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Abstract

We solve the problem of achieving the optimal physical approximation of the transposition for pure states of arbitrary
guantum systems for finite and infinite dimensions. A unitary realization is also given for any finite dimension, which provides
the optimal quantum cloning map of the ancilla as well.
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PACS 03.67.-a; 03.65.-w

1. Introduction Moreover, one can infer from the structure of the op-
timal approximation of unphysical maps a number of
properties about different topics in quantum mechan-
ics, such as state estimation [8] and signaling [9].

In this Letter we provide the optimal approximation
of the transposition for pure states both in finite and
no-deleting [4] theorems, along with the impossibility infin.ite-dimens_ional Hilberggpaces. Transpos_ition—in
of measuring the wave-function of a single system [5], Particular,partial transposition—plays a major role
and the debated quantum bit-commitment [6]. in separabnlty criteria for blpa_r_tlte states [1_0]. _It is

A transformation which is not allowed by quantum e Simplest example of a positive map, which is not

mechanics naturally poses the problem of investigat- COMPIetely positive. In fact, such a map is antilinear
ing about the best approximation that one can achieve @1d for qubits it is related to the more familiar
in principle. Remarkably, the optimal approximation U—not transformation that maps any arbltrary .state
of a forbidden transformation may be related to the © itS orthogonal. Of course, for systems with higher
optimal procedure to perform some information tasks. dimension theU-not map is not uniquely defined,
For example, universal cloning is deeply related to the P€cause more than one state is orthogonal to a given

optimal eavesdropping in cryptographic channels [7]. ©N€: Whereas the transposition map depends on a
choice of basis.

The Letter is organized as follows. In Section 2
* Corresponding author. we derive the optimal transposition map for pure
E-mail address: msacchi@unipv.it (M.F. Sacchi). states in terms of fidelity for the case of arbitrary

The formulation of no-go theorems in quantum
information has given new insight in the structure of
the quantum theory itself. The most relevant examples
are given by the no-cloning [1,2], no-broadcasting [3],
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finite-dimensional Hilbert spaces. The derivation is Tri[|A)(B|] = AT B*,
gbtal_ned by means of group reprt_asentatlop th_eory. In Tr2[|A>> ((B|] _ Bt 4)
ection 3 we give explicitly a unitary realization of

the optimal map for any dimension. Such a unitary Where T and x denote transposition and complex
realization provides also the optimal quantum cloning Conjugation with respect to the orthonormal basis
from one to two copies. This result proves that the {li)}. The set of possible maps! can be parametrized
recent experimental scheme proposed in Ref. [11], using the isomorphism [13] between CP maps and
where the optimalU-not and two optimal clones  positive operators
rantrzcﬁirr?:tega;orbgublts sm;ultaneously by the same Ra= M T(D)(I).

, generalized to quantum systems
with arbitrary dimension. Section 3 is devoted to the M (p) = Tra[(I ® p7 )R] (%)
continuous variables case. Similarly_, as for the cloning Using Eq. (5), the expression for the fidelity writes
map, one has to restrict the covariance group under
which the map is universal. We consider the case of F=Tr[(o” ® p")Rpm], (6)
Weyl-Heisenberg group, which provides the optimal

o where Ry, is a positive operator that satisfies the
transposition map for coherent and squeezed states. M P P

constraint

Tri[Rpml = Iz, (7

because of the trace-preserving condition of the map
M. We pose the further constraint th&t is universal,
namely that it is covariant under the action of the group
p +— pl (1) SU(d). On physical grounds this means that we restrict
attention to maps that equally well approximate the
transposition, independently of the input pure state.
The covariance property for the transposition map
reads

2. Optimal transposition for finite dimension

It is well known that the transposition map

is not physical since it is not completely positive (CP).
As stated in the introduction the problem naturally
arises to find the optimal physical, i.e., CP m#&

whose output has maximal fidelity with the transposed
input. We consider pure input states, for which the M(UpUT) =U*M(p)UT, VU e SUW@), (8)

fidelity writes o . . .
y and this is equivalent to the following condition on

F =Tr[,oT./\/l(,0)]. (2) Ry [14]

We settle here some useful notation that will (U*® U*Rm(UT @ UT) = R . 9)
be used along the Letter. A generic vector in the
bipartite Hilbert space ® H, with dim(X) = d,
can be expanded on a fixed factorized orthonormal
basis aSZ,-,,_io ¥;ili)j). This naturally defines a one
to one correspondence between vectorsHire H
and linear operators inC(H). The operatory =
Y 10w li)(j| can be used to label the state as

follows Rar=caPa+csPs. (10)

Since for SUd) the representatiob/* ® U* can be
decomposed into two inequivalent irreducible repre-
sentations supported by the totally symmetric and to-
tally antisymmetric subspaces &f ® H, according

to Schur’s lemma, condition (9) implies the following
form for R x4

a-1 o The operatorsPs and P4 are the projectors on the
1w = Z wijli)j)- @) totally symmetric and totally antisymmetric spaces,
,j=0 respectively, and can be written as
In this framework one can easily verify the useful

1
identities [12] Py = 5(1 + E),
A®C|B) =|ABC"), Pa=tu—p), (11)

2
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where E denotes the swap operator df @ H,
namely E|¢)|v) = |¥)|¢) for all ¢, € H. The
trace-preserving condition in Eq. (7), along with the

positivity constraint rewrite
d+1 d—1
cs ;- +ca 5 =1 cs,ca=0. (12)

Due to the covariance condition, the fidelity is
independent of the input state Using Eq. (10) one
has
F=csTr[(p" ® ") Ps]

+ca TI’[(,OT ®,OT)PA] =cg. (13)

Upon maximizingeg with the constraints in Eq. (12),
the optimal map is obtained for

2

= =0. 14
=TT cA (14)
Correspondingly, one haky = (2/(d + 1)) Ps, and
hence

2
—— T[(I®p")P
M(p) =77 2[(I®p")Ps]
=———(I+p"). 15
y +1( +p") (15)
The optimal fidelity is then given by
2
F=—"_Tt(o" ®p")Ps] = (16)

d+1 d+1

The state in Eq. (15) coincides with the anticlone
state of Ref. [15] for the universal cloning machine
from one to two copies. Moreover, the magl is
the same as the “structural physical approximation”
of the transposition of Ref. [16]. Here, we proved
the optimality of M without assumptions, thus also
showing that the anticlone corresponds to the optimal
transposed state.

A Kraus decomposition of the map1 can be
obtained by diagonalizin@ », as follows

1
——({+E)

R
M=a¥1

d-1

> (m)(m| @ n)n|
m,n=0
+ [m){n| @ n) (m])
d-1

1
= mmnz:oumn» + [nm) (nn| + (nm)
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17)

m n

-

m,n=0

where M3, = (1//2(d + 1)) (Im)(n| + |n)(m|). The
Kraus decomposition is then given by

>

m,n=0

A Stinespring form of the map can be written
for an ancilla in the Hilbert spacK®? as follows

M(p) = (18)

m n*

M(p) =Tr23[VpVT], (19)
whereV denotes the isometry
V= Z o ® |mn)23. (20)

m,n=0

We can verify thatV is also an isometric extension
for the realization of the optimal universal cloning
from one to two copies. In fact, upon tracing out the
system 1, one obtains the optimal cloning map in the
Werner expression [17]

2
Clp)=Tru[VoV']= 7

This result also shows that the recent experimen-
tal scheme proposed in Ref. [11], where the optimal
U-not and two optimal clones are created for qubits si-
multaneously by the same machine, can be generalized
to quantum systems with arbitrary dimension. Notice
that the cloning map is basis independent, whereas the
transposition map depends on the choice of the basis,
which is reflected by the particular Stinespring exten-
sion.

In the following we explicitly derive a unitary
realization of the optimal map in Eq. (15).

P523(12®03)P523- (21)

3. Unitary realization

The isometry in Eqg. (20) provides the optimal
universal transposition map or the optimal universal
cloning from one to two copies, by tracing over
the ancilla spaces 2 and 3 or the input space 1,
respectively. Starting from the isomethy, we look
for a unitary interactiorU between the system and a
fixed preparation of the ancilla that dilat&s For the
explicit construction of the unitary dilatioti, we will
follow the general framework of Ref. [18].
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First, notice that we can rewrite Eq. (20) as

/ m)|n) + |n)|m) lm)in) + lmplm)
2
d+1
o o
Xm;c)' m)|m q>2|m q>|’ﬂ)<m@q|

_ %( 00+—ZV(S)>, (22)

where we defined the operators

d-1
Vpp =YKk & p)lk & p)ik & pl,
k=0
1 d—1
V) = 2 (ke plkeq)
k=0

+lk®q)lk® p))kdgl, (23)

with p #2¢q and p,gq =0,...,d — 1. In order to
construct a unitary realizatioti, we also define

Vay = «/_Z|k Ik ® p)lk @ q)

—lk®q)k® p))kdgl. (24)

One can easily verify that

Ty =
VooVar

vp,q,r,s,t=0,...,

VT Vs(,‘?) — Vq(,s;‘)TVs(,?) — O,
d—1,

+
V.1 Vo202 =0p1.p2IH, VP21, p2,

S S
Vq(l )rIVq(z )"2 = 541 qusrl,erH» Vg1 <r1,q2 <r,
TASOARTACO NNy SUSF SN AP 25
s1.t1 Vsa,tp = Os1,12951,02H 5 s1<t1,s2<t2, (25)

namely, the three sets

{VP,P}’ {V(S)}p<q and {V(A)}p<q

(pl{q| + (ql(pl
+ Z V(S) ML W
r,q=0 V2
p<q
" Z v g {pligl —{ql(p] (26)
r,q=0 V2
p<q

satisfies the unitarity condition
UTU=UU = I3y ® (Psyy + Payy) = Ipes.  (27)

The optimal universal transposition map can be ob-
tained as follows

M(p) =Tra3[U(p ® o) (o) U], (28)

where |¢)) € H®? is the fixed normalized totally
symmetric ancilla state

=V 71 P5232 10)21r)3 (29)

As noted above, the unitary/ provides the optimal
universal cloning as well, namely one has

Cp) =Tra[U(p @ o) (o) UT]. (30)

For qubits, i.e.d = 2, we obtain the network model
of Ref. [19], with

1000000 Q
0000O0T1GO0 0
00000GO0T10
0000O0GO0GO 1

U=lo oo 100 0 of (31)
00100000
01000000
0000100 0

and|¢)) = (1/+/6)(2|0)2/0)3 + [0)2]1)3 + |1)2/0)3).

4. Continuous variables optimal transposition

In the limit of dimensiond — oo, the fidelity
F for the universal transposition map goes to zero.

are orthogonal sets of orthogonal isometries. Hence, However, as regards infinite-dimensional systems one

the following operator
d-1

U= V,,®(plipl

p=0

can look for transposition maps that are not universal,
but covariant just for a group with reduced symmetry.
The typical covariance group for infinite-dimensional

guantum systems is the Weyl-Heisenberg group, in
the representation of displacement operafofa) =



378 F. Buscemi et al. / Physics Letters A 314 (2003) 374-379

explaa’ — a*a), with « € C, anda anda’ being

is positive. Since (0) = 1, then T{&] = 1, namelyg

the annihilation and creation operators. The covariant is a state. For the covariance condition in Eg. (33), the

transposition map acts with the same fidelity over any fidelity of the map with the StatED(oz)pDT(a)]T is

state obtained from a given pure state by application jndependent of and just depends on the seedOne
of the displacement operator with arbitrary amplitude. has

Such a covariance condition reads

M(D(@)pD' (@) = D*(@)M(p) DT (), Va eC,
(32)

which rewrites for the operatat , as follows

[D*(@) ® D*(2), RAq| =0, Ve eC. (33)

F= %Tr[(pr ®p )VERDVT. (39)

Eq. (39) is linear ing, which lies in a convex set.
The maximum fidelity is then achieved by a pure state
& =|x){(x|, and the optimal map is given by

The operatorR ¢ can be expanded on the basis of R, = %V(|X>(X| ®11)VT_ (40)

displacement operators, which are a spanning set for

Hilbert—Schmidt operators cH, namely
da [ d?
Rpm = / /—ﬂr(a B)D(@) ® D(B).  (34)

The condition in Eq. (33) is then equivalent to
/ / B r(a, ﬂ)e}/(lx+ﬁ)—y (a*+p )D(Ol) ® D(B)

dza d?B
=f7/—r(a B)D(a) ® D(B),
C C

Vy €C,

(39)

and this is possible for(a, B) = 7r(@)8%(a + B),
with r (@) complex function ofy, thus giving

d?a ¥
Rag = / 2 @b@ o D@, (36)

The trace-preserving condition {[R 4] = I> corre-
sponds to-(0) = 1. Upon introducing the 50 beam
splitter operatoV = exp{(n/4)(a‘°b — abh)], we can
write

d?a +
Ry = vf 7r(a)[D(\/§a) ® 1]V
C

_1 SVE® nHvT, (37)

and RM is positive if and only if the following

operator
( )ma) (38)

=

The vector|x) can be determined as the eigenvector
corresponding to the maximum eigenvalue of the state

Trz[VT(,OT ®p")V]. (41)

The explicit form of the map acting on a general state
o is given by

1
M(0)=ETrz[(Jl®0’)V(IX>(XI®11)VT], (42)

and provides the optimal transposition for any pure
state. We remind thaj ) depends on the seed state
Notice that for coherent states, hamely fo& |0) (0],

the optimal transposed state can be obtained as the
anticlone from the optimal covariant cloning from one
to two copies [20], with optimal fidelityF = 1/2,
generalizing the result for the finite-dimensional case.
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