when it is clear from the context or it is generic.

An event  is deterministic if it belongs to a singleton
test. We will denote respectively with St (A),1 Eff (A)1 and
Transf (A, B)1 the set of deterministic states, effects and
transformations for systems A and B, and we will often use
the symbols ε∣ ) and ∣e( to refer respectively to a deterministic
state and effect. Note that in convex OPTs the sets St (A)1 and
Eff (A)1 are convex. Deterministic transformations are also
called channels.

Among the properties of OPTs, a relevant one is local
discriminability [9], namely the possibility to discriminate
multipartite states only through local measurement on the
subsystems:

Definition 2 (Local discriminability). If ρ σ∣ ∣ ∈) , )AB AB
St (AB)1 are states and ρ σ∣ ≠ ∣) )AB AB, then there are two
effects ∣ ∈a( Eff(A)A and ∣ ∈b( Eff(B)B such that

Local discriminability is equivalent to
5 5 5= ⊗St (AB) St (A) St (B) [11], where now the symbol

⊗ denotes the usual tensor product of linear spaces. The
analog condition also holds for the effects. An important
consequence of local discriminability is that a transformation
 ∈ Transf(A, B) is completely specified by its action on
St(A) [9]:

   ρ ρ ρ∣ = ′ ∣ ∀ ∣ ∈ ⇒ = ′) ) ) St(A) .

We now introduce the definition of causality [11].

Definition 3 (Causal OPT). An OPT is causal if the
probability for every preparation-test ρ ρ= ∣ η∈{ )}i i and any
two observation-tests = ∣ χ∈aa {( }j j and = ∣ ξ∈bb {( }j j one
has ρ ρ η∑ ∣ = ∑ ∣ ∀ ∈χ ξ∈ ∈a b i( ) ( ),j j i k k i , namely the prob-
ability of the preparation is independent of the choice of
observation.

Causality is equivalent to no backward signaling [12],
namely within a closed circuit, the marginal probability of
outcomes for a given test  do not depend on the choice of
any test  not connected to the input of , i.e.  ⊀ . For

3 To be more precise the definition of probabilistic theory includes also the
following formal rule for the composition of events of trivial systems

⊗ = = ○p p p p p p: :i j i j i j , stating the independence of closed circuits.
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example, in the circuit of figure 1 causality implies that

       Ψ Ψ∣ = ∣i iGPr[ , , , , , , , ] Pr[ , , ].5 5

The present notion of causality is nothing but a rigorous
definition of the so-called Einstein causality. Indeed, a
corollary of no backward signaling is the no-signaling
without interaction [9]. A crucial equivalent condition for
causality of an OPT is the uniqueness of the deterministic
effect [9].

The possibility of reversing the causal arrow (by defining
backward causality or retro-causality as independence of
observation on preparation) does not add anything new con-
ceptually, since there is an isomorphism between any retro-
causal theory and a causal one, upon exchanging the roles of
input and output.

In the following we will take local discriminability for
granted. We say that a linear map  5∈ Transf (A, B) is
admissible if it locally preserves the set of states St(AC),
namely  ⊗ ⊆(St(AC)) St(BC)C . In the following we will
assume that every admissible map actually belongs to
Transf(A, B). We will refer to this last assumption as no-
restriction hypothesis4.

3. The deterministic non-causal theory

We now introduce an example of non-causal deterministic
theory. The systems will be denoted by the symbols ▹n m,
where n, m are positive integer numbers, and they enjoy the
property that 5 5▹ = ▹ = n mdimSt (n m) dimEff (n m) · .
Composition of systems is defined as

▹ ′ ▹ ′ = ▹(n m)(n m) : x y, where = ′x n n· and = ′y m m· ,
consistently with local discriminability. Notice that this defi-
nition is consistent with associativity and commutativity of
parallel composition, as well as the existence of a trivial
system = ▹I : (n m) with = =n m 1.

Denote by Γn the set of all the non-negative integer
numbers less than n, i.e. Γ = … −n: {0, , 1}n . The set of
states of the system ▹n m is defined as

α Ξ Γ Ξ Γ▹ = ∣ ∣ → ⊆Ξ fSt(n m) : { ) : and }f m n . The atomic
states of ▹St(n m) are the elements α∣ )f i,{ } with Γ→f i: { } m,

Γ∈i n. In the following we will use a special notation for the
atomic states: α α∣ = ∣) )i j f i: { } with =f i j( ) . The number of
different atomic states for ▹n m is n m· , i.e. the same as the
dimension of 5 ▹St (n m). For Ξ Υ Γ⊂, n with ∩Ξ Υ = ∅, the
states of ▹n m enjoy the property
α α α∣ + ∣ ≡ ∣ ∪Ξ Υ Ξ Υ) ) )f g h, , , , with ∪Ξ Υ Γ→h: m,

=h i f i( ) : ( ) for Ξ∈i , and =h i g i( ) : ( ) for Υ∈i . Notice that
for ∩Ξ Υ ≠ ∅, α α∣ + ∣Ξ Υ) )f g is not a valid state. We have
that a deterministic state is an element ε α∣ = ∣ Γ) : )f f , n , hence
the set of the deterministic states is

ε Γ Γ▹ = ∣ →fSt (n m) { ), : }f n m1 .
The set of states ▹St(x y) for the bipartite system

▹ = ▹ ′ ▹ ′x y (n m)(n m) is built up via the definition of
bipartite atomic states as parallel composition of single-

system atomic states α α α∣ = ∣ ⊗ ∣′ ′ ′ ′) : ) )s s t t s t s t( , ) ( , ) , with
Γ Γ Γ= × ′:x n n and Γ Γ Γ= × ′:y m m . It can be shown that this is
the only possible definition of atomic state consistent with
local discriminability (see propositions 1 and 2 in the
appendix).

Under the no-restriction hypothesis we can easily
build the set of effects for the system ▹n m from the set

▹St(n m). The atomic effects are the elements ∣′a( s s
such that α δ δ∣ =′ ′ ′ ′a( )s s t t st s t (see proposition 4 in the
appendix). In general, it can be shown that

Γ Γ▹ = ∣∣ ∈ ⊆a v EEff(n m) : {( and }v E n m, , using the defi-
nition ∣ = ∣ + ∣∪a a a( : ( (v E F v E v F, , , for ∩ = ∅E F (see
proposition 5 in the appendix). The atomic effects
are ∣ ≡ ∣′ ′a a( (s s s s,{ } . The deterministic effects are the
elements ∣ = ∣Γe a( : (v v, m , and one can verify that ε∣ =e( ) 1v f

for every ε∣ ∈ ▹) St (n m)f 1 . Indeed, one can check
that α χ χ∣ =Ξ Ξa v f v( ) : ( ) ( ( ))vE f E , with χS the indicator
function of the set S, showing that for Γ=E m, Ξ Γ= n—i.e.
for deterministic states and effects— ε∣ =e( )v f

α∣ =Γ Γa( ) 1v f, ,m n . Notice that for a generic system ▹n m
there are n different deterministic effects; since an OPT is
causal if and only if for every system there is just a single
deterministic effect [9], we conclude that the presented theory
is non-causal.

To complete the theory, we need to specify all possible
transformations. The set of transformations

▹ ▹Transf(n m, p q) is built up starting from the atomic
elements  ′

′
s s
t t with Γ Γ Γ Γ′ ′ ∈ × × ×s s t t( , , , ) n m p q defined

as  α δ δ α∣ = ∣′
′

′ ′
′

′) : )s s
t t

v v s
v

s
v

t t (see propositions 6, 7, 8, and 9
in the appendix). The other transformations belonging to

▹ ▹Transf(n m, p q) are the elements
 = ∑Ω Ω′ ∈ ′

′:f g
s t f t s

t g t s
( , ) ( )

( , ) with Ω Γ Γ⊆ ×p m, Γ Γ→f : p n, and
Γ Γ Γ× →g: p m q (see propositions 10 and 11 in the appendix).

Notice that  ≡′
′

′ ×s s
t t

s t
f g
{ } { } with =f t s( ) and ′ = ′g t s t( , ) .

The channels from ▹n m to ▹p q are the elements
 = Γ Γ×:f g f g

n p
. This completes the construction of the full

theory, which is deterministic and non-causal.
We can give now an explicit example which shows the

non-causal features of the presented theory. Let us consider a
simple case with the system ▹2 2 and the experimenter Alice.
Alice wants to prepare the system ▹2 2 by means of the
preparation test α∣ Ξ ={ )}f i, 0,1i , with Ξ = i: { }i for =i 0, 1, and
f arbitrary function from Γ2 to Γ2. She subsequently measures
the system chosing one observation test between
 = ∣Ξ =a: {( } i0 0, 0,1i and  = ∣Ξ =a: {( } i1 1, 0,1i . It can be easily
seen that the probability of preparing the state α∣ Ξ )f , i depends
on which observation Alice wants to perform. Indeed,





α α α
α

α α α
α

∣ = ∣ + ∣
= ∣ =

∣ = ∣ + ∣ =
= ∣ =

Ξ Ξ Ξ Ξ Ξ

Ξ

Ξ Ξ Ξ Ξ Ξ

Ξ

a a

e

a a

e

Pr[ ] ( ) ( )

( ) 1,

Pr[ ] ( ) ( )

( ) 0,

f f f

f

f f f

f

, 0 0 , 0 ,

0 ,

, 1 1, , 1, ,

1 ,

0 0 0 1 0

0

0 0 0 1 0

0

and similarly for the state α∣ Ξ )f , 1 .
We can moreover show how this deterministic non-cau-

sal theory violates the no-signalling without interaction, i.e.
4 In previous literature [9] the same nomenclature has been used for the cone
duality λ λ=Eff(A) St(A)*, which is a different concept.
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by means of a bipartite deterministic state an experimenter
Bob can communicate with Alice just with local measure-
ments on his own subsystem. Let us suppose that both the
systems of Alice and Bob are ▹2 2, and that they share the
bipartite deterministic state ε∣ ∈ ▹) St(4 4). Keeping the
same notation of the previous example, let us suppose that
Bob can perform the two observation test 0, 1. It can be
easily shown that, unlike in quantum theory, if ε∣ )AB is
properly chosen the state Alice sees in her subsystem without
knowing the outcome of the measurement performed by Bob
(the so-called marginal state of Alice) will depend on the
choice made by Bob. In this way Alice performing a local
observation on her own subsystem can assess the choice of
the measurement made on the other subsystem, getting
therefore information from Bob. Indeed, if Bob performs the
test 0 the marginal state of Alice will be

Let us choose as deterministic bipartite input the state
ε α α∣ = ∑ ∣ ⊗ ∣) : ) )st s t t s . We have that the marginal state of
Alice when Bob performs the test 0 is

∑
∑ ∑

ε α α

χ χ α α

∣ ∣ = ∣ ⊗ ∣

= ∣ = ∣Ξ Γ

e e

s

( ) ) ( )

(0) ( ) ) ),

B AB

st

s t t s

st

s t

s

s

0 0

0t 2

namely the deterministic state ε∣ ∈ ▹) St(2 2)h0 where h0 is
the function such that =h x( ) : 00 Γ∀ ∈x 2. Similarly, the
marginal state of Alice when Bob performs the test 1 is ε∣ )h1

—with =h x( ) : 11 ∀x∈ Γ2. Alice can distinguish between the
two marginal states ε∣ )h0 , ε∣ )h1 by means of the test 0,
assessing the choice of Bob.

The presented deterministic non-causal theory can also
be built in a constructive way [14]. It is done in two steps. The
first one consists in building a non-causal OPT through the
addition of a non-causal shell around an internal causal core
corresponding to the classical OPT, thanks to a construction
analogous to that of quantum combs in the case of quantum
theory [15, 16]. Then the resulting two-shell theory is con-
strained to be deterministic. An interesting result is that every
transformation of the probabilistic non-causal core+shell
theory can be implemented just using elements of the core
causal theory [14].

4. Discussion

In summary, in this paper we have established the logical
independence of the two notions of causality and determin-
ism, which play a crucial role in physics, and stay at the core
of the debate about foundations of quantum theory and rela-
tivity. As a legacy of classical physics the two concepts have
been often merged into a single one that is unfit for quantum
theory, thus leading to misconceptions, such as the J von
Neumann argument in Mathematical Foundations of

Quantum Mechanics (1932) that the transformation of a
quantum state… under the action of an energy operator… is
purely causal, while, on the other hand, the state … which
may measure a given quantity … undergoes in a measure-
ment a non-causal change. Here by determinism we simply
mean that the probabilities of all events are either 0 or 1,
whereas for causality we mean the usual Einstein notion,
namely no-signalling from the future. We have proved that
not only are the two notions formally independent, but also
this distinction is not vacuous, since there are indeed both
counterexamples of a theory which is causal and non-deter-
ministic and, conversely, a theory which is deterministic
and non-causal. Quantum theory provides the first example,
while the second one has been introduced in the present paper
(retro-causal deterministic theories are not a good example
of non-causal deterministic theory, due to the mentioned
isomorphism between causal and retro-causal theories).

In conclusion of this paper, we want to comment about
the relation between the notion of causality in definition 3
and the usual cause–effect relation and/or the physical
causation in the philosophical literature, e. g. as in [1, 2].
After centuries of debate it may be said with a degree of
confidence that an empirical notion of causality/causation is
missing, and in all cases the cause–effect connection is of
conterfactual nature. Causality should always be regarded as
meaningless outside a theory. Within a theory definition 3 is
the minimal requirement for the use of the term causality,
and only if a theory is causal does it make sense to identify
cause and effect, whereas in a non-causal theory the two
words are non sensical. Obviously within definition 3 the
preparation plays the role of the cause and the observation
that of the effect. Finally, we want to stress that our defi-
nition is exactly the Einsteinian one in special relativity
theory.

Appendix

In this appendix we present all the technical results which
ensure the consistency of the non-causal deterministic theory
presented in section 3.

Proposition 1. If local discriminability holds, the parallel
composition of two atomic transformations is atomic.

Proof. Let  ∈ ′Transf(A, A),  ∈ ′Transf(B, B ) be atomic
transformations between systems. Let us consider the
transformation  ⊗ ∈ ′ ′Transf(AB, AB ). Let us suppose
that  ⊗ can be decomposed as follows

for a non-trivial couple of transformations
 ≠ ∈ ′ ′0 , Transf(AB, AB ). For any state β∣ ∈) St(B),
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and any effect ∣ ∈ ′b( Eff(B ) such that  β∣ ∣ ≠b( ) 0, we have

Since the transformation  is atomic we have that the
transformations  β β∣ ∣ ∣ ∣ ∈ ′′ ′b b( ) , ( ) Transf(A, A)B B B B
must be proportional to ; in particular for any state
α∣ ∈) St(A), and any effect ∣ ∈ ′a( Eff(A) such that

 α∣ ∣ ≠a( ) 0, it must be

ðA:1Þ

ðA:2Þ

where μ βb , μ βb are constants which can depend on the choice
of β∣ ) and ∣b( . One can repeat a similar argument on the other
subsystem, getting:

ðA:3Þ

ðA:4Þ

where λ αa , λ αa are constants which can depend on the choice of
α∣ ) and ∣a( . Let us now suppose that λ =α 0a . Then we have

  λ β μ α∣ ∣ = ∣ ∣ =α βb a( ) ( ) 0,a b

for all β∣ ∣b( , ). Since by hypothesis  α∣ ∣ ≠a( ) 0, we have
μ =β 0b for all β∣ ∣b( , ), and finally this implies that

for all α β∣ ∣ ∣ ∣a b( , ( , ), ), namely, by local discriminability,
 = 0, contrarily to the hypothesis. By similar arguments we
can then prove that the coefficients λ αa , λ αa , μ βb , and μ βb are
all positive.

Comparing equation (A.1) with equation (A.3), and
equation (A.2) with equation (A.2) one obtains:

   
   λ

α
μ

β
λ

α
μ

β∣ ∣ = ∣ ∣ > ∣ ∣ = ∣ ∣ >α β α β

a b a b( ) ( )
0,

( ) ( )
0.a b a b

The previous relations show that all the ratios are
independent of the choices of α∣ ), β∣ ), ∣a( , ∣b( , i.e.

   λ α μ β= ∣ ∣ = ∣ ∣α βk a b: /( ) /( )a b and  λ= αk : /a  α∣ ∣a( )

μ β= ∣ ∣β b/( )b . Using these definitions for k and k in

equations (A.1), (A.2) one gets

for all α∣ ), β∣ ), ∣a( , ∣b( . By local discriminability this implies
   ⊗ =k , and    ⊗ =k , namely  ⊗ is

atomic. □

Proposition 2. Let α∣ ⊂ ▹Γ Γ∈ ×{ )} St(n m)s t s t( , ) n m the atomic
states of the system ▹n m; similarly let

α∣ ′ ⊂ ′ ▹ ′Γ Γ′ ′ ′ ′ ∈ ×′ ′{ )} St(n m)s t s t( , ) n m the atomic states of the
system ′ ▹ ′n m . Then, the atomic states of the composite
system ▹ = ▹ ′ ▹ ′x y : (n m)(n m) are the elements
α α∣ ⊗ ∣ ′ ′ ′) )s t s t .

Proof. By definition, the system ▹x y has ×x y atomic
states, and since ▹ = ▹ ′ ▹ ′x y (n m)(n m) we have

× = × × ′ × ′x y n m n m . Since the states
α α∣ ⊗ ∣ ′ ∈ ▹′ ′) ) St(x y)s t s t are atomic (see proposition 1),
different from each other, and their cardinality is exactly

× × ′ × ′n m n m , we conclude that they are the atomic states
of ▹St(x y). □

Proposition 3. A linear map  5∈ ▹ ▹Transf (n m, p q) is
admissible if and only if is locally admissible, i.e.
 ▹ ⊆ ▹(St(n m)) St(p q).

Proof. First, let us recall that a map  5∈ ′Transf (A, A) is
admissible if and only if  ⊗ ⊆ ′(St(AB)) St(AB)B for
every system B. Let us prove the equivalence for the
deterministic non-causal theory in two steps.

⇒( ): this implication is trivial and it always holds,
regardless of the theory involved; i.e. local admissibility can
be derived from the admissibility taking the system B to be
the trivial one I.

⇐( ): the linear map  5∈ ▹ ▹Transf (n m, p q) is
locally admissible by hypothesis, therefore for any
atomic state α∣ ▹′∈ )(n m)s s St we have  α∣ =′)s s α∣ Ξ′ ′)f ss ss

∈ ▹St(p q), where Ξ Γ Γ⊆ →′ ′f :ss ss
p q. Notice that, since

for ≠s s0 1 the state α α∣ + ∣′ ′) )s s s s0 0 1 1 is valid, then by
local admissibility also  α α α∣ + ∣ = ∣ +Ξ′ ′ ′ ′) ) )s s s s f s s s s

0 0 1 1
0 0 0 0

α∣ Ξ′ ′)f s s s s1 1 1 1 is a valid state, therefore we must have that

∩Ξ Ξ = ∅ ∀ ′ ∀ ′ ≠′ ′ s s s s, and . (A.5)s s s s
0 1 0 1

0 0 1 1

For an arbitrary system ′ ▹ ′n m , let us choose freely
the state α∣ Υ )g of the composite system

▹ = ▹ ′ ▹ ′x y : (n m)(n m). It can be expanded on the atomic
multipartite states α α∣ ⊗ ∣′ ′) )s s t t —with α∣ ▹′∈ )(n m)s s St ,

6
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α∣ ′ ′ ▹ ′′∈ )(n m)t t St —as α α α α∣ = ∑ ∣ ⊗ ∣ ′Υ ′ ′ ′ ′ ′ ′) ) )g ss tt ss tt s s t t

with α δ δ χ= Υ′ ′ ′ ′ s t: ( , )ss tt s g s t t g s t( , ) ( , )1 2
, for a couple of functions

Υ Γ→g : m1 , Υ Γ→ ′g : m2 such that
=g s t g s t g s t( , ) ( ( , ), ( , ))1 2 . On such an arbitrary multipartite

state the map  ⊗ ′ ▹ ′n m leads to a valid state of the
composite system ′ ▹ ′ = ▹ ′ ▹ ′x y : (p q)(n m):

 
 ∑

∑
∑

∑ ∑

α
α α α

α α α

α δ χ α α

δ δ χ δ χ

α α

⊗ ∣
= ∣ ⊗ ∣

= ∣ ⊗ ∣

= ∣ ⊗ ∣

=

× ∣ ⊗ ∣

Υ

Ξ

Ξ

Υ Ξ

′ ▹ ′

′ ′
′ ′ ′ ′ ▹ ′ ′

′ ′
′ ′ ′

′ ′ ′
′ ′ ′ ′ ′

′ ′ ′
′ ′ ′

′ ′

′ ′

′ ′

′ ′

v

s t v

[ ] )

) )

) )

( ) ) )

( , ) ( )

) ). (A.6)

g

ss tt

ss tt s s t t

ss tt

ss tt f t t

ss tt vv

ss tt v f v v v t t

ss tt vv

s g s t t g s t v f v

v v t t

n m

n m

( )

( , ) ( , ) ( )

ss ss

ss ss

ss ss
1 2

The most internal sum represents the valid state
α∣ ∈ ′ ▹ ′Δ′ ′) St(x y )hss ss with Δ Γ Γ→ ×′ ′ ′h :ss ss

q m , where

Δ Γ Γ⊆ ×′ ′ss
p n is defined by

χ δ χ χ=Δ Υ Ξ′′ ′x y s y x( , ) : ( , ) ( )s g s y( , )ss ss
1

, and

=′ ′ ′h x y h x y h x y( , ) : ( ( , ), ( , ))ss ss ss
1 2 , =′ ′h x y f x( , ) : ( )ss ss

1 ,
=′h x y g s y( , ) : ( , )ss

2 2 . Hence the relation of equation (A.6)
can be rewritten as   α α⊗ ∣ = ∑ ∣Υ Δ′ ▹ ′ ′ ′ ′[ ] ) )g ss hn m ss ss .
This sum represents a valid state for ′ ▹ ′St(x y ) since the
various Δ ′ss are disjoint: let us take two sets Δ ′s s0 0, Δ ′s s1 1, and
evaluate χ χ χ≡∩Δ Δ Δ Δ′ ′ ′ ′x y x y( , ) ( , )s s s s s s s s0 0 1 1 0 0 1 1 . If =s s0 1 we
have

δ δ χ χ χ
δ δ χ χ χ=

Υ Ξ Ξ

Υ Ξ Ξ

′ ′

′ ′ ′

′ ′

′ ′

s y x x

s y x x

( , ) ( ) ( )

( , ) ( ) ( )

s g s y s g s y

s s s g s y

( , ) ( , )
2

0

( , )
2

0

s s s s

s s s s

0 1 0 1 1 0 0 0 0 1

0 1 0 1 0 0 0 0 1

which is equal to zero when ′ ≠ ′s s0 1—thanks to the first
Kroneckerʼs delta. On the other hand if ≠s s0 1 we have

δ δ χ χ χ χ
δ δ χ χ χ ∩

Υ Υ Ξ Ξ

Υ Υ Ξ Ξ

′ ′

′ ′

′ ′

′ ′

s y s y x x

s y s y x

( , ) ( , ) ( ) ( )

( , ) ( , ) ( ),

s g s y s g s y

s g s y s g s y

( , ) ( , ) 0 1

( , ) ( , ) 0 1

s s s s

s s s s

0 1 0 1 1 1 0 0 1 1

0 1 0 1 1 1 0 0 1 1

which is always equal to zero thanks to equation (A.5), which
implies χ =∩Ξ Ξ′ ′ x( ) 0s s s s0 0 1 1 . □

From now on, all the admissibility proofs will be reduced
to local admissibility, thanks to proposition 3.

Proposition 4. Under the no-restriction hypothesis the atomic
effects of ▹n m are the elements ∣′a( s s of 5 ▹Eff (n m) with

Γ Γ′ ∈ ×s s( , ) n m such that α δ δ∣ =′ ′ ′ ′a( )s s t t st s t Γ∀ ∈s t, n
and Γ∀ ′ ′ ∈s t, m.

Proof. The proof goes in three simple steps: first we show that
the elements ∣′a( s s are admissible. After showing that they are
also linearly independent (therefore they span all the set

5 ▹Eff (n m)) we show that every effect ∣c( for the system
▹n m can be written as ∣ = ∑ ∣′ ′c c a( (ij ss s s with ′css non-

negative, proving that the set of atomic effects coincides with
the set ∣ Γ Γ′ ′ ∈ ×a{( }s s s s( , ) n m.

The effects ∣′a( s s are locally admissible, since for every
state α∣ Ξ )f ,

∑α χ δ α χ δ∣ = ∣ =Ξ Ξ Ξ′
′

′ ′ ′ ′a t a s( ) ( ) ( ) ( ) ,s s f

tt

t f t s s t t s f s, ( ) ( )

which is an admissible probability ∈p {0, 1}. Thanks to
proposition 3, the ∣′a( s s are admissible, and by the no-
restriction hypothesis they belong to ▹Eff(n m).

Now, let us show that a null linear combination of the
elements ∣′a( t t —say ∣ = ∑ ∣′ ′ ′c c a( (tt tt t t —necessarily has

=′c 0tt Γ∀ ∈t n, Γ∀ ′ ∈t m. Indeed, for any atomic state
α∣ ′)s s we get

∑α α= ∣ = ∣ =′
′

′ ′ ′ ′c c a c0 ( ) ( ) ,s s

tt

tt t t s s ss

for every ′s s, , i.e. all the ∣′a( t t are linearly independent.
We have that the number of different effects ∣ ▹′∈a( (n m)t t Eff
is n m· , as many as 5 ▹ =dimSt (n m) 5dimEff

▹ = n m(n m) · : we conclude that the effects
∣ ∈ ▹′a( Eff(n m)t t span the whole linear space

5 ▹Eff (n m).
The third step is easily proven noticing that an arbitrary

effect ∣ = ∑ ∣′ ′ ′c c a( (tt tt t t is a {0, 1}-functional over the
states. Since α∣ =c c( )i j ij Γ∀ ∈i n, Γ∀ ∈j m, we conclude
that every effect is a conic combination of the elements ∣′a( t t

with coefficients 0 or 1. Since linear combination with
negative coefficients is forbidden we conclude that all the
effects ∣′a( t t are atomic. For the same reason, there are no
other atomic effects in ▹Eff(n m). □

Proposition 5. Under the no-restriction hypothesis the effects
of the system ▹n m are the elements ∣ = ∑ ∣∈a a( : (v E i E v i, ,
with Γ∈i n, Γ⊆E m.

Proof. The proof proceeds in two steps. First of all we prove
that the elements 5∣ ∈ ▹a( Eff (n m)v E, are valid effects for
the system ▹n m. Then we prove that there are no further
effects in ▹Eff(n m).

We only need to prove that the elements
5∣ ∈ ▹a( Eff (n m)vE are locally admissible, and therefore

they are admissible by proposition 3. Finally, this implies
that they belong to ▹Eff(n m) thanks to the no-restriction
hypothesis.

The effects ∣a( v E, are locally admissible, since for every
state α∣ Ξ )f , we have

α χ χ∣ =Ξ Ξa f v v( ) ( ( )) ( ),v E f E, ,

which is an admissible probability ∈p {0, 1}.
Now let us prove that there are no other effects apart

from ∣a( vE . Given an effect ∣ ∈ ▹c( Eff(n m), thanks to
proposition 4 we know it can be expanded over the atomic
effects ∣′a( t t as ∣ = ∑ ∣′ ′ ′c c a( (tt tt t t with =′c 0, 1tt , Γ∈t n,
and Γ′ ∈t m. Suppose by contradiction that there exists a valid
effect ∣ = ∑ ∣′ ′ ′c c a( (tt tt t t with = =′ ′c c 1ij i j for some j, ′j and
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≠ ′i i . Let us take the deterministic state ε∣ ∈ ▹) St(n m)f

with =f i j( ) and ′ = ′f i j( ) ; we have that ε∣ ⩾c( ) 2f , an
absurd. □

Proposition 6. Under the no-restriction hypothesis, the linear
maps  5∈ ▹ ▹′

′ Transf (n m, p q)s s
t t with

Γ Γ Γ Γ′ ′ ∈ × × ×s s t t( , , , ) n m p q such that

 α δ δ α∣ = ∣′
′

′ ′ ′ ′) )s s
t t

v v sv s v t t , are valid transformations.

Proof. We just need to check that the maps  ′
′

s s
t t are locally

admissible, and then by proposition 3 and the no-restriction
hypothesis, we conclude that they actually belong to

▹ ▹Transf(n m, p q). Indeed, for every state α∣ Ξ )f , , we have

 α χ δ α∣ = ∣Ξ Ξ′
′

′ ′s) ( ) ),s s
t t

f s f s t t( )

which is a valid state of ▹p q. □

Proposition 7. The transformations
 ∈ ▹ ▹′

′ Transf(n m, p q)s s
t t are linearly independent.

Proof. Let us show that a null linear combination of the
transformations  ∈ ▹ ▹′

′ Transf(n m, p q)s s
t t —say

 = ∑ ′ ′ ′ ′ ′
′css tt ss tt s s

t t —necessarily has =′ ′c 0ss tt , for all
Γ∈s n, Γ′ ∈s m, Γ∈t p, Γ′ ∈t q. Indeed, for any couple

α∣ ∈ ▹′) St(n m)i i , ∣ ▹′∈a( (p q)j j St we have

 α= ∣ ∣′ ′= ′ ′a0 ( ) ,j j i i c ii jj

for every Γ Γ Γ Γ′ ′ ∈ × × ×i i j j( , , , ) n m p q, i.e. the transforma-

tions  ∈ ▹ ▹′
′ Transf(n m, p q)s s

t t are linearly indepen-
dent. □

Proposition 8. The transformations
 ∈ ▹ ▹′

′ Transf(n m, p q)s s
t t are atomic.

Proof. Let us suppose by contradiction that the transformation
 ′

′
s s
t t is not atomic, namely   = +′

′
s s
t t for some

  ∈ ▹ ▹, Transf(n m, p q). For an arbitrary state
α∣ ∈ ▹Ξ ) St(n m)f we have that

 α χ δ α∣ = ∣Ξ Ξ′
′

′ ′s) ( ) )s s
t t

f s f s t t, ( ) ,

  α α α∣ = ∣ = ∑ ∣Ξ ′ ′ ′c) ) )f ss ss s s, ,

  α α α∣ = ∣ = ∑ ∣Ξ ′ ′ ′c) ) )f ss ss s s, , where we have
expanded the states  α α∣ ∣ ∈ ▹), ) St(p q) over the
atomic states α∣ ′)s s of the system ▹p q. By hypothesis we
have   α α α∣ = ∣ + ∣Ξ Ξ Ξ′

′ ) ) )s s
t t

f f f , namely

 ∑ ∑χ δ α α α∣ = ∣ + ∣Ξ ′ ′
′

′ ′
′

′ ′s c c( ) ) ) ).s f s t t

ss
ss s s

ss
ss s s( )

Since the atomic states α∣ ′)s s are linearly independent we

have that the previous relation can be rewritten as

 
 

χ δ+ = = ′ = ′
+ =

Ξ′ ′ ′

′ ′

c c s t st s

c c

( ) if

0 otherwise.

ss ss s f s

ss ss

( )

Since   =′ ′c c, 0, 1ss ss , we conclude from the second relation
that  = =′ ′c c 0ss ss if ≠t s or ′ ≠ ′t s , while the first leads to

 χ δ= Ξ′ ′c s( )tt s f s( ) and
 =′c 0tt (or the other way round). Since

the initial state α∣ ∈ ▹Ξ ) St(n m)f is arbitrary we conclude

that  = +′
′ 0s s

t t (or  = +′
′ 0s s

t t ), i.e.  ′
′

s s
t t is atomic. □

Proposition 9. There are no atomic transformations in
▹ ▹Transf(n m, p q) other than  ′

′
s s
t t .

Proof. Since the dimension of 5 ▹ ▹Transf (n m, p q) is
5 5▹ × ▹ = × × ×n m p qdimSt (n m) dimSt (p q) , and the

number of (linearly independent) atomic transformations  ′
′

s s
t t

is × × ×n m p q we conclude that such atomic maps span
the entire space of linear transformations between the two
linear spaces of states.

Now let us suppose by contradiction that there exists
another atomic transformation  ∈ ▹ ▹Transf(n m, p q),
different from any of  ′

′
s s
t t . Since the maps  ′

′
s s
t t span all the

space, we expand  over them:

 ∑=
′ ′

′
′

′
′c .

ss tt
tt
ss

s s
t t

Since  is atomic, it has to lie out of the cone built from the
transformations  ′

′
s s
t t ; hence at least one of the coefficients ′

′ctt
ss

is negative. Since  α∣ ∣ =′ ′ ′
′a c( )t t s s tt

ss is a probability, we
have that ⩽ ⩽′

′c0 1tt
ss , i.e. there are no atomic transforma-

tions other than  ′
′

s s
t t . □

Proposition 10. If the no-restriction hypothesis holds, the
transformations 5 ▹ ▹ ∋ =ΩTransf (n m, p q) :f g ∑ Ω′ ∈s t( , )

 ′
′

f t s
t g t s

( )
( , ) with Ω Γ Γ⊆ ×p m, Γ Γ→f : p n, and Γ ×g: p

Γ Γ→m q actually belong to ▹ ▹Transf(n m, p q).

Proof. By proposition 3 and the no-restriction hypothesis, we
just need to show that the linear maps  Ω

f g are locally
admissible.

For an arbitrary state α∣ Ξ )h, we have

 ∑

∑∑

α α

χ χ δ α

∣ = ∣

= ′ ∣ ′

Ω Ξ
Ω

Ξ

Ω Ξ

′ ∈
′
′

′
′s t f t

) )

( , ) ( ( )) ).

f g
h

s t
f t s
t g t s

h

s t

s h f t t g t s

,

( , )
( )
( , )

,

( ( )) ( , )

The internal sum represents the state α∣ ∈ ▹Υ′ ′) St(p q)gs s with
Γ Γ→′g :s p q, = ′′g x g s x( ) : ( , )s and the set Υ Γ⊆′s p defined by

χ χ χ δ= ′Υ Ω Ξ ′′ x s x f x( ) : ( , ) ( ( )) s h f x( ( ))s
. The whole sum

α∑ ∣ Υ′ ′ ′)s gs s represents a valid state of ▹p q, indeed for every
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′ ≠ ′s s0 1 the sets Υ ′s0
, Υ ′s1

are disjoint since

χ χ χ

χ χ χ δ δ
χ χ χ δ δ

=

= ′ ′
= ′ ′

∩Υ Υ Υ Υ

Ω Ω Ξ

Ω Ω Ξ

′ ′

′ ′ ′

′ ′ ′ ′
x x x

s x s x f x

s x s x f x

( ) ( ) ( )

( , ) ( , ) ( ( ))

( , ) ( , ) ( ( )) ,

s h f x s h f x

s h f x s s

0 1
2

( ( )) ( ( ))

0 1
2

( ( ))

s s s s0 1 0 1

0 1

0 0 1

which is equal to zero when ′ ≠ ′s s0 1 thanks to the last
Kroneckerʼs delta. □

Proposition 11. All the elements of ▹ ▹Transf(n m, p q)
have necessarily the form:  = ∑Ω Ω′ ∈ ′

′:f g
s t f t s

t g t s
( , ) ( )

( , ) with
Ω Γ Γ⊆ ×p m, Γ Γ→f : p n, and Γ Γ Γ× →g: p m q.

Proof. Given a generic transformation  = ∑ ′ ′ ′ ′ ′
′css tt ss tt s s

t t ,
we have that  α∣ ∣ =′ ′ ′ ′a c( )j j i i ii jj . Since ′ ′cii jj is a probability
in a deterministic theory, we have = ∨ =′ ′ ′ ′c c( 0) ( 1)ss tt ss tt ,

Γ Γ Γ Γ∀ ′ ′ ∈ × × ×s s t t( , , , ) n m p q.
By contradiction, let us suppose that the transformation

 = ∑ ′ ′ ′ ′ ′
′css tt ss tt s s

t t with = =′ ′ ′ ′c c 1ii jj ki jl with ≠i k , ′ ≠ ′j l .
Let Γ Γ→h: n m with = ′h x i( ) Γ∀ ∈x n, then we have

 ε∣ ∣ ⩾e( ) 2j h , i.e. an absurd.
In such a way we have not ruled out the case

∑ Ω′ ∈ ′ ′
′

s t f t s s
t g t s

( , ) ( , )
( , ) . A transformation of this last form must

have a couple of coefficients such that = =′ ′ ′ ′c c 1ii jj kk jl with
≠i k, ′ ≠ ′i k , ′ ≠ ′j l , otherwise the functional dependence of

f on the variable ′s would be trivial. Let Γ Γ→h: n m with
= ′h i i( ) , = ′h k k( ) ; then we have  ε∣ ∣ ⩾e( ) 2j h , i.e. again

an absurd. □
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