

quant-pb 0611094, 0612162, 0701217, 0701219 <u>www.qubit.it</u>

Mathematical structures for Quantum Mechanics and connections to operational principles Giacomo Mauro D'Ariano Università degli Studi di Pavia

> **Operational Probabilistic Theories as Foils to Quantum Theory**

University of Cambridge UK July 4th 2007

Postulates

- **Postulate 1 (Independent systems)** There exist **independent** systems.
- **Postulate 2 (Symmetric faithful state)** For every composite system made of two identical physical systems there exists a **symmetric joint state** that is both **dynamically** and **preparationally faithful**.
- **Postulate 3 (Local observability principle)** For composite systems local informationally complete observables provide global informationally complete observables.
- **Postulate 4 (Info-complete discriminating observable)** For every system there exists a minimal info-complete observable that can be achieved using a joint **discriminating observable** on system+ ancilla.

P1÷P4 → Hilbert space

Postulates (in progress)

- **Postulate 1 (Independent systems)** There exist independent systems.
- **Postulate 2 (Symmetric faithful state)** For every composite system made of two identical physical systems there exists a symmetric joint state that is both dynamically and preparationally faithful.
- **Postulate 3 (Pure symmetric faithful state)** *If there exists a <u>pure</u> symmetric faithful state then we have Quantum Mechanics*

Actions and outcomes

Experiment (or "action"): every experiment is described by a set $\mathbb{A} \equiv \{\mathscr{A}_j\}$ of possible transformations \mathscr{A}_j having overall unit probability, with the apparatus signaling the outcome j labeling which transformation actually occurred.

States

State: A state ω for a physical system is a rule which provides the probability for any possible transformation within an experiment, namely:

 $\omega: state, \quad \omega(\mathscr{A}): probability that the transformation \mathscr{A} occurs$

Normalization:

 $\sum_{\mathscr{A}_j \in \mathbb{A}} \omega(\mathscr{A}_j) = 1$

Identity transformation: $\omega(\mathscr{I}) = 1$

States and transformations

States make a convex set G Transformations make a monoid L

Independent systems and local transformations

Independent systems and local experiments: two physical systems are "independent" if on each system it is possible to perform "local experiments" for which on every joint state one has the commutativity of the pertaining transformations

$$\mathscr{A}^{(1)} \circ \mathscr{B}^{(2)} = \mathscr{B}^{(2)} \circ \mathscr{A}^{(1)}$$

$$(\mathscr{A}, \mathscr{B}, \mathscr{C}, \ldots) \doteq \mathscr{A}^{(1)} \circ \mathscr{B}^{(2)} \circ \mathscr{C}^{(3)} \circ \ldots$$

Multipartite system: a collection of independent systems

Local state

For a multipartite system we define the local state $\omega|_n$ of the *n*-th system the state that gives the probability of any local transformation \mathscr{A} on the *n*-th system with all other systems untouched, namely

 $\omega|_n(\mathscr{A}) \doteq \Omega(\mathscr{I}, \ldots, \mathscr{I}, \mathscr{A}, \mathscr{I}, \ldots)$

nth

Conditional state

When composing two transformations *A* and *B* the probability that *B* occurs conditioned that *A* occurred before is given by

$$p(\mathscr{B}|\mathscr{A}) = \frac{\omega(\mathscr{B} \circ \mathscr{A})}{\omega(\mathscr{A})}$$

Conditional state: the conditional state $\omega_{\mathscr{A}}$ gives the probability that a transformation \mathscr{B} occurs on the physical system in the state ω after the transformation \mathscr{A} occurred, namely

$$\omega_{\mathscr{A}}(\mathscr{B}) \doteq \frac{\omega(\mathscr{B} \circ \mathscr{A})}{\omega(\mathscr{A})}$$

No-signaling from the future

[Ozawa] The definition of conditional state needs to assume that

$$\sum_{\mathscr{B}_j \in \mathbb{B}} \omega(\mathscr{B}_j \circ \mathscr{A}) = \omega(\mathscr{A}), \quad \forall \mathbb{B}, \forall \mathscr{A}.$$

This is no-signaling from the future.

Weights and Operations

Weight: un-normalized state

$$\omega = \frac{\tilde{\omega}}{\tilde{\omega}(\mathscr{I})}$$

$$0 \leqslant \tilde{\omega}(\mathscr{A}) \leqslant \tilde{\omega}(\mathscr{I}) < +\infty$$

convex cone of weights:
$$\mathfrak{W}$$

Operation:

$$\operatorname{Op}_{\mathscr{A}}\omega \doteq \tilde{\omega}_{\mathscr{A}} = \omega(\cdot \circ \mathscr{A})$$

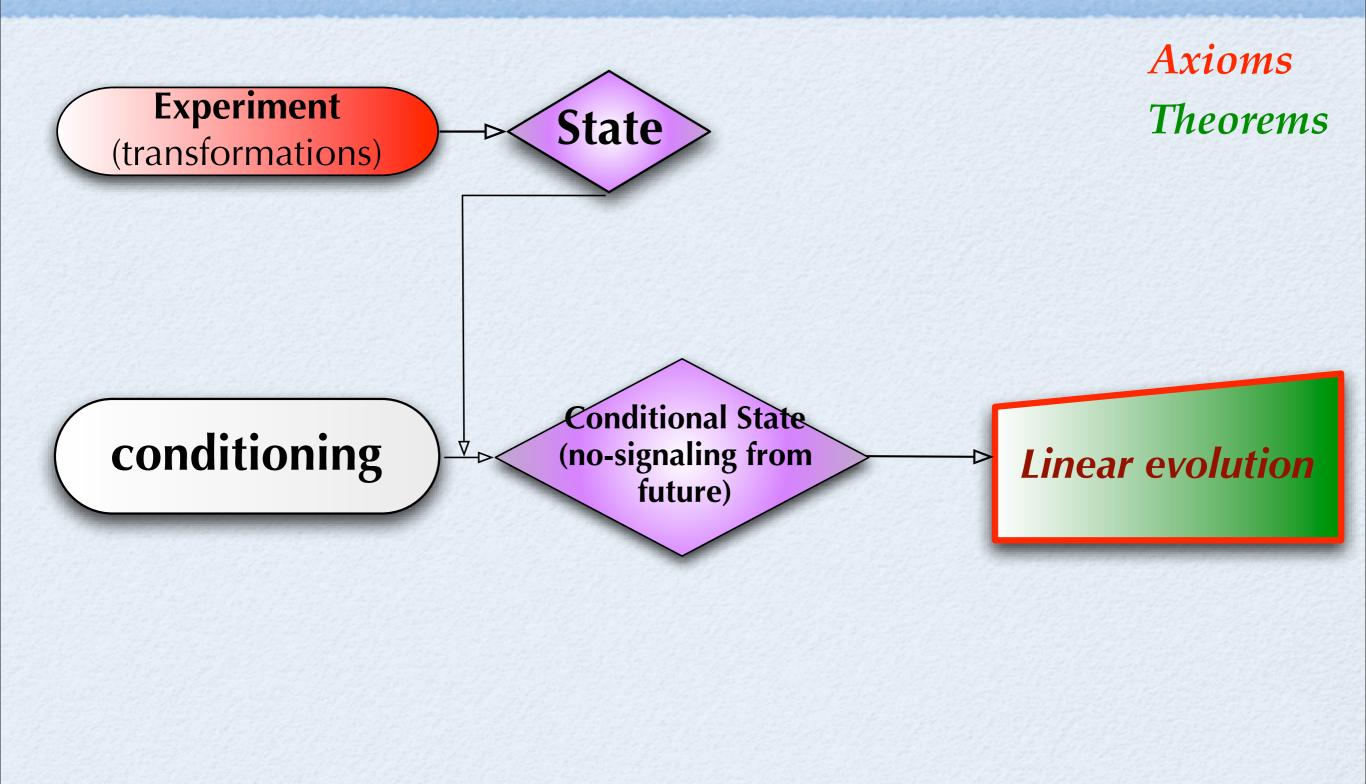
$$ilde{\omega}_{\mathscr{A}}(\mathscr{B}) = \omega(\mathscr{B} \circ \mathscr{A})$$

Action of a transformation over a state ("Schrödinger picture"):

$$\mathscr{A}\omega := \operatorname{Op}_{\mathscr{A}}\omega$$

$$(\mathscr{A}\omega)(\mathscr{B}) := \omega(\mathscr{B} \circ \mathscr{A})$$

Evolution as conditioning



Dynamical and informational equivalence

From the definition of conditional state we have:

- there are different transformations which always produce the same state change, but generally occur with different probabilities
- there are different transformations which always occur with the same probability, but generally affect a different state change

Dynamical and informational equivalence

Dynamical equivalence of transformations: two transformations \mathscr{A} and \mathscr{B} are dynamically equivalent if

$$\omega_{\mathscr{A}} = \omega_{\mathscr{B}} \qquad \forall \omega \in \mathfrak{S}$$

Informational equivalence of transformations: two transformations *A* and *B* are informationally equivalent if

$$\omega(\mathscr{A}) = \omega(\mathscr{B}) \quad \forall \omega \in \mathfrak{S}$$

A transformation is completely specified by the two classes

Addition of transformations

Two transformations \mathscr{A} and \mathscr{B} are *informationally compatible* (or coexistent) if for every state ω one has

 $\omega(\mathscr{A}) + \omega(\mathscr{B}) \le 1$

For any two coexistent transformations \mathscr{A}_1 and \mathscr{A}_2 we define the transformation $\mathscr{A}_1 + \mathscr{A}_2$ as the transformation corresponding to the event $e = \{1, 2\}$ namely the apparatus signals that either \mathscr{A}_1 or \mathscr{A}_2 occurred, but doesn't specify which one:

$$\forall \omega \in \mathfrak{S} \qquad \omega(\mathscr{A}_1 + \mathscr{A}_2) = \omega(\mathscr{A}_1) + \omega(\mathscr{A}_2) \quad \text{(info-class)}$$

$$\forall \omega \in \mathfrak{S} \qquad \omega_{\mathscr{A}_1 + \mathscr{A}_2} = \frac{\omega(\mathscr{A}_1)}{\omega(\mathscr{A}_1 + \mathscr{A}_2)} \omega_{\mathscr{A}_1} + \frac{\omega(\mathscr{A}_2)}{\omega(\mathscr{A}_1 + \mathscr{A}_2)} \omega_{\mathscr{A}_2} \qquad (dun-class)$$

 $(\mathscr{A}_1 + \mathscr{A}_2)\omega = \mathscr{A}_1\omega + \mathscr{A}_2\omega$ o, + distributive

Rescaling of transformations

Multiplication by a scalar: for each transformation \mathscr{A} the transformation $\lambda \mathscr{A}$ for $0 \le \lambda \le 1$ is defined as the transformation which is dynamically equivalent to \mathscr{A} but occurs with probability $\omega(\lambda \mathscr{A}) = \lambda \omega(\mathscr{A})$

Convex structure for transformations \mathfrak{T} and for actions

Effect

We call **effect** an informational equivalence class $\underline{\mathscr{A}}$ of transformations $\widehat{\mathscr{A}}$

"Heisenberg picture": (from the notion of conditional state)

$$\operatorname{Op}_{\mathscr{A}}\underline{\mathscr{B}} = \underline{\mathscr{B}} \circ \mathscr{A} = \underline{\mathscr{B}} \circ \mathscr{A}$$

duality

effects as positive linear functionals *l* over states:

$$l_{\underline{\mathscr{A}}}(\omega) \doteq \omega(\mathcal{A})$$

Convex structure for effects P

No-signaling

The occurrence of the transformation \mathcal{B} on system 1 generally affects the local state on system 2, i. e.

$$\Omega_{\mathscr{B},\mathscr{I}}|_{2} \neq \Omega_{2}$$

However a local action $\mathbb{A} \equiv \{\mathscr{A}_j\}$ on system 2 does not affect the local state on system 1, more precisely:

acausality of local actions: any local action on a system is equivalent to the identity transformation on another independent system. $A = \mathscr{P}(A) := \Sigma$

$$\mathbb{A} \equiv \mathscr{S}(\mathbb{A}) := \sum_{\mathscr{A}_j \in \mathbb{A}} \mathscr{A}_j$$

$$\forall \Omega \in \mathfrak{S}^{\times 2}, \forall \mathbb{A},$$

 $\Omega_{\mathbb{A},\mathscr{I}}|_2 = \Omega|_2$

No-signaling

Theorem 1 (No-signaling) Any local action on a system does not affect another independent system. More precisely, any local action on a system is equivalent to the identity transformation when viewed from another independent system. In equations one has

$$\forall \Omega \in \mathfrak{S}^{\times 2}, \forall \mathbb{A}, \qquad \Omega_{\mathbb{A},\mathscr{I}}|_2 = \Omega|_2.$$
(1)

Proof. Since the two systems are dynamically independent, for every two local transformations one has $\mathscr{A}^{(1)} \circ \mathscr{A}^{(2)} = \mathscr{A}^{(2)} \circ \mathscr{A}^{(1)}$, which implies that $\Omega(\mathscr{A}^{(1)} \circ \mathscr{A}^{(2)}) = \Omega(\mathscr{A}^{(2)} \circ \mathscr{A}^{(1)}) \equiv \Omega(\mathscr{A}^{(1)}, \mathscr{A}^{(2)})$. By definition, for $\mathscr{B} \in \mathfrak{T}$ one has $\Omega|_2(\mathscr{B}) = \Omega(\mathscr{I}, \mathscr{B})$, and using the addition rule for transformations and reminding the identification $\mathbb{A} \equiv \sum_j \mathscr{A}_j$, one has

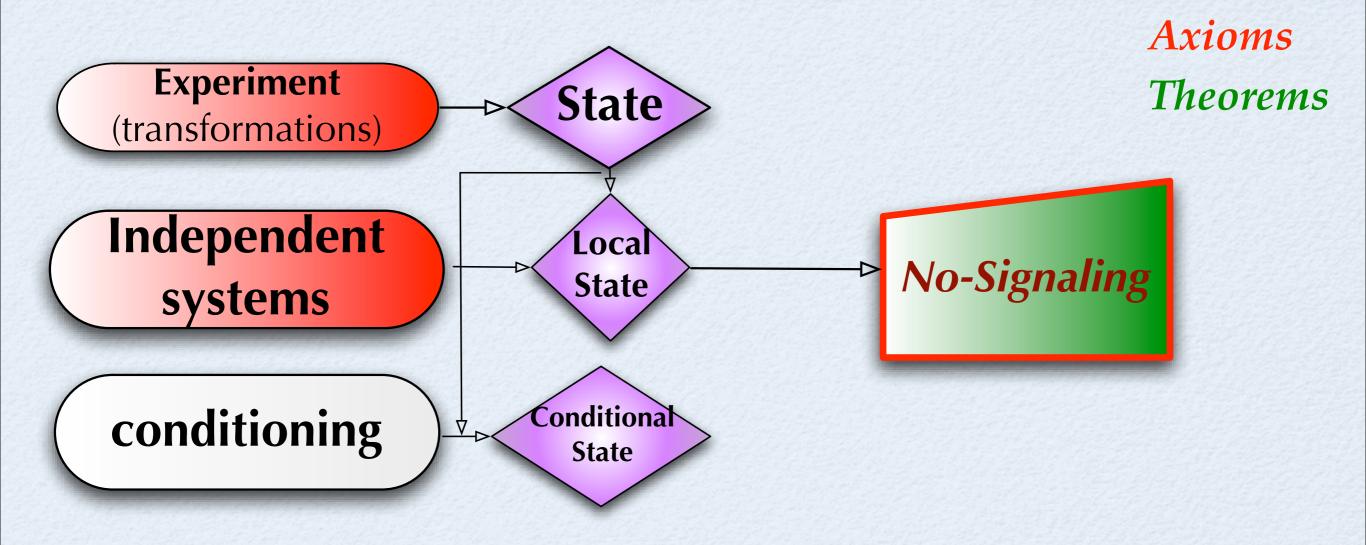
$$\Omega(\mathbb{A}, \mathscr{B}) = \Omega(\underline{\mathbb{A}}, \underline{\mathscr{B}}) = \Omega(\underline{\mathscr{I}}, \underline{\mathscr{B}}) =: \Omega|_2(\mathscr{B}).$$
(2)

On the other hand, we have

$$\Omega_{\mathbb{A},\mathscr{I}}|_{2}(\mathscr{B}) = \Omega((\mathscr{I},\mathscr{B}) \circ (\mathbb{A},\mathscr{I})) = \Omega(\mathbb{A},\mathscr{B}), \tag{3}$$

namely the statement.

No-signaling from dynamical independence



Generalized weights, transformations, and effects

Generalize by taking differences:

convex sets/cones
(affine) linear spaces

weights $\mathfrak{W} \rightarrow \text{gen. weights } \mathfrak{W}_{\mathbb{R}}$

transformations $\mathfrak{T} \rightarrow gen.$ transformations $\mathfrak{T}_{\mathbb{R}}$ (real algebra)

effects
$$\mathfrak{P} \rightarrow \text{gen. effects } \mathfrak{P}_{\mathbb{R}}$$

Real Banach spaces

norms:

gen. effects $\mathfrak{P}_{\mathbb{R}}$: $\|\underline{\mathscr{A}}\| := \sup_{\omega \in \mathfrak{S}} |\omega(\underline{\mathscr{A}})|$ gen. weights $\mathfrak{W}_{\mathbb{R}}$: $\|\tilde{\omega}\| := \sup_{\mathfrak{P}_{\mathbb{R}} \ni \|\underline{\mathscr{A}}\| \leqslant 1} |\tilde{\omega}(\underline{\mathscr{A}})|$

gen. transformations $\mathfrak{T}_{\mathbb{R}}$: $\|\mathscr{A}\| := \sup_{\mathfrak{P}_{\mathbb{R}} \ni \|\underline{\mathscr{B}}\| \leqslant 1} \|\underline{\mathscr{B}} \circ \mathscr{A}\|$

 $\mathfrak{W}_{\mathbb{R}} \mathfrak{P}_{\mathbb{R}}$ dual Banach pair under the pairing

$$l_{\underline{\mathscr{A}}}(\omega) \doteq \omega(\mathscr{A})$$

Banach-space structures

Axioms Theorems Experiment Informational State **Effect** equivalence (transformations) generalized generalized effect weight **Dual Banach** pair

Observable: a complete set of effects $\mathbb{L} = \{l_i\}$

 $\sum_{j} l_{j} = \underline{\mathscr{I}}$

Informationally complete observable

Informationally complete observable: an observable $\mathbb{L} = \{l_i\}$ is informationally complete if any effect l can be written as linear combination of elements of \mathbb{L} , namely there exist coefficients $c_i(l)$ such that

$$l = \sum_{i=1}^{|\mathbb{L}|} c_i(l) l_i$$

affine dimension: $\dim(\mathfrak{S}) = |\mathbb{L}| - 1$, for \mathbb{L} minimal informationally complete on \mathfrak{S}

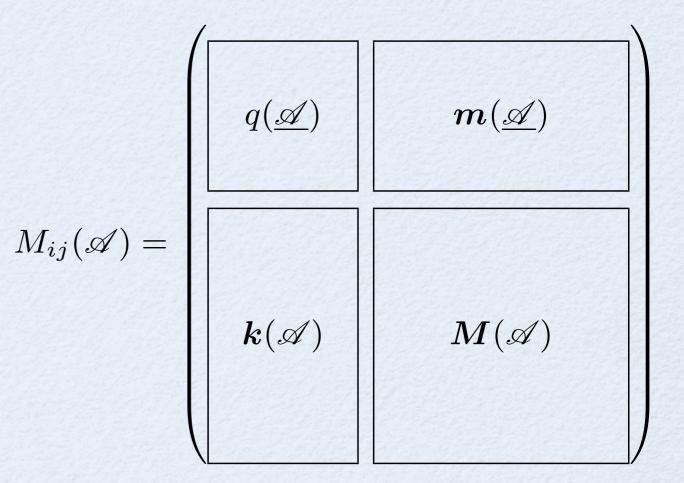
Bloch representation

 $l_{\underline{\mathscr{A}}} = \sum m_j(\underline{\mathscr{A}})n_j \qquad l_{\underline{\mathscr{A}}}(\omega) = m(\underline{\mathscr{A}}) \cdot n(\omega) + q(\underline{\mathscr{A}})$ j

Conditioning: fractional affine transformation

$$oldsymbol{n}(\omega) \longrightarrow oldsymbol{n}(\omega_{\mathscr{A}})$$

$$\boldsymbol{n}(\boldsymbol{\omega}_{\mathscr{A}}) = \frac{\boldsymbol{M}(\mathscr{A})\boldsymbol{n}(\boldsymbol{\omega}) + \boldsymbol{k}(\mathscr{A})}{\boldsymbol{m}(\mathscr{A}) \cdot \boldsymbol{n}(\boldsymbol{\omega}) + \boldsymbol{q}(\mathscr{A})}$$



Informationally complete observable

Theorem: there always exists a minimal informationally complete observable.

Proof. By definition $\mathfrak{P}_{\mathbb{R}} = \text{Span}_{\mathbb{R}}(\mathfrak{P})$, whence there must exists a spanning set for $\mathfrak{P}_{\mathbb{R}}$ that is contained in \mathfrak{P} . The maximal number of elements of this set that are linearly independent will constitute a *basis*, which we suppose has finite cardinality dim($\mathfrak{P}_{\mathbb{R}}$). It remains to be shown that it is possible to have a basis with sum of elements equal to \mathscr{I} , and that such basis is obtained operationally starting from the available observables from which we constructed \mathfrak{P} .

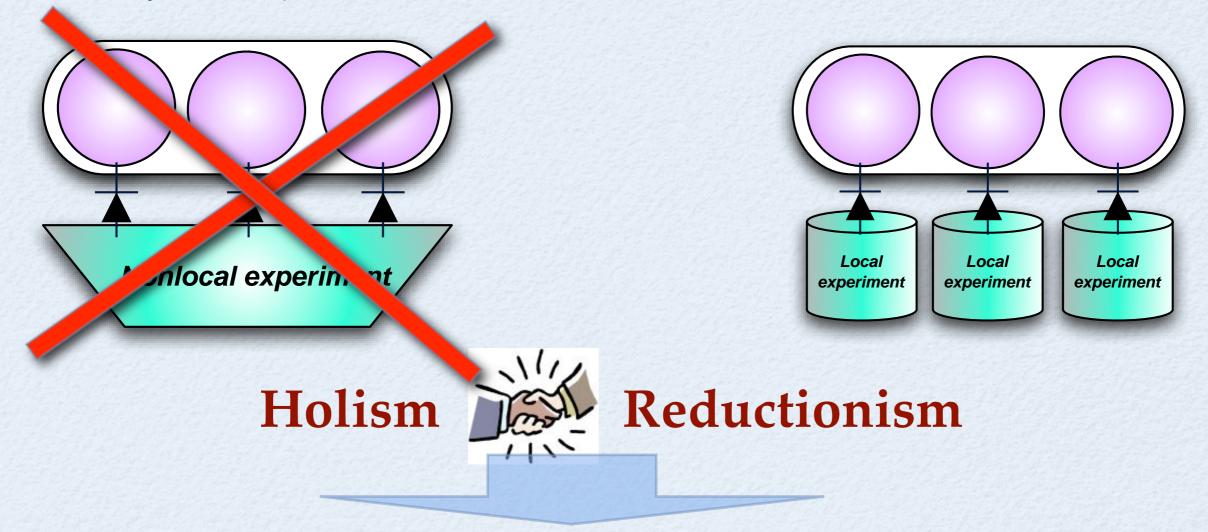
If all observables are *uninformative* (i. e. with all effects proportional to $\underline{\mathscr{I}}$), then $\mathfrak{P}_{\mathbb{R}} = \text{Span}(\underline{\mathscr{I}}), \underline{\mathscr{I}}$ is a minimal infocomplete observable, and the statement of the theorem is proved. Otherwise, there exists at least an observable $\mathbb{E} = \{l_i\}$ with $n \ge 2$ linearly independent effects. If this is the only observable, again the theorem is proved. Otherwise, take a new binary observable $\mathbb{E}_2 = \{x, y\}$ from the set of available ones (you can take different binary observables out of a given observable with more than two outcomes by summing up effects to yes-no observables). If $x \in \text{Span}(\mathbb{E})$ discard it. If $x \notin \text{Span}(\mathbb{E})$, then necessarily also $y \notin \text{Span}(\mathbb{E})$ [since if there exists coefficients λ_i such that $y = \sum_i \lambda_i l_i$, then $x = \sum_i (1 - \lambda_i) l_i$]. Now, consider the observable

$$\mathbb{E}' = \left\{ \frac{1}{2} y, \frac{1}{2} (l_1 + x), \frac{1}{2} l_2, \dots, l_n \right\}$$
(1)

(which operationally corresponds to the random choice between the observables \mathbb{E} and \mathbb{E}_2 with probability $\frac{1}{2}$, and with the events corresponding to *x* and l_1 made indistinguishable). This new observable has now $|\mathbb{E}'| = n + 1$ linearly independent effects (since *y* is linearly independent on the l_i and one has $y = \sum_{i=1}^n l_i - x = \sum_{i=2}^n l_i + l_1 - x$). By iterating the above procedure we reach $|\mathbb{E}'| = \dim(\mathfrak{P}_{\mathbb{R}})$, and we have so realized an apparatus that measures a minimal informationally complete observable.

Local observability principle

For composite systems local info-complete observables provide global info-complete observables.



identity for the affine dimension of composite systems

 $\dim(\mathfrak{S}_{12}) = \dim(\mathfrak{S}_1)\dim(\mathfrak{S}_2) + \dim(\mathfrak{S}_1) + \dim(\mathfrak{S}_2)$

Local observability principle

identity for the affine dimension of composite systems

 $\dim(\mathfrak{S}_{12}) = \dim(\mathfrak{S}_1)\dim(\mathfrak{S}_2) + \dim(\mathfrak{S}_1) + \dim(\mathfrak{S}_2)$

Proof. We first prove that the left side is a lower bound for the right side. Indeed, the number of outcomes of a minimal informationally complete observable is $\dim(\mathfrak{S}) + 1$, since it equals the dimension of the affine space embedding the convex set of states \mathfrak{S} plus an additional dimension for normalization. Now, consider a global informationally complete measurement made of two local minimal informationally complete observables measured jointly. It has number of outcomes $[\dim(\mathfrak{S}_1) + 1][\dim(\mathfrak{S}_2) + 1]$. However, we are not guaranteed that the joint observable is itself minimal, whence the bound.

The opposite inequality can be easily proved by considering that a global informationally incomplete measurement made of minimal local informationally complete measurements should belong to the linear span of a minimal global informationally complete measurement.

In Quantum Mechanics we have:

 $\dim(\mathfrak{S}) = \dim(\mathsf{H})^2 - 1$

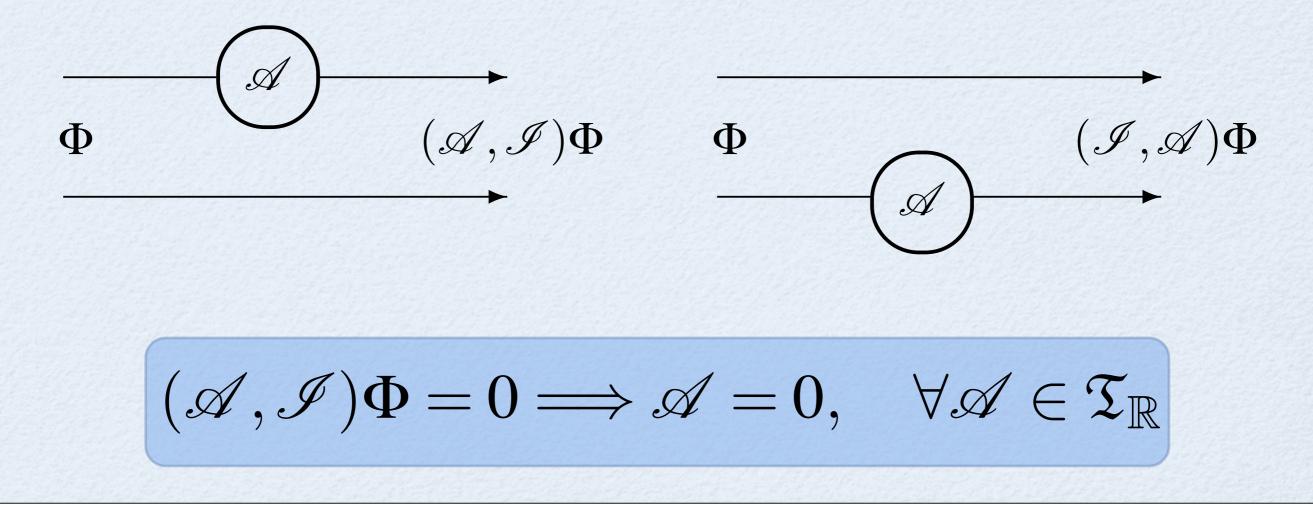
Local observability principle

Postulates Axioms Theorems

Dimensions of the convex set of states consistent with the quantum tensor product

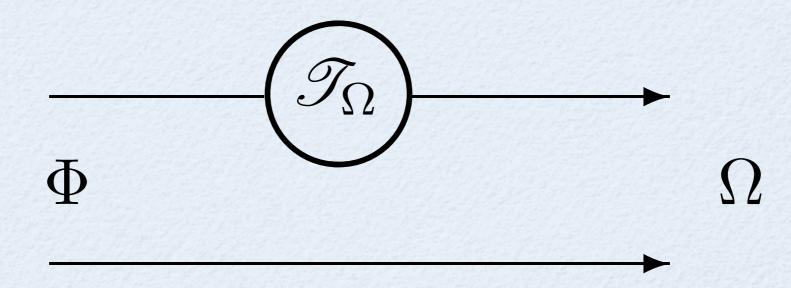
Faithful states

Dynamically faithful state: we say that a state Φ of a bipartite system is dynamically faithful if when acting on it with a local transformation \mathscr{A} on one system the output conditioned weight $(\mathscr{A}, \mathscr{I})\Phi$ is in 1-to-1 correspondence with the transformation \mathscr{A}



Faithful states

Preparationally faithful state: we say that a state Φ of a bipartite system is preparationally faithful if every joint state Ω can be achieved by a suitable local transformation \mathcal{T}_{Ω} on one system occurring with nonzero probability



Faithful states

Symmetric bipartite state: we call a joint state Φ of a bipartite system symmetric if

 $\Phi(\mathscr{A},\mathscr{B}) = \Phi(\mathscr{B},\mathscr{A})$

Construction of a C*-algebra of transformations

Operational definition of transposed

Existence of symmetric faithful states

"transposition" over the real algebra \mathcal{A} of (generalized) transformations

$$(\mathscr{A},\mathscr{I})\Phi \qquad \Phi \qquad (\mathscr{I},\mathscr{A}')\Phi \equiv (\mathscr{A},\mathscr{I})\Phi$$

Φ

$$\Phi(\mathscr{B} \circ \mathscr{A}, \mathscr{C}) = \Phi(\mathscr{B}, \mathscr{C} \circ \mathscr{A}')$$

Operational definition of *transposed*

For *symmetric* faithful state it is easy to check that the involution $\mathscr{A} \iff \mathscr{A}'$ satisfies the properties of the transposed:

1.
$$(\mathscr{A} + \mathscr{B})' = \mathscr{A}' + \mathscr{B}'$$

$$2. \quad (\mathscr{A}')' = \mathscr{A},$$

3.
$$(\mathscr{A} \circ \mathscr{B})' = \mathscr{B}' \circ \mathscr{A}'$$

Positive bilinear form

Positive form over generalized effects: Jordan decomposition of the real symmetric form Φ over generalized effects $\mathfrak{P}_{\mathbb{R}}$ (finite dimension)

$|\Phi| := \Phi_+ - \Phi_-$

$$\begin{split} |\Phi|(\underline{\mathscr{A}},\underline{\mathscr{B}}) &= \Phi(\varsigma(\underline{\mathscr{A}}),\underline{\mathscr{B}}), \quad \varsigma(\underline{\mathscr{A}}) = (\mathscr{P}_{+} - \mathscr{P}_{-})(\underline{\mathscr{A}}) \\ \varsigma^{2} &= \mathscr{I} \end{split}$$

 $|\Phi|(\mathscr{A},\mathscr{B})|$ strictly positive scalar product over $\mathfrak{P}_{\mathbb{R}}$

The complex conjugation

The involution ς corresponds to a generalized transformation $\varsigma(\underline{\mathscr{A}}) = \underline{\mathscr{A}} \circ \mathscr{Z}$

Extend ζ to transformations as follows $\underline{\mathscr{A}} \circ \zeta(\mathscr{B}) := \zeta(\zeta(\underline{\mathscr{A}}) \circ \mathscr{B}) = \underline{\mathscr{A}} \circ \mathscr{Z} \circ \mathscr{B} \circ \mathscr{Z}$. Correspondingly the involution over transformations reads $\zeta(\mathscr{A}) = \mathscr{Z} \circ \mathscr{A} \circ \mathscr{Z}$

which is composition preserving, namely

$$\varsigma(\mathscr{B}\circ\mathscr{A})=\varsigma(\mathscr{B})\circ\varsigma(\mathscr{A})$$

The involution ς will play the role of a *complex conjugation*.

The complex conjugation

In term of a canonical basis $[c_i]$ for $\mathfrak{P}_{\mathbb{R}}$ or which $\Phi(c_i, c_j) = s_j \delta_{ij}$

the involution $\boldsymbol{\varsigma}$ writes

$$\varsigma(\underline{\mathscr{A}}) = \underline{\mathscr{A}} \circ \mathscr{Z} = \sum_{k} \Phi(c_k, \underline{\mathscr{A}}) c_k$$

One has: $\mathscr{Z} = \mathscr{Z}' \longrightarrow \varsigma(\mathscr{A})' = \varsigma(\mathscr{A}')$

where

 $\mathscr{A}^{\dagger} := \varsigma(\mathscr{A}')$

The adjoint

Scalar product over $\mathfrak{P}_{\mathbb{R}}$:

$$\Phi\langle \underline{\mathscr{B}}|\underline{\mathscr{A}}\rangle_{\Phi} := \Phi(\varsigma(\underline{\mathscr{B}}'),\underline{\mathscr{A}}') = \Phi|_{1}(\mathscr{B}^{\dagger}\circ\mathscr{A})$$

 $\mathscr{A}^{\dagger} := \varsigma(\mathscr{A}')$ works as an adjoint with respect to the scalar product

$$\Phi\langle \mathscr{C}^{\dagger} \circ \underline{\mathscr{A}} | \underline{\mathscr{B}} \rangle_{\Phi} = \Phi\langle \underline{\mathscr{A}} | \mathscr{C} \circ \underline{\mathscr{B}} \rangle_{\Phi}$$

The C*-algebra of generalized transformations

Take complex linear combinations of generalized transformations and define $\varsigma(c\mathscr{A}) = c^* \varsigma(\mathscr{A})$ for $c \in \mathbb{C}$.

c-generalized transformations: $\mathfrak{T}_{\mathbb{C}}$ c-generalized effects: $\mathfrak{P}_{\mathbb{C}}$

complex Banach spaces

complex C*-algebra

GNS-like construction: the generalized transformations act as complex operators over the (pre)Hilbert space of generalized effects $\mathfrak{P}_{\mathbb{C}}$

 $\mathfrak{T}_{\mathbb{C}}$ becomes a C*-algebra with respect to the norm induced by the scalar product on $\mathfrak{P}_{\mathbb{C}}$

GNS construction for representing transformations

Representations π_{Φ} of transformations $\mathscr{A} \in \mathcal{A}$ over effects \mathcal{A}/\mathcal{I}

$$\pi_{\Phi}(\mathscr{A})|\mathscr{B}\rangle_{\Phi} \doteq |\mathscr{A} \circ \mathscr{B}\rangle_{\Phi}$$

The Born rule rewrites in the form of pairing:

$$\omega(\underline{\mathscr{A}}) = \Phi\langle\underline{\mathscr{A}}^{\dagger}|\varrho\rangle_{\Phi}$$

with representation of states given by

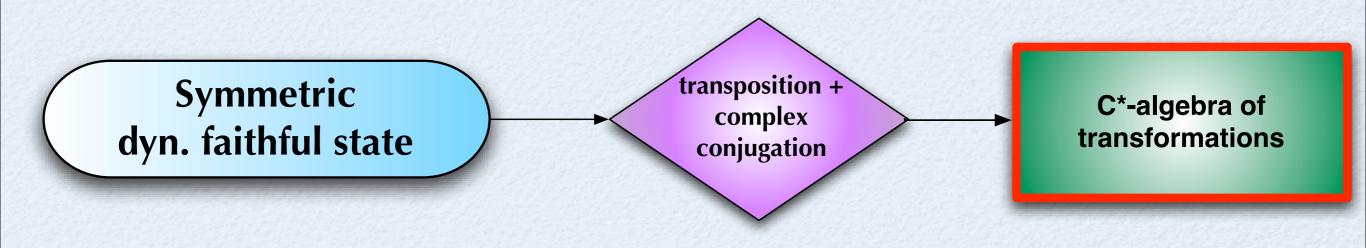
$$\underline{\varrho} = \underline{\mathscr{T}}'_{\omega} / \Phi(\underline{\mathscr{T}}_{\omega}, \mathscr{I})$$

The representation of transformations is given by

$$\begin{split} &\omega(\underline{\mathscr{B}}\circ\mathscr{A}) = {}_{\Phi}\langle\underline{\mathscr{B}^{\dagger}}|\mathscr{A}|\rho\rangle_{\Phi} := \\ &_{\Phi}\langle\underline{\mathscr{B}^{\dagger}}|\mathscr{A}\circ\rho\rangle_{\Phi} \equiv {}_{\Phi}\langle\mathscr{A}^{\dagger}\circ\underline{\mathscr{B}^{\dagger}}|\rho\rangle_{\Phi} \end{split}$$

C*-algebra of transformations

Postulates Axioms Theorems



An explicit representation

An explicit representation

$$\Phi(c_i, c_j) = \frac{1}{d} \operatorname{Tr}[W_i W_j^*] = \delta_{ij} s_j$$

 $\Phi(c_i, c_j) \doteq \frac{1}{2} \operatorname{Tr}[\sigma_i \sigma_j^*] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} := \delta_{ij} s_j \qquad \qquad C_j \longleftrightarrow \frac{1}{\sqrt{2}} \sigma_j,$

$$R_{\varsigma} = \mathscr{Z} \otimes \mathscr{I}(|I\rangle \otimes \langle \langle I|) = \check{R}_{\varsigma} = E$$

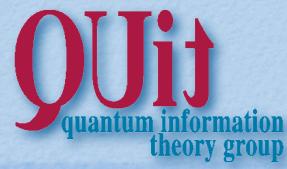
$$E|W_j\rangle = |W_j^*\rangle = s_j|W_j\rangle$$
$$\mathscr{Z} = \sum_i s_j W_j \cdot W_j$$

Quantum vs Classical C*-algebras (in progress)

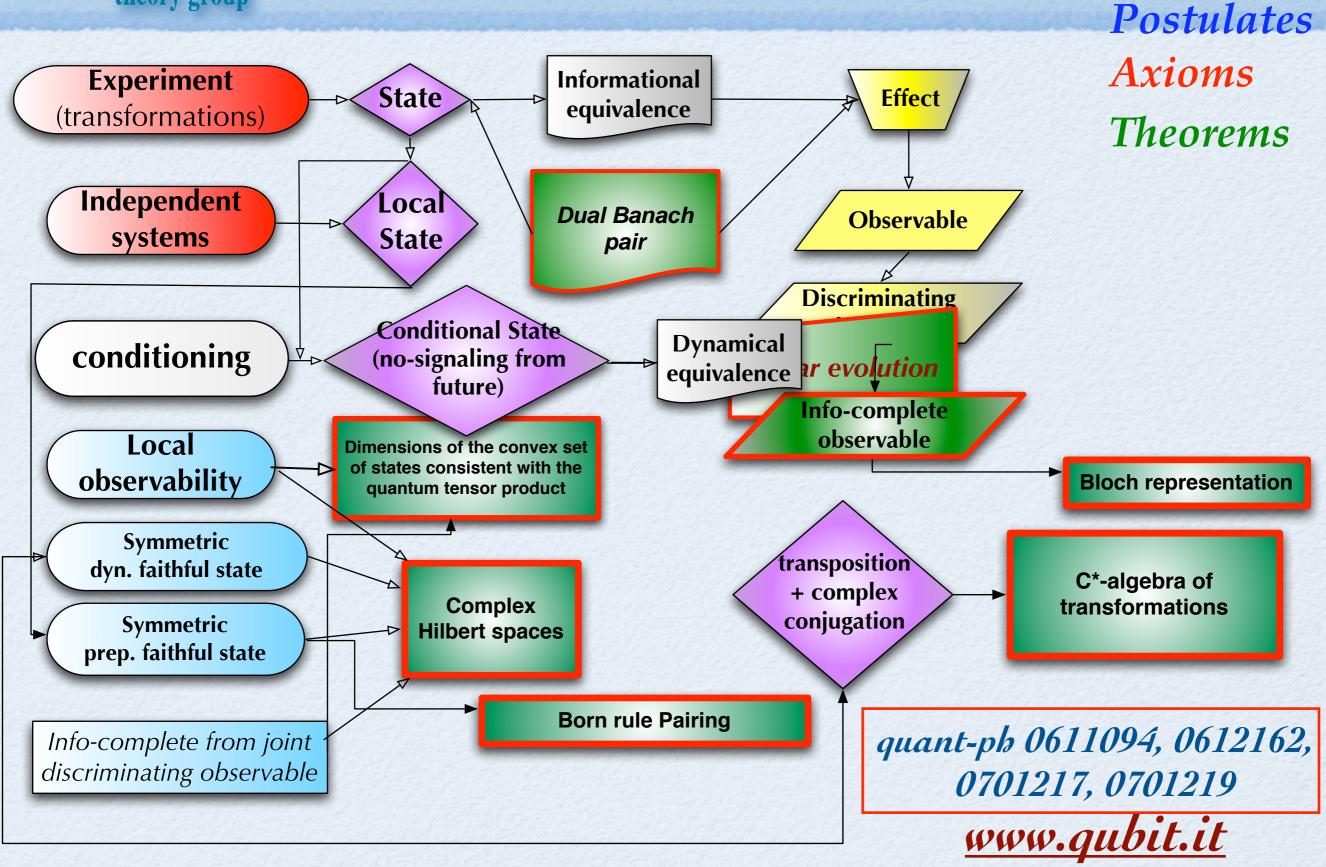
- The C*-algebra of transformations is isometrically
 -homomorphic to the usual operator C-algebra.
- Then the GNS representation is irreducible if the faithful state (cyclic vector) is pure, corresponding to QM
- The representation is abelian if the faithful state is separable corresponding to CM

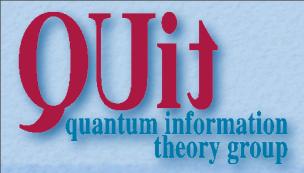
C*-algebra of transformations

state-effect duality	$\dim(\mathfrak{P}) = \dim(\mathfrak{S}) + 1$	(D1)
P2 (prep. faith.)	$\dim(\mathfrak{T}) = \dim(\mathfrak{S}^{\times 2}) + 1$	(\mathfrak{T})
(T)+GNS	$\dim(\mathfrak{S}^{\times 2}) + 1 = (\dim(\mathfrak{S}) + 1)^2$	$(\mathfrak{T}_4)\equiv(\mathrm{D2})$
P3 (loc. observability)	$ \dim(\mathfrak{S}_{12}) = \dim(\mathfrak{S}_1)\dim(\mathfrak{S}_2) + \dim(\mathfrak{S}_1) + \dim(\mathfrak{S}_2)$	(D2)



Summary





Open problems

dim $(\mathfrak{P}) = \infty$ Existence of \mathcal{G} (i.e. existence of the decomposition of the Banach space $\mathfrak{P}_{\mathbb{R}}$ into positive and negative parts for the symmetric real form Φ

 $\dim(\mathfrak{P}) \leq \infty$ Extrapolation:

 $\dim(\mathfrak{S}^{\times 2}) = \dim_{\#}(\mathfrak{S}^{\times 2})^{2} - 1 \implies \dim(\mathfrak{S}) = \dim_{\#}(\mathfrak{S})^{2} - 1$

Find a simple postulate discriminating the quantum from the classical C*-algebras

Exploit purity of Φ

