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Dipartimento di Fisica “A. Volta”, via Bassi 6, I-27100 Pavia, Italy

Summary. — ”Quantum Tomography” is a general method for estimating arbitrary
ensemble averages—including the density matrix itself— of any quantum system,
through the measurement of a ”quorum” of observables. Recently the method has
been extended to the estimation of the matrix form of any ”quantum operation” (i.
e. quantum evolutions and measurements), using only a fixed ”entangled state” as
the input state, the entangled state playing the role of all possible input states in
”quantum parallel”. A short review of the theory is presented, with a list of examples
of applications for different quantum systems, and with particular focus on quantum
optics. Some results from experiments in quantum optics are reexamined. Hnts and
perspectives on future developments are given at the end of the paper.

1. – Introduction

The possibility of “measuring the quantum state” has puzzled physicists in the last

half century, since the earlier theoretical studies of Fano [1]. W. Pauli [2] in a footnote of

the Encyclopedia of Physics wrote: “The mathematical problem, as to whether for given

functions W (~x) and W (~p), the wave function ψ, if such function exists, is always uniquely
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determined, has still not been investigated in all its generality” [by W (~x) and W (~p) Pauli

denoted the probability distributions of position and momentum of a particle, respec-

tively, whereas, for “if such function exists” he meant if W (~x) and W (~p) are compatible].

The answer to Pauli’s question was clearly negative, since the probabilities W (~x) and

W (~p) alone cannot determine the correlation between position and momentum, which

could be obtained, for example, from a joint measurement of ~x and ~p. However, a joint

measurement of two conjugated observables would exhibit an additional noise equivalent

to an effective quantum efficiency η = 1/2 [3], and as we will see in Subsect. 3
.
6, this is

exactly the threshold below which the density matrix cannot be measured.

That more than two observables—actually a complete set of them—are needed for a

complete determination of the density matrix was clear from the work of Fano [1], and it is

explicitly remarked in the book of d’Espagnat [4]. However, since it is difficult to devise

concretely measurable observables—other than position, momentum and energy(1)—

such a fundamental problem—measuring the quantum state!—has remained at the level

of mere speculation for many years. The issue finally entered the realm of experiments

only less than ten years ago, after the pioneering experiments by Raymer’s group [6], in

the domain of quantum optics.

What is so special with quantum optics? In quantum optics, differently from quan-

tum mechanics of particles, there is the unique opportunity of measuring all possible

linear combinations of position Q and momentum P of a harmonic oscillator, which

is represented by a single mode of the electromagnetic field. As explained in Subsect.

3
.
1, such measurement can be achieved by means of a balanced homodyne detector,

which measures the quadrature Xφ = 1
2

(

a†eiφ + ae−iφ
)

of a field mode at any desired

phase φ with respect to the local oscillator (LO) [as usual a denotes the annihilator of

the field mode]. The first technique to reconstruct the density matrix from homodyne

measurements—so called homodyne tomography—originated from the observation by Vo-

gel and Risken [7] that the collection of probability distributions {p(x, φ)} for φ ∈ [0, π) is

just the Radon transform—i.e. the tomography—of the Wigner function W . Therefore,

by a Radon transform inversion, one can obtain W , and from W the matrix elements

of the density operator ρ. This first method, however, was affected by uncontrollable

approximations, since, as we will see in Subsect. 3
.
4, the inversion of the Radon trans-

form needs an analytic knowledge of the probability distributions p(x, φ). In practice, the

method works quite well for many photons and quasi-classical states, but fails when truly

nonclassical states need to be determined experimentally. The main tool, however—i.e.

using homodyning—still remains good: one only needs to avoid the intermediate step of

determining W .

In Ref.[8] the first exact technique was given for measuring experimentally the ma-

trix elements of ρ in the photon-number representation, by just averaging functions of

homodyne data. After that, the method was further simplified [9], and the feasibility for

(1) One can adopt a Schrödinger-picture point of view, and instead of measuring varying oper-
ators one can vary the state itself in a controlled way, and eventually measure its energy[5]
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nonunit quantum efficiency η < 1 at detectors—above some bounds—was established.

Further improvements in the numerical algorithms made the method so simple an fast

that it could be implemented easily on small PCs, and the method became quite popular

in the laboratories (for the earlier progresses and improvements the reader can see the

old review [10]). In the meanwhile there has been an explosion of interest on the subject

of measuring quantum states, with hundreds of papers, both theoretical and experimen-

tal. The exact homodyne method has been implemented experimentally to measure the

photon statistics of a semiconductor laser [11], and the density matrix of a squeezed

vacuum[12]. The success of optical homodyne tomography has then stimulated the de-

velopment of state reconstruction procedures for atomic beams [13], the experimental

determination of the vibrational state of a molecule [14], of an ensemble of helium atoms

[15], and of a single ion in a Paul trap [16], and different state reconstruction methods

have been proposed (for an extensive list of references, see Ref. [17]).

In more recent years, the method of quantum tomography has been generalized to

the estimation of an arbitrary observable of the field [18], with any number of modes

[19], and, finally, to arbitrary quantum systems via group theory [20, 21, 22], and with

a general method for unbiasing noise [20, 21]. The use of maximum likelihood strategies

[23] has made possible to reduce dramatically the number of experimental data (by a

factor 103 ÷ 105!) with negligible bias for most practical cases of interest. Finally, very

recently, a method for tomographic estimation of the unknown quantum operation [24]

of a quantum device has been presented [25], exploiting the “quantum parallelism” of an

entangled input state which plays the role of a “superposition of all possible input states”.

By another kind of quantum parallelism, one can also estimate the ensemble average of

all operators of a quantum system by measuring only one fixed ”universal” observable

on an extended Hilbert space [26]—this is, in a sense, a sort of Quantum Holography.

Eventually, after the last developments [27], now for first time we are in position of getting

a first theory [28] that is based on the mathematical method of “frames” of operators.

This theory will allow to classify all possible “quorums” of observables—i. e. those sets

of observables that are sufficient to make a tomography of a given quantum system—and

generally we will be able to answer to the question: “given a set of available measuring

devices and transformation apparatuses, which ensemble averages can be estimated with

them? Are they sufficient for a tomographic estimation?”

After briefly giving the general definition of what is quantum tomography in Sect.

2, I will review the method of quantum homodyne tomography in Sect. 3, with a brief

introduction to balanced homodyne detection in Subsect. 3
.
1. The first Radon transform

approach is explained in Subsect. 3
.
2, with the connection to the imaging procedure—

which gave the name “tomography” to the method—in Subsect. 3
.
3. The limitations

of the Radon transform approach are explained in Subsect. 3
.
4, and after, in Subsect.

3
.
5 the exact tomographic approach is given, with the method for unbiasing noise from

nonunit quantum efficiency in Subsect. 3
.
6. A very short account of the multimode

homodyne tomography is given in Subsect. 3
.
7, and improvements based on adaptive

techniques and on the maximum likelihood strategy are rapidly introduced in Subsect.

3
.
8, with some basic hints on how to estimate the ensemble averages of unbounded
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operators in Subsect. 3
.
9. Most of the technical difficulties in homodyne tomography

are due to the infinite dimension of the Hilbert space: for finite dimensions everything

becomes particularly easy, as in the case of the Pauli tomography given in Sect. 4. With

modern words from quantum information theory, we would regard homodyne tomography

as the tomography of the so-called continuous variables, and the Pauli tomography as

the tomography for qubits. Some experimental results from Ref. [34] on tomography of

a twin-beam from parametric downconversion of vacuum are reported in Sect. 5. The

general idea of how to perform tomography of a quantum device is explained in Sect. 6.

Finally, Sect. 7 concludes the paper, with some basic hints and perspectives on a future

general theory.

2. – Definition of the problem

Quantum Tomography is a method for estimating the ensemble average 〈O〉 of arbi-

trary operator O of a quantum system from measurements of a set—so-called quorum—of

noncommuting observables. Obviously, the observables of the quorum are measured each

at a time, with many repeated measurements on a ensemble of equally prepared quantum

systems. In the practical situation we want the possibility of unbiasing the estimation

from instrumental noise. Moreover, for concrete applications, we need to extend it to

the estimation of the matrix of the ”quantum operation” that describes the evolution in

a device: this will really make quantum tomography a kind of quantum radiography of

devices.

How can we make it? Let’s first analyze the original method that originated from

Ref. [7], and then see what we can really do better than that.

3. – Homodyne tomography, i.e. tomography for continuous variables

3
.
1. The balanced homodyne detector. – The balanced homodyne detector is certainly

one of the most powerful experimental tools that we have in quantum optics. In fact, by

the homodyne detector we can measure all quadratures Xφ = 1
2

(

a†eiφ + ae−iφ
)

of a field

mode at any desired phase φ with respect to the local oscillator, which is equivalent to

measuring all possible linear combinations of position and momentum of the field mode

harmonic oscillator. This is a truly fortunate situation, which does not occur in the

quantum mechanics of massive particles.

The basic scheme of the balanced homodyne detector is depicted in Fig. 1. The

“signal” mode a is combined by means of a 50-50 beam splitter with a “local oscillator”

(LO) mode b operating at the same frequency of a, and prepared in an “intense” coherent

state |z〉. The signal mode a here plays the role of the “system of interest”, whereas

mode b has to be considered as a part of the apparatus. The field at the output of the

beam splitter is described by a “sum” mode c = (a + b)/
√

2 and a “difference” mode

d = (a− b)/
√

2. These output modes are detected by two identical photodetectors, and

finally the difference of the photocurrents (at zero frequency) is rescaled by 2|z|. Thus,
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a

b (LO) |z〉

c

d

I1 = c†c

I2 = d†d

ID = I1 − I2

Fig. 1. – Basic scheme of a balanced homodyne detection.

the output of the detector is given by the following operator:

ID =
c†c− d†d

2|z| =
a†b+ b†a

2|z| .(1)

From Eq. (1) we can immediately see that the expectation of the output ID coincides

with the expectation of the quadrature Xφ, with φ = arg(z) being the tunable phase of

the LO. Moreover, one can prove rigorously [10] that in the strong-LO limit z → ∞ the

full probability distribution of the output current ID approaches exactly the full probability

distribution p(x, φ) of the quadrature Xφ, and this for any state ρ of the signal mode a.

In practice, we need 〈a†a〉 � |z|2, which is what we actually have in the real experiment.

However, what we don’t have in the laboratory is a couple of perfect photodetectors for

the two modes c and d. On the other hand, since the input currents of the two detectors

are both very intense, we can use in practice detectors that behave very linearly for

intense inputs, without dark current, and with the only practical limitation that they

have non perfect quantum efficiency, namely that they don’t reveal all input photons. The

fraction of actually revealed photons is called quantum efficiency, and is usually denoted

by η. A detector that is sensitive to a very small number of photons—as an avalanche

detector—not only saturates soon and exhibits dark current, but it also has very low

quantum efficiency. On the contrary, for intense inputs we can easily find detectors that

have really good quantum efficiencies, such as η ' .9 or better. A theoretical analysis

based on the Mandel-Kelley-Kleiner formula [3] shows that in all respects a detector with

quantum efficiency η < 1 is equivalent to an ideal detector preceded by a beam splitter

with transmissivity η, and the output becomes a Bernoulli convolution of the response

of an ideal detector. In the balanced homodyne detector with two identical detectors

with η < 1, the output photocurrent is reduced by a factor η, and in order to measure

the quadrature Xφ we now need to re-scale the photocurrent by 2|z|η. Then, one can

prove rigorously [3] that the probability distribution of the output photocurrent is just

the Gaussian convolution of the ideal distribution, with rms ∆η ≡
√

(1 − η)/(4η). In

the actual case, further losses in the beam splitter will also reduce the overall effective

η, and reasonable values that can be achieved are η = .7 ÷ .8.
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3
.
2. Homodyne Tomography. – The first hint [7] on how to reconstruct the density

matrix of a field mode from homodyne measurements originated from the simple fact

that the collection of probability distributions {p(x, φ)} for variable phase φ ∈ [0, π) is

just the Radon transform of the Wigner function W (α, α), α ∈ C, namely

p(x, φ) =

∫ +∞

−∞
dyW

(

(x+ iy)eiφ, (x− iy)e−iφ
)

,(2)

where the Wigner function is defined as usual as

W (α, α) =

∫

d2λ

π2
eαλ̄−ᾱλTr

(

ρeλa
†−λ̄a

)

.(3)

Then, from the set of probability distributions {p(x, φ)} one can obtain the Wigner

function by inversion of Eq. (2), namely

W (α, α) =

∫ +∞

−∞

dk|k|
4

∫ π

0

dφ

π

∫ +∞

−∞
dx p(x, φ) exp [ik(x− αφ)] ,(4)

where αφ = <(αe−iφ), and from the knowledge of W (α, α) one can recover the matrix

elements of the density operator ρ via the Fourier transform steps

〈x+ x′|ρ|x− x′〉 =

∫ ∞

−∞
dy e2ix

′yW (x+ iy, x− iy),(5)

ρnm =

√

21−n−m

πn!m!

∫ ∞

−∞
dx

∫ ∞

−∞
dx′e−(x2+x′2)Hn(

√
2x)Hm(

√
2x′) 〈x|ρ|x′〉.(6)

3
.
3. Why the name “tomography”?. – The essential problem of tomographic imaging

is to recover a distribution of mass in a 2-d slab from a finite collection of one dimen-

Fig. 2. – Illustration of the tomographic reconstruction of a 2-d image (here two holes in a
uniform background) from its 1-d transmission profiles at different angles φ.

sional projections at different angles φ. The situation is schematically sketched in Fig. 2,



Tomographic methods for universal estimation in quantum optics 7

where the distribution of mass describes two circular holes in a uniform background. The

tomographic machine—-for example, an X-ray equipment—collects many stripe-photos

of the sample from various directions φ, and then numerically performs a mathematical

transform in order to reconstruct the density of mass from its radial profiles at different

φ. The word “tomography” is customary to denote such imaging procedure starting

from radial projections. The situation is strictly analogous to the inversion from the

set of quadrature probability distributions {p(x, φ)} to the Wigner function W (α, ᾱ),

where now p(x, φ) plays the role of the radial projection at angle φ, and W (α, ᾱ) is

the density of mass on C. The collection of all projections {p(x, φ)} at different φ’s

is called Radon transform. The reconstruction of the “image” W (α, ᾱ) from its “pro-

jections” p(x, φ)—this reconstruction is also called “back-projection”—is given by the

inverse Radon transform (4).

3
.
4. Limitations of the Radon transform method . – Suppose that now you want to

obtain the Wigner function as an average over φ and over homodyne outcomes. This

means that in Eq. (4) the integral over k must be exchanged with those over φ and x,

obtaining

W (α, α) =

∫ π

0

dφ

π

∫ +∞

−∞
dx p(x, φ)

[

−1

2
P

1

(x − αφ)2

]

,(7)

P
1

z2
≡ lim

ε→0+
< 1

(z + iε)2
, αφ = <(αe−iφ),(8)

P denoting the Cauchy principal value. Now W (α, α) is the “expectation” (7) of an

unbounded function over data distributed according to p(x, φ), with random phase φ.

However, we cannot estimate the expectation as an average over experimental data,

since the averaged function is unbounded, and does not satisfy the conditions for the

central limit theorem. Averaging unbounded functions (non square summable) leads to

results that never approach any definite value for large number of data, with rms errors

that do not re-scale as as the inverse square root of the number of data. An example of

this behaviour from computer simulated data is given in Fig. 3.

Fig. 3. – Numerical simulation of experiments for estimating the “average” of f(x) = 1
x

with
uniform probability p(x) = 1/2 for x ∈ [−1, 1].
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3
.
5. The exact method. – In the Radon transform method the Radon transform in-

version is achieved by analytical approximations of the histograms of data and/or intro-

ducing a cut-off, for example the parameter ε in Eq. (8). The effect on the final matrix

elements via Eqs. (5) and (6) is a bias, whose size depends on ρ and on the number of

data. However, since the state ρ is unknown—we want to determine it!—we have now

a logical loophole. Worst than that, we don’t have any formula to bound the bias, and

without any analytical control we cannot realize that, for example, there are bounds for

quantum efficiency, as we will see in Subsect. 3
.
6.

The main idea at the basis of the exact method is that the unbounded kernel to be

averaged is an artifact of passing through the Wigner function via the Radon transform

inversion. Why then not bypass the evaluation of W (α, α) and go directly to the matrix

elements? As you will see soon, in this way not only one gets a method that has no

approximation, but also one can recognize the route for generalizing the method to the

estimation of any ensemble average for any quantum system. Before deriving the exact

method we want to emphasize that for infinite-dimensional Hilbert spaces, as the one of

the harmonic oscillator, an experimental knowledge of the density matrix elements ρnm
doesn’t necessarily provide an estimate of the ensemble average of any desired observable.

In fact, if we try to obtain the ensemble average 〈H〉 of the operator H by summing the

series 〈H〉 =
∑

nm ρnmHnm with the matrix elements Hnm of H and the measured

matrix elements ρnm of the state, we incur into the situation that even though the series

for 〈H〉 converges in average, it may not converge in error! In fact, as we will see soon,

the statistical errors ε2[ρnm] do not vanish for large n,m, and, as a result, for any finite

number of data when we increase the series cut-off we ultimately get an unbounded

error ε2[H ] '
∑

nm ε
2[ρnm] |Hnm|2 . This is the case, for example, of the photon-number

operatorH = a†a. Again, we are repeating the same error of the inverse Radon transform

method: we don’t need to estimate the ensemble average of H via the matrix elements

ρnm, but we can bypass the estimation of ρnm and directly evaluate a function whose

average over data and over φ gives us the desired expectation value. Let’s see now how

this can be done.

The displacement operators D(α) = eαa
†−α∗a for α ∈ C are an orthonormal basis (in

the DIrac sense) for the Hilbert space of Hilbert-Schmidt operators, since Tr[D†(β)D(α)] =

πδ(2)(α− β). This means that we have the expansion

H =

∫

d2α

π
Tr[HD(α)]D†(α).(9)

By changing to polar variables: α = i
2ke

iφ and using the symmetry Xφ+π = −Xφ we

can rewrite Eq. (9) as follows

H =

∫ π

0

dφ

π

∫ +∞

−∞

dk |k|
4

Tr[HeikXφ ]e−ikXφ .(10)

By taking the ensemble average of both sides, and exchanging the integrals with the en-

semble average, we can rewrite Eq. (10) as the double average of an estimator EH (Xφ, φ)
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over φ and over the ensemble

〈H〉 =

∫ π

0

dφ

π
〈EH (Xφ, φ)〉, EH(x, φ)

.
=

∫ +∞

−∞

dk |k|
4

Tr[HeikXφ ]e−ikx.(11)

Notice that now, thanks to the trace with H , the last integral doesn’t necessarily diverge

as the one that gives the Cauchy principal value in Eq. (8). In a general theory[28] one

classifies the operators H which gives a bounded trace in Eq. (11), and such that the

integral over k converges. In the present simple form the method will need H at least

Hilbert-Schmidt—which is the case of the outer product |n >< m|that gives the estimate

of the matrix elements ρnm. However, as we will see in Subsect. 3
.
9, the method can be

extended to a large class of unbounded operators. Anyway, just for the matrix elements

ρnm, bypassing the step of the Wigner function has awarded us with a kernel that is now

perfectly bounded, as we will see in the next subsection.

3
.
6. Unbiasing noise from nonunit quantum efficiency. – As we have seen in Subsec-

tion 3
.
1, the effect of nonunit quantum efficiency of the homodyne detector resultsin an

additional Gaussian noise. This can be conveniently described as a completely positive

(CP) map Γη , whose effect on the displacement operators is

Γη(exp(ikXφ)) = exp(ikXφ)e
− 1−η

8η
k2

,

Now, we can “un-bias” the tomographic estimation by finding an new estimatorE
(η)
H (x, φ)

such that

〈H〉 =

∫ π

0

dφ

π
〈E(η)

H (Xφ, φ)〉η ,(12)

where 〈. . .〉η denotes the experimental ensemble average, i. e. with the noisy state

Γτη(ρ)— Γτη denoting the same noise map in the Schrődinger picture, i.e. the dual or

transposed map. One has:

E
(η)
H (Xφ, φ)

.
= Γ−1

η {EH(Xφ)} =

∫ +∞

−∞

dk|k|
4

e
1−η
8η

k2

Tr[HeikXφ ]e−ikXφ .(13)

As an example, consider the case of the estimation of the matrix element ρn+d,n, i.e.

H = |n〉〈n+ d|. The derivation of the estimator is the following

E
(η)
|n〉〈n+d|(x, φ) =

∫ ∞

−∞

dk|k|
4

e−
2η−1
8η

k2−ikx〈n+ d|:eikXφ :|n〉 =

= eid(φ+ π
2 )

√

n!

(n+ d)!

∫ ∞

−∞
dk|k|e−

2η−1
2η

k2−i2kxkdLdn(k
2),(14)

where : . . . : denotes normal ordering, and Ldn(x) are generalized Laguerre polynomials.

Notice that the estimator is bounded only for η > ηb = 1
2 , and below this bound the
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method would give unbounded statistical errors. However, as we have seen in Subsect.

3
.
1, this bound is well below the values that are reasonably achieved in the lab. Here I

want to remind that a more efficient algorithm than the estimator in Eq. (14) is available,

which uses factorization formulas that hold for η = 1 [29, 30], and then un-biases the noise

from quantum efficiency via the inversion of the Bernoulli convolution, which obviously

holds above the bound ηb = 1
2 (see Ref. [10] for a concise review).

Fig. 4. – Tomographic reconstruction of the photon-number probability P (n) ≡ ρnn of a squeezed
vacuum (〈a†a〉 = 1) with detection efficiency η = .8. Homodyne data are computer simulated.
(Here we averaged over 27 phases using 200 blocks of 5×105 data for each phase.) Experimental
errors (confidence intervals) are represented by the gray-shaded thickness of horizontal lines.
Left: unbiased reconstruction. Right: reconstruction without unbiasing. From Ref. [9].

An example of application of the estimator (14) to computer simulated data is given

in Fig. 4 for the diagonal matrix element ρnn. There we can see that the price to be

paid for the unbiasing procedure is to have statistical errors exponentially growing for

increasingly large n. On the contrary, for η = 1—with no need for unbiasing—the error

would remain bonded for n → ∞. In Ref. [31] the following asymptotic estimate of the

statistical variance has been derived for n� (2η − 1)/(1 − η) and η < 1:

σ2[ρn,n] '
η3/2

√

π(1 − η)n
e

1
4n

(2η−1)2

η(1−η)

(

1

2η − 1

)2n+1

,(15)

whereas for η = 1 one simply has σ2[ρn,n] '
√

2. The mechanism that develops statistical

errors is related to the oscillations of the estimator E
(η)
|n〉〈n+d|(x, φ). In Fig. 5 we report

some plots of the estimator E
(η)
|n〉〈n+d|(x, φ) for different values of n, d and η. One can see

that for d = 0—along the diagonal of the matrix—the range of the kernel is bounded

between -2 and 2, and increases slowly versus the distance d from the diagonal. For

increasing n and d the kernel oscillates fast, with an increasing number of nodes. Fast

oscillations make the average of the kernel—hence the measured value ρnm—more sen-

sitive to fluctuations of the quadrature outcomes x, producing confidence intervals that

increase versus n and d. On the other hand, the bounded range makes errors themselves

bounded, so they saturate at large n’s. For η < 1 the behavior of the kernel changes

dramatically, with its range increasing versus n more and more fast as η approaches the

lower bound η = 0.5.
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Fig. 5. – Estimator E
(η)
|n〉〈n+d|(x, φ) of the matrix element ρn+d,n for φ = 0 and different values

of n, d and η.

3
.
7. Multimode homodyne tomography. – For many radiation modes the method is eas-

ily generalized by using estimators for tensor product operators which are just the prod-

ucts of their relative estimators, i. e. for M + 1 modes one has E
(η)

⊗M
n=0On

({xn}, {φn}) =
∏M
n=0E

(η)
On

(xn, φn). The case of a general operator is then obtained by linearity. However,

this method needs a separate measurement—whence a separate LO—for each mode. In

Ref. [19] it is shown that it is possible to estimate the expectation value of any multi-

mode observable using a single LO, scanning all possible linear combinations of modes

on the LO. For the derivation of the method the reader is addressed to Ref. [19]. Here

we just report the final form of the estimator

E
(η)
O (x; θ, ψ) =

κM+1

M !

∫ ∞

0

dt e−t+2i
√
κtx tM Tr{O: exp[−2i

√
κtX(θ, ψ)]:} ,(16)

where : . . . : denotes normal ordering, κ = 2η
2η−1 , and the quadrature operator X(θ, ψ) is

the following linear combination of single-mode quadratures

X(θ, ψ) =
1

2

[

A†(θ, ψ) +A(θ, ψ)
]

, A(θ, ψ) =

M
∑

l=0

e−iψlul(θ)al ,(17)

al and a†l (l = 0, . . . ,M) being the annihilation and creation operators of the M + 1

independent modes with [al, a
†
l′ ] = δll′ , θ = (θ0, . . . , θM ) and ψ = (ψ0, . . . , ψM ) de-

noting hyper-polar angles with ranges ψl ∈ [0, 2π] and θl ∈ [0, π/2], whereas ul(θ) are

hyper-spherical coordinates, such that
∑M

l=0 u
2
l (θ) = 1, with u0(θ) = cos θ1, u1(θ) =

sin θ1 cos θ2, u2(θ) = sin θ1 sin θ2 cos θ3, . . . , uM−1(θ) = sin θ1 sin θ2 . . . sin θM−1 cos θM ,

uM (θ) = sin θ1 sin θ2 . . . sin θM−1 sin θM . The ensemble average 〈O〉 is obtained by aver-

aging the estimator (16) as follows

〈O〉 =

∫

dµ[ψ]

∫

dµ[θ] p(x, θ, ψ)E
(η)
O (x, θ, ψ) ,(18)
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where

∫

dµ[ψ]
.
=

M
∏

l=0

∫ 2π

0

dψl
2π

,(19)

and

∫

dµ[θ]
.
= 2MM !

M
∏

l=1

∫ π/2

0

dθl sin2(M−l)+1 θl cos θl.(20)

In particular, one can estimate the matrix element 〈{nl}|R|{ml}〉 of the joint density

matrix of modes. This will be obtained by averaging the following estimator

E
(η)
|{ml}〉〈{nl}|(x, θ, ψ) = e−i

�
M
l=0(nl−ml)ψl

κM+1

M !

M
∏

l=0

{

[−i
√
κul(θ)]

µl−νl

√

νl!

µl!

}

×
∫ ∞

0

dt e−t+2i
√
κtx tM+ 1

2

� M
l=0(µl−νl)

M
∏

l=0

Lµl−νl
νl

[κu2
l (θ)t] ,(21)

where µl = max(ml, nl), and νl = min(ml, nl). In Fig. 6 we report some computer

simulations from Ref. [19].

3
.
8. Improving statistical errors. – One of the major limitations of the unbiased tomo-

graphic methods are the quite large statistical errors. These, however, can be improved

in several ways. One way of doing it is to exploit the non unicity of the estimators. As

a matter of fact, there are “null estimators”, which have zero expectation for arbitrary

probability pη(x, φ), i. e. for arbitrary state ρ. Null estimators are obtained as linear

combinations of the following functions[32]

Nk,n(Xφ) = Xk
φe

±i(k+2+2n)φ k, n ≥ 0 .(22)

The reader can easily check that they have zero average over φ, independently of ρ. Hence,

for every operator O one actually has an equivalence class of infinitely many unbiased

estimators, which differ by a linear combination of functions Nk,n. It is then possible to

minimize the rms error in the equivalence class by the least-squares method, obtaining

in this way an optimal estimator that is adapted to the particular set of experimental

data. For details on this adaptive techniques, the reader is addressed to Ref. [32].

Another relevant strategy, the maximum likelihood method, can be used for measuring

unknown parameters of a unitary transformation on a given state, or for measuring the

matrix elements of the density operator itself [23]. For the full joint density matrix R of

many modes, for example, the likelihood function would be

L =
∑

i

log

(

∑

kn

|〈{ni}|TW †
k |~xi〉λi

|2
)

− β Tr(T †T ),(23)
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Fig. 6. – The two top figures show the two-mode photon-number probability p(n,m) of the twin-
beam state of parametric fluorescence for average number of photons per beam n = |ξ|2/(1 −
|ξ|2) = 5 obtained by a Monte Carlo simulation with random parameters cos 2θ, ψ1, and ψ2.
The first figure is for quantum efficiency η = 1, and a sample of 106 data. The second figure is
for quantum efficiency η = .9, and a sample of 5 ∗ 106 data. The two bottom figures show the
tomographic reconstruction of the matrix elements Cn,m ≡ a〈m|b〈m|Ψ〉〈Ψ|n〉a|n〉b of the twin-
beam state |Ψ〉 from parametric fluorescence for average number of photons per beam n = 2.
The first figure if for quantum efficiency η = .9, and a sample of 106 data, the second figure is
for quantum efficiency η = .8, and a sample of 3 ∗ 106 data. From Ref. [19].

where β is a Lagrange multiplier, T is an upper triangular matrix in the Cholesky de-

composition R = T †T of the density matrix R, Wk—with
∑

kW
†
kWk = I—are a Kraus

decomposition Γ[A] =
∑

kW
†
kAWk of the noise Γ (e. g. quantum efficiency), |{nj}〉 de-

notes the photon-number basis, |~xi〉 is the joint eigenvector of quadratures, and, finally,

the sum runs over the label of the ith measurement. Notice that, since this method

needs a finite parametrization of the density matrix, we need to truncate the Hilbert

space dimension. However, much smaller statistical errors are obtained, as compared to

the averaging procedure of Subsect. 3
.
6. An example of computer-simulated experiment

is given in Fig. 7. We want to emphasize that the maximum likelihood method is not

always the optimal solution of the tomographic problem, since it suffers from some major
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limitations. Besides being biased due to the Hilbert space truncation—even though the

bias can be very small if, from other methods, we know where to truncate—moreover it

cannot be generalized to the estimation of any ensemble average, but just of a set of pa-

rameters from which ρ depends. In addition, for increasing number of modes the method

has exponential complexity, since it requires a search of a maximum over all possible

matrix elements. This should be compared with the procedure of Subsect. 3
.
7, which

has polynomial (linear) complexity, and where we can estimate just one matrix element

at the time. Therefore, the maximum likelihood strategy has to be regarded more as a

complementary method of the unbiased averaging method. Finally, we want to notice

that both the adaptive and the maximum likelihood improvements can be implemented

for the general tomographic approach to arbitrary quantum system [21]: especially for

the adaptive technique the general mathematical theory that uses operator frames [28]

is particularly advantageous.

Fig. 7. – From Ref.[32]. Monte Carlo simulation of the tomographic reconstruction of the density
matrix using the maximum likelihood technique. Left: density matrix for a coherent state with
〈a†a〉 = 1; Right: squeezed vacuum with 〈a†a〉 = 0.5. Both: 100 phases with 5000 data each.
Hilbert space truncation set to NH = 5; quantum efficiency η = 0.8.

3
.
9. Estimating ensemble averages of unbounded operators. – The estimator (11),

which comes from the expansion (9) with displacement operators, cannot be used for

estimating the ensemble average of operators which are not traceclass. However, one

can easily recognize that, for example, an estimator for the field operator a is given

by E
(η)
a (Xφ, φ) = 2eiφXφ, and for the number operator easily one gets E

(η)

a†a
(Xφ, φ) =

2X2
φ − 1

2η . By analytic methods Richter [33] has found the following estimators for nor-

mal ordered monomials in the field operators [then extended to η < 1 and s-ordering in

Ref. [20]]:

E
(η)

:a†man:s
(Xφ, φ) = ei(n−m)φ

Hm+n

(
√

2
sη
Xφ

)

(

n+m
n

)

(

√

2/sη

)n+m , sη
.
= s− 1 + η−1(24)
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where s is the usual ordering parameter (s = 1 for normal ordering, s = −1 for anti-

normal ordering, s = 0 for symmetrical ordering), and Hn(x) denote Hermite polynomi-

als. From Eq. (24) one can recover a general expansion for a large class of unbounded

operators, that here we report just for η = 1:

H =

∫ π

0

dφ

π

∫ ∞

−∞
dtTr[HG†

t,φ]Ft,φ, Ft,φ =
1√
2π

exp
[

2(Xφ + it/2)2
]

,(25)

G†
t,φ =

d

dt
t

∫ 1

0

dθ exp[θ(1 − θ)t2] e−ie
iφθta† |0〉〈0| e−ie−iφ(1−θ)ta.

A systematic method for finding estimators for unbounded operators is provided by the

general theory based on operator frames [28], and is based on the idea of changing the

definition of the scalar product in the operator expansion (see Sect. 7).

4. – Pauli Tomography, i.e. tomography for qubits

Most of the technical difficulties in homodyne tomography are due to the infinite

dimension of the Hilbert space. For finite dimensions everything becomes particularly

easy, since we can expand operators without concerns about convergence of the expansion.

The easiest case is the two-state system—the qubit—for which the Pauli matrices with

the identity {I, σx, σy, σz} play the role of an orthonormal basis of observables. One has

the following simple expansion

H =
1

2
{~σ · Tr[~σH ] + I Tr[H ]}.(26)

which gives the tomographic estimation

〈H〉 =
1

3

∑

α=x,y,z

〈EH (σα;α)〉, EH (σα;α) =
3

2
Tr[Hσα]σα +

1

2
Tr[H ].(27)

It is also very simple to unbias the noise, by just inverting its CP map. For example, for

a Pauli channel with 0 ≤ p ≤ 1

Γp(H) = (1 − p)H +
p

2
Tr[H ],(28)

one has the unbiased estimator

E
(p)
H (σα;α) =

3

2(1 − p)
Tr[Hσα]σα +

1

2
Tr[H ].(29)

In quantum optics it is easy to implement a qubit using single photon polarized states,

such as | ↑〉 ≡ |1〉h|0〉v and | ↓〉 ≡ |0〉h|1〉v, where h and v denote horizontal and vertical

polarization, respectively. The Pauli matrix σz is then given by the difference σz = h†h−
v†v of the horizontally and the vertically polarized photon-numbers, and can be measured
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by means of a polarizing beam splitter as in Fig. 8. Similarly, it is easy to recognize

that the other two Pauli matrices can be measured by the same scheme, preceded by

a suitably oriented λ/4 plate, which transforms vertical-horizontal polarization to left-

right circular polarization for σy, and to orthogonal linear diagonal polarizations for σx
(see Fig. 8). This easily follows from the identities σy = ei

π
4 σxσze

−iπ
4 σx , which gives

e−i
π
4 σx |1〉h|0〉v = 1√

2
[|1〉h|0〉v − i|0〉h|1〉v] ≡ |1〉l|0〉r, and σx = e−i

π
4 σyσze

iπ
4 σy , which

gives ei
π
4 σy |1〉h|0〉v = 1√

2
[|1〉h|0〉v − |0〉h|1〉v ] ≡ |1〉↗↙|0〉↖↘.
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Fig. 8. – Pauli-matrix detectors for photon-polarization qubits (PBS=polarizing beam splitter).

5. – Some experimental results

We will not attempt to review the large experimental literature in quantum tomogra-

phy: some references have been given in the introduction of this paper. Here we want to

report some results from the experiment of Ref. [34]—in which the present author has

been involved—since the same apparatus can be used for a homodyne tomography of a

quantum device, as explained in Sect. 6. The experiment of Ref. [34] is actually the first

measurement of the joint photon-number probability distribution for a two-mode quan-

tum state created by a nondegenerate optical parametric amplifier. In this experiment,

the two twin beams are detected separately by two balanced-homodyne detectors. A

schematic of the experimental setup is reported in Fig. 9, and some experimental results

are reported in Fig. 10. As expected for parametric fluorescence, the experiment has

shown a measured joint photon-number probability distribution that exhibited up to 1.9

dB of quantum correlation between the two modes, with thermal marginal distributions.

6. – Tomography of a Quantum Device

What does mean performing the quantum tomography of a device? In quantum

mechanics, the most general input-output evolution of a device—such as an amplifier, a

measuring apparatus, etc.—is described by the state transformation

ρ→ E(ρ)

Tr
(

E(ρ)
) ,(30)

which occurs with probability p = Tr[E(ρ)] ≤ 1. The quantum operation E is a linear,

trace-decreasing CP map.
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Fig. 9. – A schematic of the experimental setup. NOPA: non-degenerate optical parametric
amplifier; LOs: local oscillators; PBS: polarizing beam splitter; LPFs: low-pass filters; BPF:
band-pass filter; G: electronic amplifier. Electronics in the two channels are identical. From
Ref. [34].

Suppose now that we have a quantum device that performs an unknown quantum

operation E, and we want to determine it experimentally. How can we do? We can

exploit the one-to-one correspondence E ↔ RE between quantum operations and positive

operators RE on two copies of the Hilbert space H ⊗ H, which is given by

RE = E ⊗ IH(|I〉〉〈〈I |), E(ρ) = Tr2[I ⊗ ρτRE],(31)

where for an operator O =
∑

nmOnm|n〉〈m| the notation Oτ means the transposed

operator Oτ =
∑

nmOmn|n〉〈m| with respect to some pre-chosen orthonormal basis

{|n〉}. In the following we will use the notation |A〉〉 .
=
∑

nmAnm|n〉 ⊗ |m〉 ≡ A⊗ I |I〉〉 ≡
I⊗Aτ |I〉〉 that exploits the isomorphism between the Hilbert space of the Hilbert-Schmidt

operators A,B ∈ HS(H) with scalar product 〈A,B〉 .
= Tr[A†B] and the Hilbert space of

bipartite vectors |A〉〉, |B〉〉 ∈ H ⊗ H, where one has 〈〈A|B〉〉 ≡ 〈A,B〉. If we consider an

entangled input state |ψ〉〉 and operate with E only on one party of |ψ〉〉, as in Fig. 11,

the output state is the joint density matrix

|ψ〉〉〈〈ψ| → R(ψ) ≡ E ⊗ I(|ψ〉〉〈〈ψ|).(32)

But now the quantum operation E is in correspondence with RE ≡ R(ψ) for ψ = I , and

for invertible ψ the two matrices R(I) and R(ψ) are connected as follows

R(I) = (I ⊗ ψ−1τ )R(ψ)(I ⊗ ψ−1∗),(33)

where O∗ =
∑

nmO
∗
nm|n〉〈m| denotes the conjugate operator of O∗ =

∑

nmOnm|n〉〈m|.
Hence, the quantum operation (four-index) matrix RE can be obtained by estimating via

a joint double quantum tomography the following output ensemble averages

〈〈i, j|R(I)|l, k〉〉 =
〈

|l〉〈i| ⊗ |ψ−1∗(k)〉〈ψ−1∗(j)|
〉

,(34)
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Fig. 10. – Top: Measured joint photon-number probability distributions for the twin-beam state.
Bottom left: Difference photon-number distributions corresponding to the left graphs. Filled
circles: experimental data; solid lines: theoretical predictions; dashed lines, difference photon-
number distributions for two independent coherent states with the same total mean number
of photons and n = m. 400000 samples, n = m = 1.5, N = 10. Bootom right: Marginal
distributions for the signal beam for the same data. Theoretical distributions for the same
mean photon numbers are also shown. Very similar results are obtained for the idler beam.
From Ref. [34].

where |v∗〉 denotes the conjugate vector |v∗〉 =
∑

n v
∗
n|n〉 of |v〉 =

∑

n vn|n〉.
In Fig. 12 the results from a homodyne tomography of an optical displacement of

one of the two twin beams from parametric downconversion of the vacuum are reported

from Ref. [25] for a simulated experiment, for displacement parameter z = 1, and for

some typical values of the quantum efficiency η at homodyne detectors and of the mean

thermal photon number n̄ of the twin beams. As one can see a meaningful reconstruction

of the matrix can be achieved in the given range with 106÷107 data, but this number can

be decreased of a factor 100−1000 using the tomographic maximum likelihood techniques

of Subsect. (3
.
8), however, at the expense of the complexity of the algorithm. Homodyne

quantum efficiencies and amplifier gains (for the twin beams) typical of the experimental

setup of Ref. [34] are considered. Improving quantum efficiency and increasing the

amplifier gain (toward a maximally entangled state) have the effect of making statistical
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λ

Fig. 11. – General experimental scheme of the method for the tomographic estimation of a
quantum operation. Two identical quantum systems are prepared in an entangled state |ψ〉〉. One
of the two systems undergoes the quantum operation E, whereas the other is left untouched. At
the output one makes a quantum tomographic estimation, by measuring jointly two observables
Xλ and X ′

λ from two quorums {Xλ} and {X ′
λ} of observables for the two Hilbert spaces, such

as two different quadratures of the two field modes in a two-mode homodyne tomography.

errors smaller and more uniform versus the photon labels n and m of the matrix Anm.

Meaningful reconstructions can be achieved with as few as n̄ ∼ 1 thermal photons, and

with quantum efficiency as low as η = 0.7.

7. – Conclusions and future perspectives

What is quantum tomography in general, in simple words? As a method to estimate

the ensemble average 〈H〉 of any arbitrary operator H on a Hilbert space H by using

only measurement outcomes of a quorum of observables {O(l)}, it must be essentially

a technique for expanding operators over a set of functions fn(O(l)) of the observables

Fig. 12. – From Ref.[25]. Homodyne tomography of the quantum operation corresponding to
the unitary displacement of one mode of the radiation field. Diagonal elements Dnn of the
displacement operator (shown by thin solid line on an extended abscissa range), with their
respective error bars in gray shade, compared to the theoretical probability (thick solid line).
Similar results are obtained for all upper and lower diagonals of the quantum operation matrix A.
The reconstruction has been achieved using an entangled state |ψ〉〉 at the input corresponding
to parametric downconversion of vacuum with mean thermal photon n̄ and quantum efficiency
at homodyne detectors η. Left: z = 1, n̄ = 5, η = 0.9, and 150 blocks of 104 data have been
used. Right: z = 1, n̄ = 3, η = 0.7, and 300 blocks of 2 · 105 data have been used. The plot on
the right corresponds to the same parameters of the experiment in Ref. [34].



20 Giacomo Mauro D’Ariano

{O(l)}. What makes a general theory nontrivial is the fact that the set of observables

{O(l)} generally does not span the operator space, whereas it is the set of operators

fn(O(l))—nonlinear in {O(l)}—that is complete for varying n and l. Let’s denote by

P (j) such complete set of operators. Once you have the P (j), then the problem is reduced

to the linear problem of expanding an operator as H =
∑

j〈Q†(j), H〉P (j), for a suitable

“dual” set of operators {Q(j)}. Now the point is to have a scalar product 〈A,B〉 in the

expansion that is not just the Hilbert-Schmidt 〈A,B〉 ≡ Tr[A†B], since we want to expand

also operators that are not Hilbert-Schmidt. This can be done by changing the definition

of the scalar product. The mathematical theory of frames [35, 36] is the perfect tool for

establishing completeness and for finding dual sets {Q(j)}. Notice that in most practical

situations, the non orthogonal set {P (j)} is over-complete, and there are many alternate

dual sets {Q(j)}: such non unicity is the basis for general adaptive techniques. Finally, I

want to emphasize that a general theory should also classify the operators H which have

bounded scalar product with {Q(l)} and bounded expansion H =
∑

j〈Q†(j), H〉P (j),

and also assess how these classes are restricted when a noise is unbiased. Only in this way

one would be able to say which ensemble averages can be actually estimated and which

noise can be unbiased. For the reader that is interested in these future developments, I

suggest to look on the Los Alamos ArXive for the forthcoming manuscript [28].
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