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Entangled States
• Entangled states |Ψ〉〉 ∈ H ⊗ H

|Ψ〉〉 =
∑

nm

Ψnm|n〉 ⊗ |m〉.

• Matrix notation (for fixed reference basis in the two Hilbert
spaces):

A ⊗ B|C〉〉 = |AC Bᵀ〉〉,

|A〉〉
.
=

∑

nm

Anm|n〉 ⊗ |m〉 ≡ A ⊗ I|I〉〉 ≡ I ⊗ Aᵀ|I〉〉 ,



Entangled States
|I〉〉 =

∑

n

|n〉 ⊗ |n〉.

• Isomorphism HS(H) # H ⊗ H between the Hilbert space HS(H) of
Hilbert-Schmidt operators on H and H ⊗ H

〈〈A|B〉〉 ≡ Tr[A†B].

• Measure of the entanglement for pure states: von Neumann
entropy S(ρ) = −Tr[ρ ln ρ] of the local state

ρ = Tr2[|Ψ〉〉〈〈Ψ|] ≡ ΨΨ†.



Quantum Operations
• The most general state (conditioned) evolution in quantum me-

chanics:

the “quantum operation” (Kraus)

ρ →
E (ρ)

Tr[E (ρ)].

- The quantum operation E is a map on traceclass operators that
is

1. linear

2. trace-decreasing

3. completely positive

- The normalization Tr[E (ρ)] ≤ 1 is the probability that the
transformation occurs.



Complete positivity
• A map is completely positive if preserves the positivity of any state

on which it acts locally, namely, for any state R in an extended
Hilbert space H ⊗ K:

E ⊗ IK(R) ≥ 0

- Counterexample: the transposition map (with respect to some
fixed basis)

Θ(ρ) = ρᵀ

If you consider the singlet state

|Ψ〉〉 =
1√
2

[| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉] .

One check that
Rout = Θ ⊗ I (|Ψ〉〉〈〈Ψ|)

〈〈Φ|Rout|Φ〉〉 = −1

2

for

|Φ〉〉 =
1√
2

[↑〉 ⊗ | ↑〉 + | ↓〉 ⊗ | ↓〉] .



Complete positivity
• One-to-one correspondence E ↔ RE between quantum operations

on T(H) and positive operators RE on H ⊗ H:

RE = E ⊗ IH(|I〉〉〈〈I|) ,

E (ρ) = Tr2[I ⊗ ρᵀRE ] ,

• The most general form for E is (Kraus)

E (ρ) =
∑

n

KnρK†
n

,

where the operators Kn satisfy the bound

∑

n

K†
n
Kn ≤ I .



Quantum Operations: examples
1. Unitary transformations:

E (ρ) = UρU†.

2. Pure operations:
E (ρ) = AρA† ,

A contraction, i. e. ||A|| ≤ 1.

3. Mixing transformations:

E (ρ) =
∑

n

KnρK†
n
.

4. Deterministic transformations (channels):

Tr[E (ρ)] = Tr[ρ] ⇒
∑

n

K†
n
Kn = I .



How to characterize the QO of a device
• Any linear device (e.g. optical lens, amplifier) can be completely

described by a transfer matrix which gives the output vector by
matrix-multiplying the input vector.

-
Problem

: how to reconstruct the full transfer matrix of
a device?

- Answer (brute force): by scanning a basis of possible inputs,
and measuring the corresponding outputs.

Eρin ρout

.



How to characterize the QO of a device
• In quantum mechanics the inputs and outputs are density opera-

tors, and the role of the transfer matrix is played by the quantum
operation of the device (which is linear a part from a normaliza-
tion).

Eρin ρout

• We need to run a complete orthogonal basis of quantum states |n〉
(n = 0, 1, 2, . . .), along with their linear combinations 1√

2
(|n′〉 +

ik|n′′〉), with k = 0, 1, 2, 3 and i denoting the imaginary unit.

- However, the availability of a basis of states in the lab is a
very hard technological problem.



The entangled input
•

Quantum parallelism of entanglement
: a single entan-

gled input state |Ψ〉〉 is equivalent to scanning all states in
parallel.

E

|Ψ〉〉〈〈Ψ| Rout

• We need to put the entangled state at the input of the device with
two identical quantum systems prepared in an entangled state |Ψ〉〉,
and only one of the two systems undergoing the quantum operation
E , whereas the other is left untouched.



The entangled input
• In tensor-product notation this setup is expressed as the quantum

operation
Rout = E ⊗ I (|Ψ〉〉〈〈Ψ|).

where the entangled state |Ψ〉〉 is given by

|Ψ〉〉 =
∑

nm

Ψnm|n〉 ⊗ |m〉.

• For fixed state |Ψ〉〉 (Ψ full-rank) the output state Rout ≡ RE (Ψ)
is in one-to-one correspondence with the quantum operation of the
device E .



Availability of entangled inputs
• Full-rank entangled states can be easily generated in Quantum

Optics from parametric downconversion of vacuum

KTP

a

b

c

• Hamiltonian H ∝ ca†b† + h.c. where ωc = ωa + ωb.

- From input vacuum in a and b and classical pump c produces the
“twin-beam”

|Ψ〉〉 = (1 − |ξ|2)
1

2

∞∑

n=0

ξn|n〉 ⊗ |n〉

• Faithful entangled states of qubits can be generated by means of
networks of controlled-NOT gates.



Quantum Tomography
• Howto determine the output state?

Answer: using quantum tomography.

• Quantum tomography is a method to estimate the ensemble
average 〈H〉 of any arbitrary operator H on H by using only
measurement outcomes of a quorum of observables {Ol}.

- The density matrix ρij corresponds to estimating the ensemble
averages 〈|i〉〈j|〉.

• This means that any operator H can be expanded as

H =
∑

l

〈Ql, H〉Ol,

for suitable scalar product 〈, 〉 and dual set {Ql}.

• Hence, the tomographic estimation of the ensemble average 〈H〉
is obtained as double averaging over both the ensemble and the
quorum.



Quantum Tomography

• Very powerful experimental method. General approach for un-
biasing the instrumental noise. Improvements based on adaptive
techniques, maximum-likelihood strategies, etc.

• For multipartite quantum systems, simply a quorum is the tensor
product of single-system quorums: this means that, in our case,
we just need to make two local quorum measurements jointly on
the two systems.



Pauli Tomography
Pauli matrices with identity I , σx , σy , σz: orthonormal basis for
the qubit operator space:

H = 1

2
{σ · Tr[σH] + I Tr[H]} .

• Tomographic estimation:

〈H〉 = 1

3

∑

α=x,y,z

〈EH(σα; α)〉 ,

EH(σα; α) = 3

2
Tr[Hσα]σα + 1

2
Tr[H]



Pauli Tomography
• Qubit realized by polarization of single photon states.

σz = h†h − v†v,

| ↑〉 ≡ |1〉h|0〉v, | ↓〉 ≡ |0〉h|1〉v,

σy = ei π

4
σxσze

−i π

4
σx ,

e−iπ
4
σx|1〉h|0〉v =

1√
2
[|1〉h|0〉v−i|0〉h|1〉v] ≡ |1〉l|0〉r ,

σx = e−i π

4
σyσze

i π

4
σy ,

eiπ
4
σy |1〉h|0〉v =

1√
2
[|1〉h|0〉v−|0〉h|1〉v] ≡ |1〉↗↙|0〉↖↘ .



Pauli Tomography
e−iπ

4
σx|1〉h|0〉v =

1√
2
[|1〉h|0〉v − i|0〉h|1〉v] ≡ |1〉l|0〉r ,

σx = e−i π

4
σyσze

i π

4
σy ,

eiπ
4
σy |1〉h|0〉v =

1√
2
[|1〉h|0〉v − |0〉h|1〉v] ≡ |1〉↗↙|0〉↖↘ .

PBS

!z

PBS

!x,y

"/4

Figure 1: Pauli-matrix detectors for photon-polarization qubits.



Homodyne Tomography
• In quantum optics a quorum for each mode of the field is given by

the set of quadratures

Xφ =
1

2

(
a†eiφ + ae−iφ

)
.

• One has

〈H〉 =

∫ π

0

dφ

π
〈EH(Xφ; φ)〉 ,

EH(x; φ) =
1

4

∫ +∞

−∞

d k |k|Tr[HeikXφ ]e−ikx ,



Homodyne detector

!

"

!

"

a

b (LO) |z〉

c

d

I1 = c†c

I2 = d†d

ID = I1 − I2

= a†b + b†a
# 2|z|Xφ = 1

2

(
a†eiφ + ae−iφ

)

c =
1√
2

(a + b) , d =
1√
2

(a − b) .

In the strong LO limit (z → ∞) a balanced homodyne detector measures
the quadrature Xφ of the field at any desired phase φ with respect to
the local oscillator (LO).



Homodyne Tomography
〈H〉 =

∫ π

0

dφ

π
〈EH(Xφ; φ)〉 ,

EH(x; φ) =
1

4

∫ +∞

−∞

d k |k|Tr[HeikXφ ]e−ikx ,

• Analogy with the Radon transform for imaging

• A
tomography

of a two dimensional image W (α, ᾱ) is a
collection of one dimensional projections p(x; φ) at different values
of the observation angle φ.

W (α,α) =

∫ +∞

−∞

dr|r|

4

∫ π

0

dφ

π

∫ +∞

−∞

dx p(x; φ) exp [ir(x − αφ)] .



Homodyne Tomography

Measurement of the joint photon-number probability distribution of a
twin-beam: schematic of the experimental setup. NOPA, non-degenerate
optical parametric amplifier; LOs, local oscillators; PBS, polarizing beam
splitter; LPFs, low-pass filters; BPF, band-pass filter; G, electronic
amplifier. Electronics in the two channels are identical.



Homodyne Tomography
Results

Left: Measured joint

photon-number probability distribu-

tions for the twin-beam state. Right:

Difference photon number distribu-

tions corresponding to the left graphs

(filled circles, experimental data; solid

lines, theoretical predictions; dashed

lines, difference photon-number distri-

butions for two independent coherent

states with the same total mean num-

ber of photons and n = m.) (a) 400000

samples, n = m = 1.5, N = 10; (b)

240000 samples, n = 3.2, m = 3.0,

N = 18; (c) 640000 samples, n = 4.7,

m = 4.6, N = 16. The measured dis-

tributions exhibit up to 1.9 dB of quan-

tum correlation between the signal and

idler photon numbers.



Tomography of QO’s

!
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COMPUTER

Xλ

Xλ′

E

|Ψ〉〉

• General method: Two identical quantum systems are prepared
in an entangled state |Ψ〉〉. One of the two systems undergoes
the quantum operation E , whereas the other is left untouched.
At the output one makes a quantum tomographic estimation,
photocurrent by measuring jointly two random observables from
a quorum {Xλ}.

• The output state is the joint density matrix

|Ψ〉〉〈〈Ψ| → R(Ψ) ≡ E ⊗ I (|Ψ〉〉〈〈Ψ|).



Tomography of QO’s

!

"

COMPUTER

Xλ

Xλ′

E

|Ψ〉〉

• The quantum operation E is in correspondence with RE ≡ R(Ψ)
for Ψ = I, and for invertible Ψ the two matrices R(I) and R(Ψ)
are connected as follows

R(I) = (I ⊗ Ψ−1ᵀ
)R(Ψ)(I ⊗ Ψ−1∗) .

Hence, the quantum operation (four-index) matrix RE can be
obtained by estimating via quantum tomography the following
output ensemble averages

〈〈i, j|R(I)|l, k〉〉 =
〈
|l〉〈i|⊗ Ψ−1∗|k〉〈j|Ψ−1ᵀ 〉

.



Tomography of QO’s
.

Figure 1: Homodyne tomography of the quantum operation A corresponding to
the unitary displacement of one mode of the radiation field. Diagonal elements Ann

(shown by thin solid line on an extended abscissa range,) with their respective error
bars in gray shade, compared to the theoretical probability (thick solid line). Similar
results are obtained for all upper and lower diagonals of the quantum operation matrix
A. The reconstruction has been achieved using an entangled state |ψ〉〉 at the input
corresponding to parametric downconversion of vacuum with mean thermal photon
n̄ and quantum efficiency at homodyne detectors η. Top: z = 1, n̄ = 5, η = 0.9,
and 150 blocks of 104 data have been used. Bottom: z = 1, n̄ = 3, η = 0.7, and
300 blocks of 2 · 105 data have been used. The bottom plot corresponds to the same
parameters of the experiment in Ref. M. Vasilyev, S.-K. Choi, P. Kumar, and G. M.
D’Ariano, Phys. Rev. Lett. 84 2354 (2000).



Tomography of QO’s
.
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Figure 1: Experiment in progress in Roma La Sapienza, F. De Martini
lab.



Tomography of QO’s
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Faithful states

• Is it possible to characterize a quantum operation using mixed
entangled states, or even separable ones?

• Answer: yes, as long as the state is faithful.



Faithful states
• We call a bipartite state faithful when acting with a channel on one

of the two quantum systems, the output state carries a complete
information about the channel.

!

!

R

E

RE

RE
.
= E ⊗ I (R).

Namely: the input state R is called faithful when the correspon-
dence between the output state RE

.
= E ⊗I (R) and the quantum

channel E is one-to-one.



Faithful states

!

! !

!

R

E

RE

E

R

|I〉〉 RE

R =
∑

l

|Al〉〉〈〈Al| = I ⊗ R(|I〉〉〈〈I|), R(ρ) =
∑

l

Aᵀ

l
ρA∗

l .

• A state R is faithful when the map R is invertible,
in order to guarantee the one-to-one correspondence
between RE and E .



Faithful states
- The information about the channel E can be extracted from RE

as follows

E (ρ) = Tr2[(I ⊗ ρᵀ)I ⊗ R
−1(RE )].

• A pure state R ≡ |A〉〉〈〈A| is faithful iff it has maximal Schmidt’s
number.

• The set of faithful states R is dense within the set of all bipartite
states.

• However, the knowledge of the map E from a measured RE will be
affected by increasingly large statistical errors for R approaching
a non-invertible map.

• It follows that there are faithful states among mixed separable
states.



Faithful states: continuous variables
• The inverse map R−1 is unbounded.

- As a result we will recover the channel E from the measured RE

with unbounded amplification of statistical errors, (depending on
the chosen representation).

• Example: twin beam from parametric down-conversion of vacuum

|Ψ〉〉 = Ψ ⊗ I|I〉〉, Ψ = (1 − |ξ|2)
1

2 ξa
†
a, |ξ| < 1.

• The state is faithful, but the operator Ψ−1 is unbounded, whence
the inverse map R−1 is also unbounded.

• For example, in a photon number representation B = {|n〉〈m|},
the effect will be an amplification of errors for increasing numbers
n, m of photons.



Faithful states: continuous variables
• Consider now the quantum channel describing the Gaussian

displacement noise

Nν(ρ) =

∫
C

dα

πν
e−

|α|2

ν D(α)ρD†(α),

- analogous of the depolarizing channel for infinite dimension.

• Multiplication rule
NνNµ = Nν+µ,

whence the inverse map is formally given by

N
−1

ν ≡ N−ν .

• As a faithful state consider now the mixed state given by the twin-
beam, with one beam spoiled by the Gaussian noise, namely

R = I ⊗ Nν(|Ψ〉〉〈〈Ψ|).



Faithful states: continuous variables
• Unboundedness of the inverse map can wash out completely the

information on the channel in some particular chosen representa-
tion.

• Example: (overcomplete) representation B = {|α〉〈β|}, with |α〉
and |β〉 coherent states.

- From the identity

Nν(|α〉〈α|) =
1

ν + 1
D(α)

(
ν

ν + 1

)
a
†
a

D†(α),

one obtains

N
−1

ν
(|α〉〈α|) =

1

1 − ν
D(α)

(
1 − ν−1

)−a
†
a

D†(α),

• which has convergence radius ν ≤ 1

2
, which is the bound for

Gaussian noise for the quantum tomographic reconstruction for
coherent-state and Fock representations.

• Therefore, we say that the state is formally faithful, however, we
are constrained to representations which are analytical for the
inverse map R−1.



How we describe a measuring apparatus

A measuring apparatus with possible ”outcomes” {n = 1, 2, . . .} is
described by a set of operators (called POVM)

P = {Pn},

which provide the probability p(n) of each n for all possible states ρ via

p(n) = Tr[Pnρ] Born rule

In order to have p(n) a probability the operators Pn must satisfy the
constraints

Pn ≥ 0,
∑

n

Pn = I.



Quantum calibration

In principle we can calibrate a quantum measuring 
apparatus without knowing its functioning, by 

determining experimentally its POVM



Tomography of POVM’s

n

R

!
n

In terms of the POVM P
.
= {Pn} of the detector, the outcome n

will occur with probability p(n) corresponding to the conditioned
state ρn given by

p(n) = Tr[(Pn ⊗ I)R], ρn =
Tr1[(Pn ⊗ I)R]

Tr[(Pn ⊗ I)R]
,

from which we can obtain the POVM as follows

Pn = p(n)[R−1(ρn)]
ᵀ
, R(ρ) = Tr1[(ρ

ᵀ ⊗ I)R].



Quantum calibration of a photocounter

LO

NLC

to
co
m
p
u
te
r

R



Tomography of POVM’s

Homodyne tomography of an On/Off photo-detector with quantum
efficiency η = 0.4 and thermal noise photon number ν = 0.1. The
reconstruction is obtained by pattern-function averaging of 1.5·106 data,
for homodyne quantum efficiency η = 0.9 and twin beam thermal photon
n̄ = 3.



Tomography of POVM’s

Homodyne tomography of an On/Off photodetector with quantum
efficiency η = 0.4 and thermal noise photon number ν = 0.1, with n̄ = 3
photons in the twin-beam. The ML estimation of the diagonal of the
only Off POVM element are reported for different values of sample size
N and homodyne quantum efficiency ηH . Left: N = 105, ηH = 0.7;
Middle: N = 104, ηH = 0.9; Right: N = 106, ηH = 0.7 .



Summary of lecture I

Short review of basic concepts (Hilbert Schmidt 
isomorphism, Quantum Operations, Complete 
Positivity, POVM’s)
Basic principles of Quantum Tomography
Complete characterization of the Quantum 
Operation of a device using an entangled input 
and faithful states
Quantum calibration of a measuring apparatus

We have seen:




