

Quantum Mechanics as a "Syntactic Manual" for the Experiment

Giacomo Mauro D'Ariano

Università degli Studi di Pavia

On the Present Status of Quantum Mechanics

9 September 2005, Losinj, Hotel Aurora

On experimental science

In any experimental science we perform **experiments** to get information on the **state** of an **object system**.

Knowledge on such state will allow us to predict the results of forthcoming experiments on the same (similar) object system in a similar situation.

Since necessarily we work with only partial prior knowledge of both system and experimental apparatus, the rules for the experiment must be given in a probabilistic setting.

On what is an experiment

An experiment on a **object system** consists in making it interact with an **apparatus**.

The interaction between object and apparatus produces one of a **set of possible transformations** of the object, each one occurring with some probability.

Information on the **state** of the object system at the beginning of the experiment is gained from the knowledge of which transformation occurred, which is the **outcome** that is signaled by the apparatus.

Actions and outcomes

Experiment or "action": the action on the object system due to an experiment is the set $\mathbb{A} \equiv \{\mathscr{A}_j\}$ of possible transformations \mathscr{A}_j having overall unit probability, with the apparatus signaling the outcome j labeling which transformation actually occurred.

States

State: A state ω for a physical system is a rule which provides the probability for any possible transformation within an experiment, namely:

 $\omega: state, \quad \omega(\mathscr{A}): probability that the transformation \mathscr{A} occurs$

No experiment: the identical transformations occurs with probability one

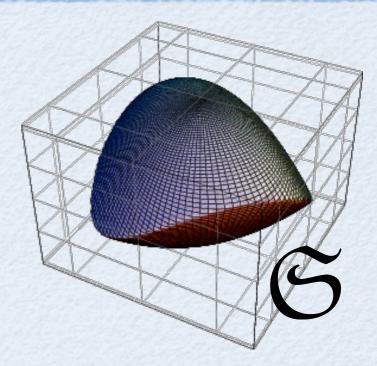
$$\omega(\mathscr{I}) = 1$$

Normalization:

 $\sum \omega(\mathscr{A}_j) = 1$ $\mathcal{A}_{i} \in \mathbb{A}$

Convex structure of states

The possible states of a physical system make a convex set \mathfrak{S} , namely for any two states ω_1 and ω_2 we can consider the state ω which is the mixture of ω_1 with probability λ and of ω_2 with probability $1 - \lambda$. We will write



$$\omega = \lambda \omega_1 + (1 - \lambda) \omega_2, \quad 0 \le \lambda \le 1,$$

for the state ω corresponding to the probability rule for transformations \mathcal{A}

$$\omega(\mathscr{A}) = \lambda \omega_1(\mathscr{A}) + (1 - \lambda) \omega_2(\mathscr{A})$$

Affine dimension: $adm(\mathfrak{S})$

Monoid of transformations

Transformations make a monoid: the composition $\mathscr{A} \circ \mathscr{B}$ of two transformations \mathscr{A} and \mathscr{B} is itself a transformation. Consistency of composition of transformations requires associativity, namely

$$\mathscr{C} \circ (\mathscr{B} \circ \mathscr{A}) = (\mathscr{C} \circ \mathscr{B}) \circ \mathscr{A}$$

There exists the identical transformation \mathscr{I} which leaves the physical system invariant, and which for every transformation \mathscr{A} satisfies the composition rule

 $\mathcal{I} \circ \mathcal{A} = \mathcal{A} \circ \mathcal{I} = \mathcal{A}$

Independent systems and local transformations

Independent systems and local experiments: two physical systems are "independent" if on each system it is possible to perform "local experiments" for which on any joint state one has the commutativity of the pertaining transformations

$$\mathscr{A}^{(1)} \circ \mathscr{B}^{(2)} = \mathscr{B}^{(2)} \circ \mathscr{A}^{(1)}$$

$$(\mathscr{A}, \mathscr{B}, \mathscr{C}, \ldots) \doteq \mathscr{A}^{(1)} \circ \mathscr{B}^{(2)} \circ \mathscr{C}^{(3)} \circ \ldots$$

Multipartite system: a collection of independent systems

Local state

For a multipartite system we define the local state $\omega|_n$ of the *n*-th system the state that gives the probability of any local transformation \mathscr{A} on the *n*-th system with all other systems untouched, namely

 $\omega|_n(\mathscr{A}) \doteq \Omega(\mathscr{I}, \ldots, \mathscr{I}, \mathscr{A}, \mathscr{I}, \ldots)$

nth

Conditional state

When composing two transformations \mathscr{A} and \mathscr{B} the probability that \mathscr{B} occurs conditioned that \mathscr{A} happened before is given by the **Bayes rule**

$$p(\mathcal{B}|\mathcal{A}) = \frac{\omega(\mathcal{B} \circ \mathcal{A})}{\omega(\mathcal{A})}$$

Conditional state: the conditional state $\omega_{\mathscr{A}}$ gives the probability that a transformation \mathscr{B} occurs on the physical system in the state ω after the transformation \mathscr{A} occurred, namely

$$\omega_{\mathscr{A}}(\mathscr{B}) \doteq \frac{\omega(\mathscr{B} \circ \mathscr{A})}{\omega(\mathscr{A})}$$

$$\omega_{\mathscr{A}} \doteq \frac{\omega(\cdot \circ \mathscr{A})}{\omega(\mathscr{A})}$$

Acausality

Notice that:

$$\mathscr{A}^{(1)} \circ \mathscr{B}^{(2)} = \mathscr{B}^{(2)} \circ \mathscr{A}^{(1)} \nleftrightarrow \frac{\Omega(\cdot, \mathscr{B})}{\Omega(\mathscr{I}, \mathscr{B})} = \Omega(\cdot, \mathscr{I})$$

namely the occurrence of the transformation \mathcal{B} on system 2 generally affects the conditional state on system 1, i. e.

$$\Omega_{\mathscr{I},\mathscr{B}}(\cdot,\mathscr{I}) \doteq \frac{\Omega(\cdot,\mathscr{B})}{\Omega(\mathscr{I},\mathscr{B})} \neq \Omega(\cdot,\mathscr{I}) \equiv \omega|_{1}$$

Therefore, in order to guarantee acausality of local actions we need to require that any local action on a system is equivalent to the identity transformation on another independent system:

$$\forall \mathbb{A}$$

$$\sum_{\mathscr{A}_j \in \mathbb{A}} \Omega(\cdot, \mathscr{A}_j) = \Omega(\cdot, \mathscr{I}) \equiv \omega|_1$$

Dynamical and informational equivalence

From the definition of conditional state we have:

- there are different transformations which produce the same state change, but generally occur with different probabilities
- there are different transformations which always occur with the same probability, but generally affect a different state change

Dynamical and informational equivalence

Dynamical equivalence of transformations: two transformations \mathscr{A} and \mathscr{B} are dynamically equivalent if

$$\omega_{\mathscr{A}} = \omega_{\mathscr{B}} \qquad \forall \omega \in \mathfrak{S}$$

 $\forall \omega \in \mathfrak{S}$

Informational equivalence of transformations: two transformations *A* and *B* are informationally equivalent if

$$\omega(\mathscr{A}) = \omega(\mathscr{B})$$

Informational compatibility

Two transformations \mathscr{A} and \mathscr{B} are informationally compatible (or coexistent) if for every state ω one has

$$\omega(\mathscr{A}) + \omega(\mathscr{B}) \le 1$$

For any two coexistent transformations \mathscr{A}_1 and \mathscr{A}_2 we define the transformation $\mathscr{A} = \mathscr{A}_1 + \mathscr{A}_2$ as the transformation corresponding to the event $e = \{1, 2\}$ namely the apparatus signals that either \mathscr{A}_1 or \mathscr{A}_2 occurred, but doesn't specify which one:

$$\forall \omega \in \mathfrak{S} \qquad \omega(\mathscr{A}_1 + \mathscr{A}_2) = \omega(\mathscr{A}_1) + \omega(\mathscr{A}_2)$$
$$\omega(\mathscr{A}_1) \qquad \omega(\mathscr{A}_2)$$

$$\forall \omega \in \mathfrak{S} \qquad \omega_{\mathscr{A}_1 + \mathscr{A}_2} = \frac{\omega(\mathscr{A}_1)}{\omega(\mathscr{A}_1 + \mathscr{A}_2)} \omega_{\mathscr{A}_1} + \frac{\omega(\mathscr{A}_2)}{\omega(\mathscr{A}_1 + \mathscr{A}_2)} \omega_{\mathscr{A}_2}$$

Informational compatibility

Multiplication by a scalar: for each transformation \mathscr{A} the transformation $\lambda \mathscr{A}$ for $0 \le \lambda \le 1$ is defined as the transformation which is dynamically equivalent to \mathscr{A} but occurs with probability $\omega(\lambda \mathscr{A}) = \lambda \omega(\mathscr{A})$

Convex structure for transformations and actions

+ norm on transformation and approximability criterion

Banach algebra structure for transformations

Effect

We call **effect** an informational equivalence class $\begin{bmatrix} \mathscr{A} \end{bmatrix}$ of transformations \mathcal{A} **duality**

effects as positive linear *l* functionals over states:

$$l_{[\mathscr{A}]}(\omega) \doteq \omega(\mathscr{A})$$

Convex structure for effects

Observable

Observable: a set of effects $\mathbb{L} = \{l_i\}$ which is informationally equivalent to an action \mathbb{A} , namely such that there exists an action $\mathbb{A} = \{\mathscr{A}_j\}$ for which one has

$$l_i \in [\mathscr{A}_j] \; \forall j$$

Perfectly discriminable states $\{\omega_j\}$: there exists an observable $\mathbb{L} = \{l_i\}$ such that

$$l_i(\omega_j) = \delta_{ij}$$

Informational dimension idm(ອິ): maximal number of perfectly discriminable states

Informationally complete observable

Informationally complete observable: an observable $\mathbb{L} = \{l_i\}$ is informationally complete if any effect l can be written as linear combination of elements of \mathbb{L} , namely there exist coefficients $c_i(l)$ such that

$$l = \sum_{i=1}^{|\mathbb{L}|} c_i(l) l_i$$

affine dimension: $adm(\mathfrak{S}) = |\mathbb{L}| - 1$, for \mathbb{L} minimal informationally complete on \mathfrak{S}

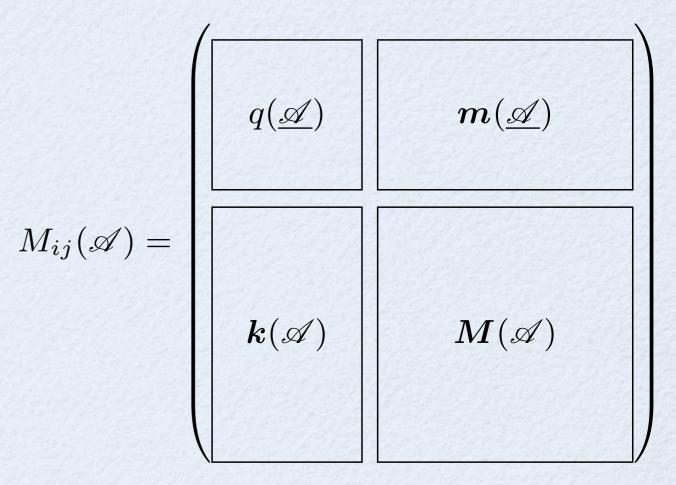
Block representation

 $l_{\underline{\mathscr{A}}} = \sum_{j} m_{j}(\underline{\mathscr{A}})n_{j} \quad l_{\underline{\mathscr{A}}}(\omega) = m(\underline{\mathscr{A}}) \cdot n(\omega) + q(\underline{\mathscr{A}})$

Conditioning: fractional affine transformation

$$oldsymbol{n}(\omega) \longrightarrow oldsymbol{n}(\omega_{\mathscr{A}})$$

$$\boldsymbol{n}(\boldsymbol{\omega}_{\mathscr{A}}) = \frac{\boldsymbol{M}(\mathscr{A})\boldsymbol{n}(\boldsymbol{\omega}) + \boldsymbol{k}(\mathscr{A})}{\boldsymbol{m}(\mathscr{A}) \cdot \boldsymbol{n}(\boldsymbol{\omega}) + \boldsymbol{q}(\mathscr{A})}$$



Principle of local observability

For every composite system there exist informationally complete observables made only of local informationally complete observables.

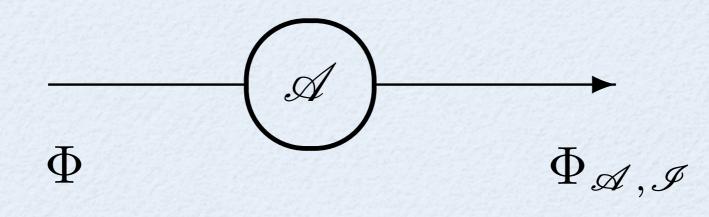
upper bound for the affine dimension of composite systems

 $\operatorname{adm}(\mathfrak{S}_{12}) \leq \operatorname{adm}(\mathfrak{S}_1) \operatorname{adm}(\mathfrak{S}_2) + \operatorname{adm}(\mathfrak{S}_1) + \operatorname{adm}(\mathfrak{S}_2)$

Faithful states

Dynamically faithful state: we say that a state Φ of a multipartite system is dynamically faithful for the *n*-th component system if when acting on it with a local transformation \mathscr{A} the resulting conditioned state is in 1-to-1 correspondence with the dynamical equivalence class of \mathscr{A} , namely the following map is 1-to-1

$$\Phi_{\mathscr{I},\ldots,\mathscr{I},\mathscr{A},\mathscr{I},\ldots} \leftrightarrow [\mathscr{A}]_{dyn}$$



Existence of faithful states



lower bound for the affine dimension of a system composed of two identical systems

 $\operatorname{adm}(\mathfrak{S}^{\times 2}) \ge \operatorname{adm}(\mathfrak{S})[\operatorname{adm}(\mathfrak{S}) + 2]$

First dimensionality identity: the tensor product

Local observability principle + faithful states

dimension of a system composed of two identical systems

$$\operatorname{adm}(\mathfrak{S}^{\times 2}) = \operatorname{adm}(\mathfrak{S})[\operatorname{adm}(\mathfrak{S}) + 2]$$

 $\dim(\mathsf{H}\otimes\mathsf{H})^2-1=(\dim(\mathsf{H})^2-1)(\dim(\mathsf{H})^2+1)$

 $\dim(\mathsf{H}\otimes\mathsf{H})=\dim(\mathsf{H})^2$

Second dimensionality identity: the Hilbert space

Realization of informationally complete observables from discriminating observables

For any bipartite system there exists a discriminating joint observable which is (minimal) informationally complete for one of the two components for almost all preparations of the other components.

$$\operatorname{adm}(\mathfrak{S}) + 1 \ge \operatorname{idm}(\mathfrak{S}^{\times 2})$$

 $\operatorname{adm}(\mathfrak{S}) = \operatorname{idm}(\mathfrak{S})^2 - 1$

Conjectured possible axioms

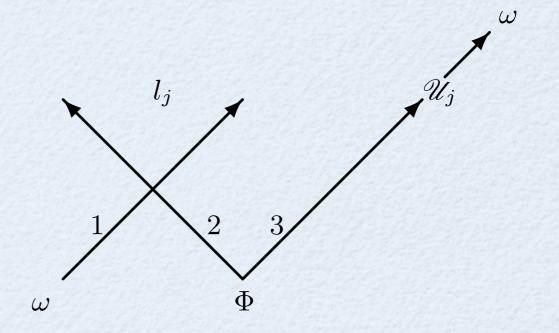
There exists *pure* faithful states

Conjectured possible axioms

Teleportation axiom

There exists a joint bipartite state Φ , a joint bipartite discriminating observable $\mathbb{L} = \{l_j\}$ and a set of deterministic indecomposable transformations $\{\mathscr{U}_j\}$ by which one can teleport all states ω as follows

$$\frac{(\omega\Phi)(l_j,\mathscr{U}_j)}{(\omega\Phi)(l_j,\mathscr{I})}\Big|_3 = \omega$$



Summary

