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Superbroadcasting of Mixed States
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We derive the optimal universal broadcasting for mixed states of qubits. We show that the no-
broadcasting theorem cannot be generalized to more than a single input copy. Moreover, for four or
more input copies it is even possible to purify the input states while broadcasting. We name such purifying
broadcasting superbroadcasting.
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Broadcasting—namely, distributing information over
many users—suffers in-principle limitations when the in-
formation is quantum, and this poses a critical issue in
quantum information theory for distributed processing and
networked communications. For pure states an ideal broad-
casting coincides with the so-called quantum cloning, cor-
responding to an ideal device capable of producing from a
finite number N of copies of the same state j i a larger
number M>N of output copies of the same state, for a
given set of input states. Since such a transformation is not
isometric, it cannot be achieved by any physical machine
on a generally nonorthogonal set of states (this is essen-
tially the content of the no-cloning theorem [1–3]). The
situation is more involved when the states are mixed, since
from the point of view of each single user, the local mixed
state is indistinguishable from the partial trace of an en-
tangled state, and there are infinitely many joint states
corresponding to ideal broadcasting. For this reason in
the literature [4] the word broadcasting is used technically
to denote a map whose output has identical local states,
versus the word cloning used for the case of tensor product
of identical states.

Since ideal cloning is not possible, the quantum infor-
mation encoded on pure states can be broadcast only
approximately, and this posed the problem of optimizing
the broadcasting, e.g., by maximizing an input-output fi-
delity equally well on all pure states. In the literature this
kind of optimized broadcasting is called optimal universal
cloning [5–8]. For mixed states the no-cloning theorem is
not logically sufficient to forbid ideal broadcasting. In
Ref. [4] the impossibility of broadcasting has been proved
in the case of one input copy and two output copies for a set
of density operators generally nonmutually commuting.
Later, in the literature (see, for example, Ref. [9]) this
result has been often implicitly considered as the general-
ization of the no-cloning theorem to the case of mixed
input states. In the present Letter we will show that this
assertion cannot be generalized to more than a single input
copy. In particular, for numbers of input copies N � 4 the
no-broadcasting theorem does not hold, and it is even
possible to purify while broadcasting. We named such a
procedure superbroadcasting (see Fig. 1).
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We now present the theoretical derivation of our result.
Let us consider a general broadcasting channel from N

to M copies, namely, a completely positive (CP) trace-
preserving map from states on H in _�H �N to states on
H out _�H �M that is invariant under permutations of input
copies and of output copies. Moreover, we take the broad-
casting to be universal, namely, the broadcasting map B is
covariant under the group of unitary transformations of H ,
more precisely,

B �U�N��NUy�N	 � U�MB���N	Uy�M: (1)

We will restrict attention to qubits, namely H ’ C2. Upon
using the Choi-Jamiolkowsky representation [10]

RB � B � I�jIiihhIj	; B�Q	 � Trin ��Iout �Q
�	RB;

(2)

where Q denotes a state on H in, and RB is a positive
operator on H out �H in, the covariance condition (1) is
equivalent to invariance of RB under the group representa-
tion U�M

g �U��N
g , Ug denoting the j � 1

2 representation,
for g 2 SU�2	 [the symbol jIii denotes the maximally
entangled vector jIii � �njni � jni, and the superscript �
denotes transposition with respect to the orthonormal basis
fjnig]. In the Choi-Jamiolkowsky representation the trace-
preserving condition on the CP map reads

Tr out �RB � Iin; (3)

where Iin denotes the identity on H in. For the unitary
group SU�2	 the complex conjugate representation of
any unitary representation, say, Vg, is unitarily equivalent
to the direct representation, i.e., V�

g � CVgC
y, under the

�-rotation C around the y axis. The explicit form of C
actually depends on the particular representation Vg: for
the tensor representation U�N

g one has C � i��N
y . It is then

convenient to rewrite the map as follows

B �Q	 � Trin ��Iout � ~Q	SB (4)

with
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FIG. 1. With four or more input copies the no-broadcasting
theorem can be violated. One can actually increase the purity of
local states while broadcasting, corresponding to a stretching of
the Bloch vector. In this purifying broadcasting mechanism,
called superbroadcasting, the available information on the state
of the input copies cannot increase due to the detrimental
correlations among the output copies.
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~Q _�CQ�Cy; SB _��Iout � C	RB�Iout � Cy	; (5)

and now covariance of the CP map B corresponds to
invariance of SB under the representation U��N�M	

g . A
tensor product representation U�L

g decomposes into irre-
ducible components according to the Wedderburn decom-
position of spaces

H �L �
ML=2

j�hhL=2ii

H j � Cdj ; (6)

where hhxii denotes the fractional part of x (i.e., hhL=2ii �
0 for L even and hhL=2ii � 1=2 for L odd), and the mul-
tiplicity dj can be evaluated by recurrence on L by add-
ing a qubit at a time, giving dj �

2j�1
L=2�j�1 �

L
L=2�j	 [11].

Equation (6) is also called Clebsch-Gordan series. The
spaces H j and Cdj are called representation and multi-
plicity spaces, respectively. With the above decomposition
the group representation writesU�L

g � �L=2j�hhL=2iiU
�j	
g � Idj ,

whereas an operator invariant under U�L
g has the form

�L=2j�hhL=2iiIj �W
�j	, Ij denoting the identity over the repre-

sentation space H j, and W�j	 an operator on the multi-
plicity space Cdj . On the other hand, an operator invariant
under the permutation group PL of the L copies of the
representation has the form �L=2j�hhL=2iiZj � Idj , where Zj is
any operator on the representation space H j (this is the so-
called Schur-Weyl duality) [12]. Since the operator SB is
invariant under PM � PN it must be of the form SB �

�M=2j�hhM=2ii �
N=2
l�hhN=2ii Sjl � Idj � Idl , where Sjl is a positive

operator over H j �H l. By further decomposing H j �

H l � �
j�l
J�jj�ljH J into invariant subspaces and imposing

invariance of SB under U��M�N	
g , one obtains the general
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form

SM �
MM=2

j�hhM=2ii

MN=2
l�hhN=2ii

Mj�l
J�jj�lj

sj;l;JP
�j;l	
J � Idj � Idl ; (7)

for positive coefficients sj;l;J, P
�j;l	
J denoting the orthogonal

projector over the irreducible representation J coming
from the couple j; l.

The trace preservation condition is now equivalent to

Trout �SM�
XM=2

j�hhM=2ii

MN=2
l�hhN=2ii

�Trj

� Mj�l
J�jj�lj

djsj;l;JP
�j;l	
J

�
�Idl � Iin: (8)

Since Trj �P
�j;l	
J  is invariant under U�l	

g , one can easily see

that Trj �P
�j;l	
J  � 2J�1

2l�1 Il, whence the latter condition be-
comes

MN=2
l�hhN=2ii

XM=2
j�hhM=2ii

Xj�l
J�jj�lj

djsj;l;J
2J� 1

2l� 1
Il � Idl � Iin; (9)

namely,

XM=2
j�hhM=2ii

Xj�l
J�jj�lj

djsj;l;J
2J� 1

2l� 1
� 1; 8 hhN=2ii � l�

N
2
;

(10)

with positive coefficients sj;l;J.
Upon writing the input state ~Q � ~��N in the Bloch

vector form, we have the decomposition

~� �N �

�
1
2�I � r ~k � ~�	

�
�N

� �r�r�	N=2
MN=2

l�hhN=2ii

Xl
n��l

�
r�
r�

�
n
jlnihlnj � Idl ; (11)

where 0 � r � 1, and r� _� 1
2 �1� r	, and jlni denotes the

eigenstate of the angular momentum component ~k � ~J�l	

with eigenvalue n. From Eq. (10) we see that the broad-
casting channels from N to M make a convex set, with the
extreme points classified by functions ’ and � corre-
sponding to a given choice j � ’�l	, J � ��l	, namely,
to the choice of coefficients

s�’;�	
j;l;J �

2l� 1

2J� 1

1

dj
%j;’�l	%J;��l	; (12)

or to the Choi-Jamiolkowsky operator

S�’;�	
M �

MN=2
l�hhN=2ii

2l� 1

2��l	 � 1

1

d’�l	
P�’�l	;l	
��l	 � Id’�l	 � Idl :

(13)
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Using the expression (13) for extremal broadcasting channels and Eq. (11) for the input state we can evaluate the output
state

M �’;�	���N	 � �r�r�	N=2
MN=2

l�hhN=2ii

2l� 1

2��l	 � 1

1

d’�l	

Xl
n��l

�
r�
r�

�
n
Trl ��I’�l	 � jlnihlnj	P�’�l	;l	

��l	  � Id’�l	 : (14)

In terms of Clebsch-Gordan coefficients, this can be rewritten as

M �’;�	��
�N	� �r�r�	

N=2
XN=2

l�hhN=2ii

2l�1

2��l	�1

dl
d’�l	

Xl
n��l

�
r�
r�

�
n X’�l	
m��’�l	

h��l	m�nj’�l	m;lni2j’�l	mih’�l	mj�Id’�l	 : (15)
Now, we are interested in the single output copy, which is
the broadcast state. This is given by the partial trace of
Eq. (15) over M� 1 copies. The evaluation of the partial
trace needs the matching between the Wedderburn decom-
position and the qubit tensor product representation.
According to the Schur-Weyl duality the multiplicity space
of the Wedderburn decomposition supports a unitary irre-
ducible representation of the permutation group PM of the
M qubits. Therefore, one has the identity for any operator
Xj on H j � Cdj

X
l2PM

�lXj�
y
l �

M!

dj
TrCdj �Xj � Idj ; (16)

where�l denotes the generic permutation. In particular, for
Xj � jjmihjmj � j1ih1j, j1i denoting any fixed vector of
Cdj , one has

jjmihjmj � Idj �
dj
M!

X
l2PM

�lXj�
y
l : (17)

Clearly, one can always choose the given vector of the
irreducible representation as [11]

jjmi � j1i � jjmi � j��i
��M=2	�j; (18)

where j��i denotes the singlet. We can then take the
partial trace of both sides of Eq. (17). For each permuta-
tion, say, �s, which exchanges the last qubit with one
belonging to a singlet, one has TrM�1��sXj�

y
s  �

I
2 , and

we have �M� 2j	�M� 1	! permutations of this kind. On
the other hand, for each permutation, say, �m, which
exchanges the last qubit with one belonging to the j
multiplet, one has TrM�1 ��mXj�

y
m � Trj��1=2	 �jjmi�

hjmj and there are 2j�M� 1	! permutations of this kind.
Using the explicit form of the Clebsch-Gordan coefficients
one can derive the following identity

Tr j��1=2	 �jjmihjmj �
1

2
I �

m
2j
~k � ~�: (19)

Substituting the above formula when performing the par-
tial trace of both sides of Eq. (17), one obtains the follow-
ing expression for the single copy output density operator
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�0
�’;�	�r	 � �r�r�	

N=2

�
XN=2

l�hhN=2ii

2l� 1

2��l	 � 1
dl

X’�l	
m��’�l	

Xl
n��l

�
r�
r�

�
n

�h��l	m� nj’�l	m; lni2
1

2

�
I �

2m
M

~k � ~�
�
:

(20)

We are now in position to analyze the broadcast state, in
particular, its Bloch vector. In Eq. (20) we see that the input
and the output Bloch vectors are parallel, and clearly
��0; � � 0. On the other hand, the length of the output
Bloch vector is given by

r0
�’;�	

�r	� �r�r�	N=2
XN=2

l�hhN=2ii

2l�1

2��l	�1
dl

X’�l	
m��’�l	

�
Xl
n��l

�
r�
r�

�
n
h��l	m�nj’�l	m;lni2

2m
M
: (21)

We are now interested in maximizing the length of the
output Bloch vector. Since r0 is linear on the convex set of
broadcasting channels, we just need to consider extremal
maps and look for the maximum r0opt�r	 �
max�’;�	fr0�’;�	

�r	g. It is possible to prove [13] that the
maximal r0

�’;�	
�r	 is achieved for ’�l	 � M=2 and for

��l	 � jl� M
2 j, independently of r. For pure states these

optimal maps coincide with those of optimal universal
cloning transformations [5–8]. Also, it can be shown
[13] that our optimal map gives the same results achievable
using the procedure of Ref. [11].

As an example, in Fig. 2 we plot the scaling factor
p�r	 � r0opt�r	=r for the maps maximizing r0 for N � 5
and several values of M. One can see that for a wide range
of values of r, one has p�r	 � 1. This corresponds to a
purification of the local states, and since one also has a
number of copies at the output M>N greater than the
number of inputs, it is actually a broadcasting with simul-
taneous purification, what we call superbroadcasting.
Clearly, for M � N one has more purification than for
M>N, corresponding to the purification protocol [11].
The superbroadcasting occurs for N � 4 input copies. As a
rule, one has purification below some value r��N;M	 of the
input purity for a bounded number M � M��N	 of the out-
put copies. In Fig. 3 we plot r��N;N � 1	 and
r��N;M��N	� versus the number of input copies N. After
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FIG. 2. The scaling factor p�r	 vs r. On the left: for M �
N � 1 and N � 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 (from the
bottom to the top). On the right: for N � 5 and 5 � M � 9
(from the top to the bottom).
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the threshold at N � 4 corresponding to r��4; 5	 � 0:787,
one has a monotonic increase of r��N;N � 1	 and
r��N;M��N	� toward asymptotic purity, with power laws
2N�2 and N�1, respectively. For larger M one has a gen-
erally higher threshold for N, and smaller values of
r��N;M	. For N � 4 one has superbroadcasting for up to
M � 7, for N � 5 up to M � 21, and for N � 6 up to
M � 1. Notice that perfect broadcasting [corresponding
to p�r	 � 1] can be achieved under the same conditions of
superbroadcasting (clearly generally by a different map).
We remind the reader that we have considered broadcast-
ing of universally covariant sets of mixed states. Indeed,
for smaller sets of input states it can be shown that super-
broadcasting is possible also for N � 3 input copies (as for
equatorial phase-covariant mixed states [13]), and, for even
smaller sets, one cannot exclude superbroadcasting also
for N � 2.

In conclusion, we have derived the optimal universal
broadcasting for mixed states of qubits, optimal in the
sense that it maximizes the purity of local states. For
pure states and M>N the map coincides with the optimal
universal cloning transformation [5–8], whereas for N �
M it is equivalent to the optimal purification map of
Ref. [11]. Thus our optimal broadcasting map generalizes/
10 15 20 30 50 70 100
N

0.001

0.01

0.1

1
1−r

FIG. 3. Logarithmic plot vs N of 1� r��N;N � 1	 (bottom)
and 1� r��N;M��N	� (top), where r��N;M	 denotes the maxi-
mum purity for which one has superbroadcasting from N to M
copies, M��N	 being the maximum number of output copies for
N inputs (the area above the lower plot is the region in which
superbroadcasting is possible). The two asymptotic behaviors
are N�1 and 2N�2.
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interpolates between optimal cloning and optimal purifica-
tion. We have shown that the no-broadcasting theorem [4]
for noncommuting mixed states cannot be generalized to
more than a single input copy, and for N � 4 input copies
one can even purify the state while broadcasting, below
some maximum value of the purity. We named such a
phenomenon superbroadcasting. The possibility of super-
broadcasting does not correspond to an increase of the
available information about the original input state �,
due to detrimental correlations between the local broadcast
copies, which does not allow us to exploit their statistics.
This phenomenon was already noticed in Ref. [14], in an
asymptotic analysis of the rate of optimal purification
procedures. Notice that the correlations alone among qu-
bits cannot be erased by any physical process, since the
decorrelating map which sends a state to the tensor product
of its partial traces is nonlinear. From the point of view of
single users our broadcasting protocol is actually a purifi-
cation (for states sufficiently mixed), and the same broad-
casting process transfers some noise from the local states to
the correlations between them. We think that the present
result opens new interesting perspectives in the ability of
distributing quantum information in a noisy environment.
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