OUlj JOHN TEMPLETON FOUNDATION .

quantum ml‘ormaugu SUPPORTING SCIENCE~INVESTING IN THE BIG QUESTIONS N F N

theory group ~ Istituto Nazionale
di Fisica Nucleare

Free quantum field theory from general principles

Giacomo Mauro D'Ariano
Universita degli Studi di Pavia

Nagoya, 9-13 March 2015, Nagoya Winter Workshop 2015:
Reality and Measurement in Algebraic Quantum Theory



Ulj JOHN TEMPLETON FOUNDATION -

quanwm information SUPPORTING SCIENCE~INVESTING IN THE BIG QUESTIONS ’N FN
theory group - L—/ stiuto Nazional

Paolo Perinotti Alessandro Bisio Alessandro Tosini

T —

Alexandre Bibeau Marco Erba Franco Manessi Nicola Mosco

D'Ariano and Perinotti, Derivation of the Dirac Equation from Principles of Information processing, Phys. Rev. A 90 062106 (2014)

Bisio, D'Ariano, Tosini, Quantum Field as a Quantum Cellular Automaton: the Dirac free evolution in 1d, Annals of Physics 354 244 (2015)
D’Ariano, Mosco, Perinotti, Tosini, Path-integral solution of the one-dimensional Dirac quantum cellular automaton, PLA 378 3165 (2014)
D’Ariano, Mosco, Perinotti, Tosini, Discrete Feynman propagator for the Weyl quantum walk in 2 + 1 dimensions, EPL 109 40012 (2015)
D'Ariano, Manessi, Perinotti, Tosini, The Feynman problem and Fermionic entanglement ..., Int. J. Mod. Phys. A17 1430025 (2014)
Bibeau-Delisle, Bisio, D’Ariano, Perinotti, Tosini, Doubly-Special Relativity from Quantum Cellular Automata, EPL (in press)

Bisio, D'Ariano, Perinotti, Quantum Cellular Automaton Theory of Light, arXiv:1407.6928

Bisio, D'Ariano, Perinotti, Lorentz symmetry for 3d Quantum Cellular Automata, arXiv:1503.01017

D'Ariano, A Quantum Digital Universe, |l Nuovo Saggiatore 28 13 (2012)

D'Ariano, The Quantum Field as a Quantum Computer, Phys. Lett. A 376 697 (2012)

D'Ariano, Physics as Information Processing, AIP CP1327 7 (2011)

D’Ariano, On the "principle of the quantumness”, the quantumness of Relativity, and the computational grand-unification, in AIP CP1232 (2010)



ow far we can go with general principles?

Much farer than what one can imagine!



Index

e How a physical theory should be

e Principles for physics

e [ ocalization issue in QFT and the particle notion
e QCA field theory

e Nonlinear Lorentz and group-theoretical notion of particle



How a physical theory should be

e Axioms must be mathematical
axioms contain no physical notion, e.g. mass, Lagrangian, ...,
variables are adimensional, ...
e Axioms and theorems must have physical interpretation
physics emergent (e.g. mechanics, ... )

e Units of measure must be provided in terms of special values of
the adimensional variables
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Informational derivation of quantum theory
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We derive quantum theory from purely informational principles. Five elementary axioms—causality, perfect
distinguishability, ideal compression, local distinguishability, and pure conditioning—define a broad class of
theories of information processing that can be regarded as standard. One postulate—purification—singles out
quantum theory within this class.
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Principles for Quantum Theory

P1. Causality

P2. Local discriminability

P3. Purification™

P4. Atomicity of composition
P5. Perfect distinguishability

P6. Lossless Compressibility

Book from CUP (summer 2015)



Principles for Physics

e Mechanics (QFT) derived in terms of
countably many quantum systems in
Interaction

add principlegﬁ,,

Min algorithmic complexity principle

* inearity

* unitarity

* locality

* homogeneity

* iSotropy

* minimal-dimension

* gi-embedding in Euclidean space

e Quantum Cellular Automata (QCA) theory

e Relativistic limit (k«1): free QF
(Weyl, Dirac, and Maxwell)

e Ultra-relativistic limit (k~7) [Planck scale]:
nonlinear Lorentz (Camelia/Smolin
Doubly Special Relativity)

e QFT derived:
e\ithout assuming Special Relativity
equantum ab-initio (mechanics emergent)

e QCA is a discrete theory.

Motivations to keep it discrete:

1. Existence of continuum is metaphysical
(only mathematical convenience)

2. Continuum is special case of discrete

3. Testing mechanisms in simulations

4. Falsifiable Planck-scale hypothesis

5. Natural scenario for holographic principle

6. Solves all issues in QFT originating from
continuum:

) uv divergencies
i) localization issue
lil) Computability and path-integral



| ocalization issue in QFT

Physicists routinely describe the universe as
being made of tiny subatomic particles that
push and pull on one another by means of
force elds. They call their subject particle
physics and their instruments p article accel
erators. They hew to a Legoli ke model of the
world. But this view sweeps a littleknown

fact under the rug: the particle interpretation
of quantum physics, as well as the eld inter-
pretation, stretches our conventional notions
of p article and eld to such an extent that
ever more people think the world might be
made of something else entirely.

The problem is not that physicists lack a valid theory of the
subatomic realm. They do have one: it is called quantum eld the
ory. Theorists developed it between the late 1920s and early 1950s
by merging the earlier theory of quantum mechanics with Ein
steins special theory of relativity. Quantum eld theory provides
the conceptual underpinnings of the Standard Model of particle
physics, which describes the fundamental building blocks of mat
ter and their interactions in one common framework. In terms of
empirical precision, it is the most successful theory in the history
of science. Physicists use it every day to calculate the aftermath of
particle collisions, the synthesis of matter in the big bang, the ex
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ican articles. However compelling it might appear, it is not at
all satisfactory.

For starters, the two categories blur together. Quantum eld
theory assigns a eld to each type of elementary particle, so
there is an electron eld as surely as there is an electron. At the
same time, the force elds are quantized rather than continu
ous, which gives rise to particles such as the photon. So the dis
tinction between particles and elds appears to be arti cial, and
physicists often speak as if one or the other is more fundamen
tal. Debate has swirled over this point over whether quantum

eld theory is ultimately about particles or about elds. It start

ed as a battle of titans, with eminent physicists and philoso

phers on both sides. Even today both concepts are still in use for
illustrative purposes, although most physicists would admit
that the classical conceptions do not match what the theory
says. If the mental images conjured up by the words particle

and eld do not match what the theory says, physicists and
philosophers must gure out what to put in their place.

With the two standard, classical options gridlocked, some phi
losophers of physics have been formulating more radical alterna
tives. They suggest that the most basic constituents of the materi
al world are intangible entities such as relations or properties.
One particularly radical idea is that everything can be reduced to
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By Meinard Kuhlmann




| ocalization issue in QFT
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Ontological

Aspects of
Quantum Field
Theory
Ehﬂpt-ﬂ‘r lu Mein:‘:;t::::l:nann /25
No Place for Particles in Relativistic ot i

Quantum Theories?

World Scientific
Hans Halvorson

Princeton University

Rob Clifton
University of Pittsburgh
QUANTUM

ENTANGLEMENTS
Abstract. David Malament (1996) has recently argued that there can be no rel- SELECTED PAPERS

ativistic quantum theory of (localizable) particles. We consider and rebut several
objections thal have been made against the soundness of Malameni's argument.
We then conmder some further objections that might be made agamnst the general-
ity of Malament s conclusion, and we supply three no-go theorems o counter these
objections. Finally, we dispel potentiol worries about the countermntuitive nature
of these results by shounng that relativistic quanfum field theory itself explains the
appearance of “pariicle delections.”
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Malament (1996)

Theorem 1 (Malament). Let (H,A — Ea,a— U(a)) be a localiza-
tion system over Minkowski spacetime that satisfies:

(1) Localizability

(2) Translation covariance
(3) Energy bounded below
(4) Microcausality

Then Ea =0 for all A.

Theorem 5  Suppose that the unsharp localization system (H,A — Ap,a—
U(a)) satisfies:

(1) Additivity

(2) Translation covariance
(83) Energy bounded below
(4) Microcausality

(5) No absolute velocity

Then Ax =0 for all A.
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Additivity: If A and A’ are disjoint subsets of a single hyperplane, then
Na + Nar = Napya-.

Number conservation: If {A,, : n € N} is a disjoint covering of T, then
the sum ) Na, converges to a densely defined, self-adjoint opera-
tor N on ‘H (independent of the chosen covering), and U(a)NU (a)* =
N for any timelike translation a of M.

Theorem 6 Suppose that the system (H,A — Na,a — U(a)) of local
number operators satisfies:

(1) Additivity

(2) Translation covariance
(8) Energy bounded below
(4) Number conservation
(5) Microcausality

(6) No absolute velocity

Then Na = 0 for all A.
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10.8 Conclusion

Malament claims that his theorem justifies the belief that,

...in the attempt to reconcile quantum mechanics with
relativity theory...one is driven to a field theory; all talk
about “particles” has to be understood, at least in princi-

ple, as talk about the properties of, and interactions among,
quantized fields. (Malament 1996, 1)

In order to buttress Malament’s argument for this claim, we provided two
further results (Theorems 3 and 5) which show that the conclusion continues
to hold for generic spacetimes, as well as for unsharp localization observ-
ables. We then went on to show that RQFT does not permit an ontology
of localizable particles; and so, strictly speaking, our talk about localizable
particles is a fiction. Nonetheless, RQFT does permit talk about particles
— albeit, if we understand this talk as really being about the properties
of, and interactions among, quantized fields. Indeed, modulo the stan-
dard quantum measurement problem, RQFT has no trouble explaining the
appearance of macroscopically well-localized objects, and shows that our
talk of particles, though a facon de parler, has a legitimate role to play in
empirically testing the theory.




QCA on Cayley graph

¢ [he notion of quantum particle is
emergent.

¢ Free theory (Fock space):
Quantum walk on the Cayley
graph of a group

¢ |nteracting theory (von Neumann
algebra) : QCA.




Quantum walk on Cayley graph

Theorem (Gromov): A group is quasi-isometrically
embeddable in RY iff it is virtually Abelian

Virtually Abelian groups -' '
have polynomial growth '
# points ~r¢ '

N
G = (a,blaba” "6 1) nk

A







D'Ariano, Erba, Perinotti, unpublished

Quantum walk on Cayley graph

Remark 2. One can prove that for QWCG Q = (G, S+, s,{An}nes) with G virtually
Abelian there exists a quantum walk Q' = (H,SY,s - img,{Bn}tnesn) with Abelian
H C G, with finite index 11, such that

Ag =VAQVT, withV 1 uge @1 — Vig,a @Y = va @ ; @, (13)
with {gi}i=1,...i, being coset representatives, v, wz’th a € H canonical orthonormal
basis of *(H), {ei}i=1,.. .ip canonical basis in C*H, ¢ € C°, and V isomorphism
between £*(G) @ C* and ¢*(H) @ C*H
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The Weyl QCA D'Ariano, Perinotti,

PRA 90 062106 (2014)

== Minimal dimension for nontrivial unitary A: s=2

e Unitarity = for d=3 the only possible G is the BCC!!

e |sotropy = Fermionic ¢ (d=3)

Unitary operator: A = /dSk k) (k| ® Ay
B

Two QCAS
connected
oy CPT




The Weyl QCA D'Ariano, Perinotti,

PRA 90 062106 (2014)

i0p)(t) = [t +1) =¥t — 1)) = 3(A— A ()

AL — AT =+ 04 (seeyes £ eusys.)  “Hamiltonian”
+ 0y (CuSyCs F SzCySz)

+ 0, (CpCysS, £ 5454C)

k<1 > 104 = %Ui ki @ Weyl equation! | o := (0., +0,,0.)

Two QCAS
connected
oy CPT




D'Ariano, Perinotti, PRA 90 062106 (2014) Bisio, D'Ariano, Perinotti, arXiv:1407.6928

Dirac QCA D Maxwell QCA &

Local coupling: Ak coupled with its inverse
with off-diagonal identity block matrix

Maxwell in relativistic limit k& < 1
Boson: emergent from convolution of fermions

Ek CPT-connected! (De Broglie neutrino-theory of photon)
B N —p kokyk.
wi (k) = cos n(cpeyc. F 545,58, )] c¥(k) =c (1 TP )
Dirac in relativistic limit kE<1

m<71: mass
n-1: refraction index




Determining dimensional units [L ][ T |[ M |

Dimensionless variables
r=2m¢cZ t=4%eN m=-2¢l0,]]
c=a/t

Measure m from mass-refraction-index

= nim) = /1- ()

m
Measure @ from light-refraction-index

adp c(k)=c (1 + \/§ll:ma)




Conversion to dimensional units

Dimensionless variables

4 T
r=tmcZ t=%teN, m=22 ¢l

Relativistic mit: ~ ==fp c=a/t k= mac

Mini black-hole: ~ ==ip G = af_z/ (ma—z)

lpte @ a=Ip t=t¢tp m=mp
L] [ T] [M]

@

fundamental system (Wilczek)



Dirac emerging from the QCA D'Aviano, Perinott

PRA 90 062106 (2014)
fidelity with Dirac for a narrowband packets in the relativistic limit £ ~m < 1

F = [(exp [-iNA(k)])|

Ak) == (m? + £z — wP (k)

V3kokyk,  3(kik,k.)? L _
— (mQ + é)% (m2 _|_yk_2)% | 214(m -+ ?)24_0('%4_'_]\[ 1k2)
3 3

relativistic proton: N ~ m > =22%10°" = t=1.2x 10%s = 3.7 « 106\/

UHECRs: k=107 > m = N ~ k2 =10 = 5107 %% s



A. Bisio, G. M. D’Ariano, A. Tosini,
Ann. Phys. 354 244 (2015)

The general dispersive Schrodinger equation
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Dirac QCA

A0

L

300
1 100 200 300
T | 200f * * 1200
| /\ 150 1150
~ 100 1100
, U 50 150
48055 a0 150 200 1 100 200 300
Particle state: k0t= 0, m =0.15, 0= 40. Oscillation f?equency v =0.048




Bibeau-Delisle, Bisio, D'Ariano,
Perinotti, Tosini, EPL (in press)

Planck-scale effects: Lorentz covariance distortion

Transformations( tpat leave the dispersion relation invariant
w (k)

we(k) = cos™ (V1 —m2cosk)

R ——

0.5

< 00
w' = arcsin [y (sinw/ cos k — Btan k) cos k'] —05
k" = arctan [y (tank — Bsinw/ cos k)] -1.0
yi=(1- %) X




Bibeau-Delisle, Bisio, D'Ariano,
Perinotti, Tosini, arXiv:1310.6760

Planck-scale effects: Lorentz covariance distortion

1.0 L2 |
3 08 For narrow-band states
0.8 s 06\ /\ / . _
04 — we can linearize Lorentz
. 00 o 1 , 3 transformations around = F
0.4 k k=ko and we get k- 150
i3 | dependent Lorentz
' UILIrL ~ transformations
O_Or'-u-r"l_rrLI |-r|-|_r"|-._r-'\=_.2_.=._=__
=20 -10 0 10 20 30 40
X k1 ~0
Delocalization under boost V by~ /5
b (:E,t). /"__,,.B—;gg% ’ °
) = [arumamin 2 [k g0 = /\ / /\ /\
= [l gk IK) /\

Relative locality

R. Schutzhold and W. G. Unruh, J. Exp. Theor. Phys. Lett. 78 431 (2003)
G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, arXiv:1106.0313 (2011)
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Bisio, D'Ariano, Perinotti, arXiv:1503.01017

Lorentz covariance: Weyl automaton

. SrCyCy I Cr SyyS»
Al:{t pfp— )\:l: (k)] — Zn:l: (k) . 0':|: n:l:(k) P — (stzcz T 3.1’6332)

A= /d3k k) (k| ® Ay

(0% .

Ak, w) = ek, w) (sinwl —n(k) - o)ip(k,w) =

Inertial frame: decomposition into irreducible representations

Change of frame: k — k'(k,w), w— w (k,w)




Bisio, D'Ariano, Perinotti, arXiv:1503.01017

Lorentz covariance: Weyl automaton

Change of frame: k — k'(k,w), w— w (k,w)

Requirement that the change of frame leaves the dynamics invariant:

(sinwl —n(k)-o) =AT(sinw'I —n(k’)- o)A A = A(k,w) € SL(s, C)

Assume linearity: A independent on k and w —’ ATO'A — Lgla

(sinwl —n(k)-o)yYk,w) =0
b flw,k)(sinwl —n(k) - -o)vk,w)=0 (w,k)eX.
f(w, k) continuous non vanishing on X

Define the 4-vector: P = f(w k) (Sln( ), Il(k))




Bisio, D'Ariano, Perinotti, arXiv:1503.01017

Lorentz covariance: Weyl automaton

f(w,k)(sinwl —n(k) - o)y(k,w) =0 » (pug“)w(lg w) — ()

b action on(k, w)given by the non-linear representation of the Lorentz group

Ly=D ' oLyoD  Dlwk) = f(wK)(sinw, n(k)
Y(k,w) = Ak, w’)



Bisio, D'Ariano, Perinotti, arXiv:1503.01017

Lorentz covariance: Weyl automaton

f(w,k)(sinwl —n(k) -o)y(k,w) =0 » (p’u()"“)zp(k7 w) — ()

b action on(k, w)given by the non-linear representation of the Lorentz group

Ly=DloLyoD  D(w,k) = f(w k)(sinw, n(k))
Y(k,w) = Ak, w’)

take f monotonic: you can study Jn(k) instead of JD(k) Also: JD(O) =1

The Brillouin zone separates into four regions B = (U?:O Bi) JF

F : zero-measure set where the Jacobian Jp, (k) of the map n(k)vanishes



Bisio, D'Ariano, Perinotti, arXiv:1503.01017

Jacobian must go to the identity

L orentz covariance: ton

Jacobian Jy, (k) of the map n(k): Jn(k):=det[d;n;(k)] = cos(2k,)A(k)

vanishes on the set:

F=GUX,
X :={k € B|cos(2k,) =0}
G := {k € B|A(k) = 0}

B\F=UB¢, B; B, =0 for i # j




Bisio, D'Ariano, Perinotti, arXiv:1503.01017

Lorentz covariance: Weyl automaton

Each region B, is diffeomorphic to the unit ball U pierced by with two semi-ellipsesT ;




Bisio, D'Ariano, Perinotti, arXiv:1503.01017

Lorentz covariance: Weyl automaton

By cutting out a zero-measure region, we get the stellate set, which is diffeomorphic
to a ball




lf y Bisio, D'Ariano, Perinotti, arXiv:1503.01017

0
| orentz covariance

=TT
=

Bo zone



T

Bisio, D'Ariano, Perinotti, arXiv:1503.01017

oy

| orentz covariance 0

B1 Z0Nne 0



Bisio, D'Ariano, Perinotti, arXiv:1503.01017

_ T
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Lorentz covariance ' k., .2

B, & B; zones —5 0




/f y Bisio, D'Ariano, Perinotti, arXiv:1503.01017

. 0
| orentz covariance

T
(s

B> zone



T
k Bisio, D'Ariano, Perinotti, arXiv:1503.01017

| orentz coval 0

B- zone 0



Bisio, D'Ariano, Perinotti, arXiv:1508.01017




Bisio, D'Ariano, Perinotti, arXiv:1503.01017

L orentz covariance:
Weyl automaton

e [herefore;

¢ upon defining an inertial frame as a
decomposition into irreps

¢ requiring the change of frame leaves the
dynamics invariant

e we found four Lorentz-invariant k-domains

¢ translations in space and time leave the
dynamics invariant:

e | orentz-invariance — Poincaré invariance >

¢ \Ve have four different particles.



Bisio, D'Ariano, Perinotti, arXiv:1503.01017

De Sitter covariance:
Dirac automaton

Covariance for Dirac QCA

\

pu(w, k,m)v* —ml|Yp(w, k,m) =0
covariance cannot leave m invariant
invariance of de Sitter norm:
sinw — (1 — m?)|nk)|2 —m? =0
P SO(1,4) invariance
Onehas SO(1,4) — SO(1,3) for m — 0 O(m?)



Conclusions

e Free QFT derived from principles (denumerable interacting quantum systems)

ewithout assuming Special Relativity
equantum ab-initio (mechanics emergent)

¢ Discrete QCA theory to be regarded as a theory unifying scales from Planck to Fermi

e Fundamental notions surviving at all scales:

e Nonlinear Lorentz group
e Notion of particle as Poincaré invariant
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