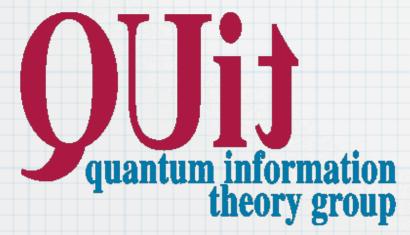
Broadcasting quantum information

Giacomo Mauro D'Ariano

Dipartimento di Fisica "A. Volta", Università di Pavia



18-19 November 2005 Royal Danish Academy of Sciences and Letters, Copenhagen

Superbroadcasting



Buscemi

60

Macchiavello

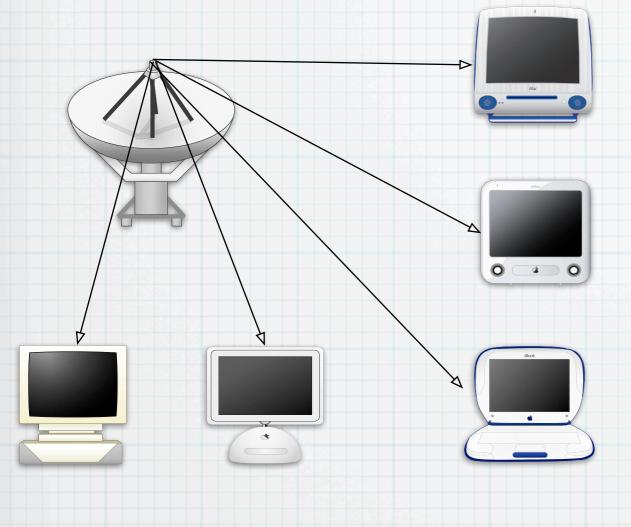
Perinotti

G. M. D'Ariano, C. Macchiavello, and P. Perinotti,

Superbroadcasting of mixed states, Phys. Rev. Lett. 95 060503 (2005)

F. Buscemi, G. M. D'Ariano, C. Macchiavello, and P. Perinotti, (in preparation)

Broadcasting



"Information" is by its nature **broadcastable**.

What about when information is *quantum*?

- Distributed quantum computation
- Quantum secret sharing
- Quantum game-theoretical contexts...

Broadcasting quantum information can be done only in a limited fashion

No cloning theorem

 $N \text{ inputs} \Rightarrow M \text{ outputs}$

$$\underbrace{|\psi\rangle \otimes \ldots \otimes |\psi\rangle}_{N} \Longrightarrow \underbrace{|\psi\rangle \otimes |\psi\rangle \otimes \ldots \otimes |\psi\rangle}_{M}, \quad \forall |\psi\rangle \in \mathsf{H}$$

For *M*>*N* the transformation cannot be achieved isometrically, whence it cannot occur with unit probability.

$$|E\rangle \otimes \underbrace{|\psi\rangle \otimes \ldots \otimes |\psi\rangle}_{N} \otimes |\omega_{1}\rangle \otimes \ldots \otimes |\omega_{M-N}\rangle \Longrightarrow |E_{\psi}\rangle \otimes \underbrace{|\psi\rangle \otimes |\psi\rangle \otimes \ldots \otimes |\psi\rangle}_{M}$$

 $|\langle \varphi | \psi \rangle|^{N} \Longrightarrow |\langle E_{\varphi} | E_{\psi} \rangle ||\langle \varphi | \psi \rangle|^{M}$

Cloning/Broadcasting

 $N \text{ inputs} \Rightarrow M \text{ outputs}$

 $R_{out} = \rho \otimes \rho \otimes \ldots \otimes \rho \qquad "cloning"$ $\mathrm{Tr}_{123...M-1}[R_{out}] = \mathrm{Tr}_{23...M}[R_{out}] = \rho \qquad "broadcasting"$

• For pure states ideal broadcasting coincides with the *quantum cloning*.

• For mixed states there are infinitely many joint states that correspond to the same local state.

No-broadcasting

• For mixed input states the *no-cloning theorem* is not logically sufficient to forbid ideal broadcasting

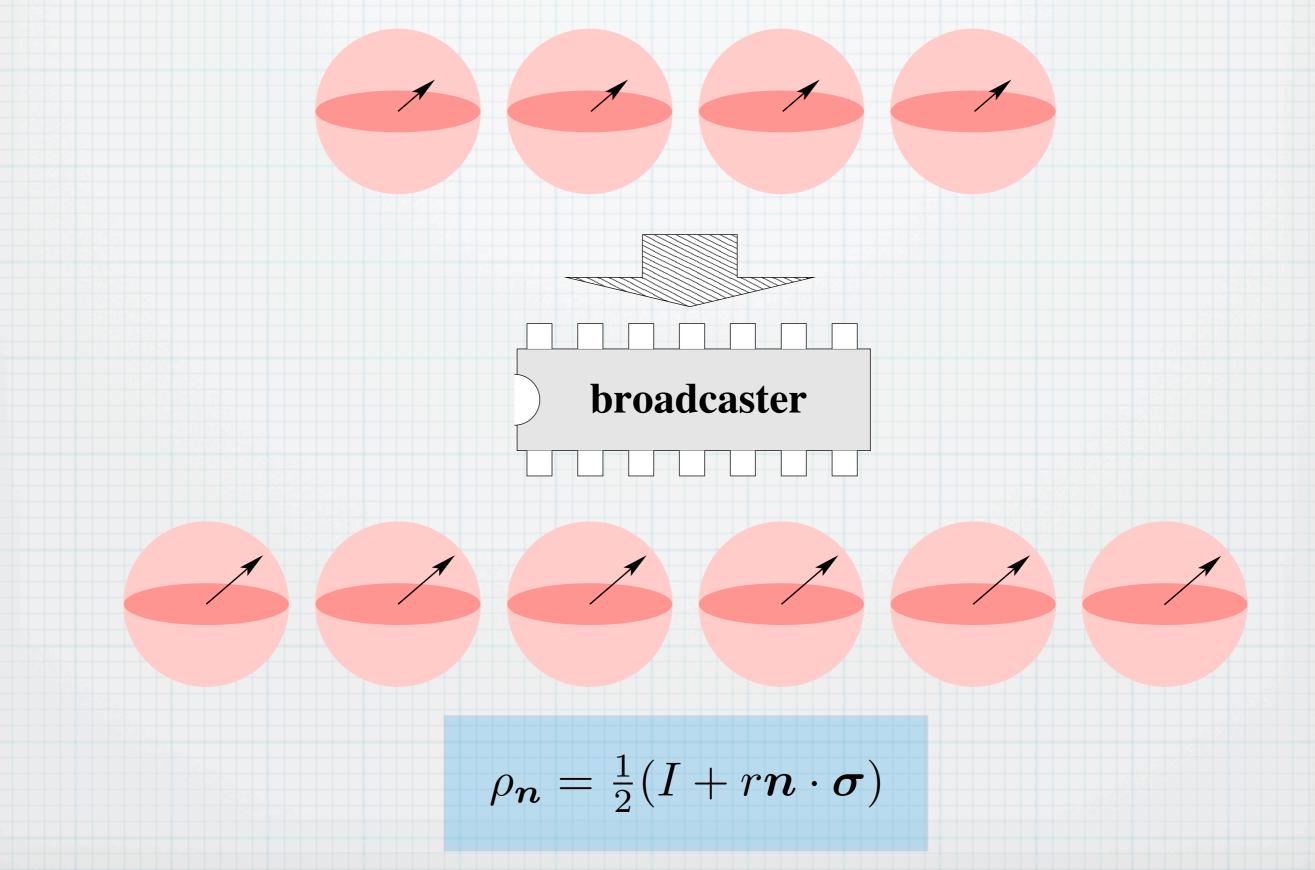
 The *impossibility of ideal broadcasting* has been proved in the case of <u>one input</u> copy and <u>two output</u> copies for *non mutually commuting density operators* [H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schumacher, Phys. Rev. Lett. **76** 2818 (1996)]

Is this a generalization of the no-cloning theorem to mixed states?

Superbroadcasting

The answer is no!

- The no broadcasting theorem does not generalize to multiple input copies!
- For sufficiently many input copies it is even possible to purify the state while broadcasting!
- broadcasting + purification: "superbroadcasting".



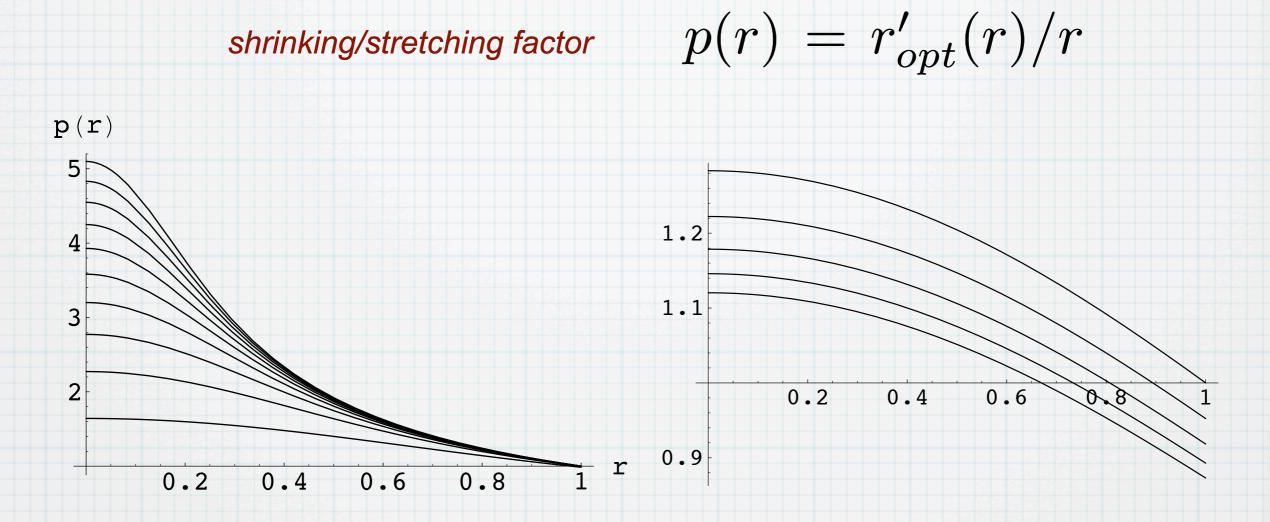
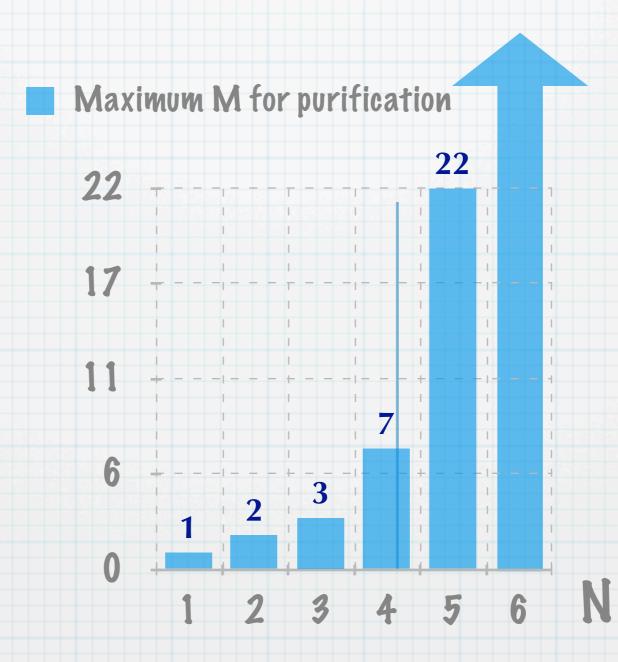


FIG. 2: The stretching factor p(r) versus r. On the left: for M = N + 1 and N = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100(from the bottom to the top. On the right: for N = 5 and $5 \le M \le 9$ (from the top to the bottom).



shrinking/stretching factor $p(r) = r'_{opt}(r)/r$

 $r_st(N,M)$ maximum purity for purification

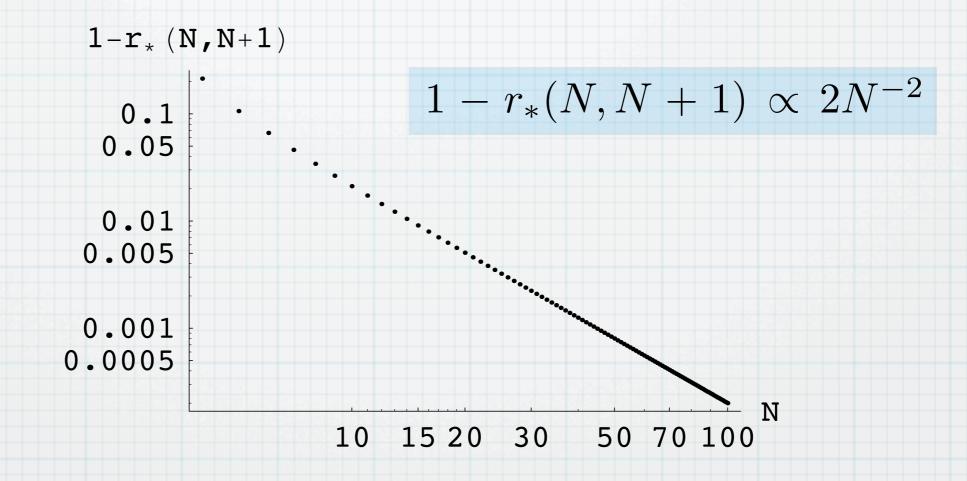


FIG. 3: Logarithmic plot of $1 - r_*(N, N + 1)$ versus N. $r_*(N, M)$ denotes the maximum purity for which one can have superbroadcasting from N to M copies.

- For pure states the optimal superbroadcasting map is the same as the optimal universal cloning [R. F. Werner, Phys. Rev. A 58 1827 (1998)].
- For M<N it corresponds to the optimal purification map [J. I. Cirac, A. K. Ekert, and C. Macchiavello, Phys. Rev. Lett. 82 4344 (1999)].
- Therefore, the superbroadcasting map generalizes and *interpolates optimal purification and optimal cloning*.

GNS representation

cyclic vector $|I\rangle\rangle \in \mathsf{H} \otimes \mathsf{H}$

 $\Psi \in \mathsf{HS}(\mathsf{K},\mathsf{H}), \qquad |\Psi\rangle\!\rangle = (\Psi \otimes I)|I\rangle\!\rangle$

transposition

$$\begin{split} |\Psi\rangle\rangle &= (\Psi\otimes I)|I\rangle\rangle = (I\otimes\Psi^{\intercal})|I\rangle\rangle\\ complex conjugation\\ X^* &\doteq (X^{\intercal})^{\dagger}\\ (|v\rangle\langle v|\otimes I)|I\rangle\rangle &= |v\rangle|v^*\rangle \end{split}$$

$$|\Psi\rangle\rangle = \sum \Psi_{nm} |n\rangle \otimes |m\rangle.$$

nm

 $(A \otimes B)|C\rangle\rangle = |AC B^{\intercal}\rangle\rangle$ $\langle\langle A|B\rangle\rangle \equiv \operatorname{Tr}[A^{\dagger}B].$

Choi-Jamiolkowski

Choi-Jamiołkowski correspondence

$$\mathcal{M}(U_g \rho U_g^{\dagger}) = W_g \mathcal{M}(\rho) W_g^{\dagger} \Leftrightarrow [W_g \otimes U_g^{*}, R_{\mathcal{M}}] = 0$$
$$\mathcal{M}(T_h \rho T_h^{\dagger}) = \mathcal{M}(\rho) \Leftrightarrow [I \otimes T_h^{*}, R_{\mathcal{M}}] = 0$$
$$V_k \mathcal{M}(\rho) V_k^{\dagger} = \mathcal{M}(\rho) \Leftrightarrow [V_k \otimes I, R_{\mathcal{M}}] = 0$$

Conjugation/covariance

"conjugation": $CUC^{\dagger} = U^{*}$ $C \equiv (i\sigma_{y})^{\otimes N}$ $\tilde{Q} \doteq CQ^{\intercal}C^{\dagger}$ $S_{\mathscr{B}} \doteq (I_{out} \otimes C)R_{\mathscr{B}}(I_{out} \otimes C^{\dagger})$ $\mathscr{B}(Q) = \operatorname{Tr}_{in}[(I_{out} \otimes \tilde{Q})S_{\mathscr{B}}]$

Completely positive trace-preserving map from states of N qubits to states of M qubits that is invariant under permutations of input copies and of output copies and unitarily covariant

 $\Pi_{\sigma}\mathscr{B}(\Pi_{\tau}\rho\Pi_{\tau}^{\dagger})\Pi_{\sigma}^{\dagger} = \mathscr{B}(\rho) \qquad \mathscr{B}(U^{\otimes N}\rho^{\otimes N}U^{\dagger\otimes N}) = U^{\otimes M}\mathscr{B}(\rho^{\otimes N})U^{\dagger\otimes M}$ $[\Pi_{\sigma}\otimes\Pi_{\tau}, S_{\mathscr{B}}] = 0 \qquad \qquad [U^{\otimes (M+N)}, S_{\mathscr{B}}] = 0$

Schur-Weyl duality

We exploit the Schur-Weyl duality

$$[\mathbb{SU}(d)^{\otimes N}, \mathbb{P}_N] = 0 \qquad U_g^{(\nu)}$$
$$\mathcal{H}^{\otimes N} \equiv \bigoplus_{\nu} \mathcal{H}_{\nu} \otimes \mathcal{H}_{d_{\nu}} \qquad \Pi_{\sigma}^{(d_{\nu})}$$

H_i representation space $\mathsf{H}^{\otimes L} = \bigoplus_{j=\langle\!\langle L/2\rangle\!\rangle}^{L/2} \mathsf{H}_j \otimes \mathbb{C}^{d_j}$ \mathbb{C}^{d_j} multiplicity space $d_j = \frac{2j+1}{L/2+j+1} {L \choose L/2+j}$

operators invariant under $U_g^{\otimes L}$: $\oplus_{j=\langle\langle L/2 \rangle\rangle}^{L/2} I_j \otimes W^{(j)}$

 $\mathbb{SU}(2)$

operators invariant under \mathbb{P}_L : $\oplus_{j=\langle\langle L/2 \rangle\rangle}^{L/2} Z_j \otimes I_{d_j}$

Input states

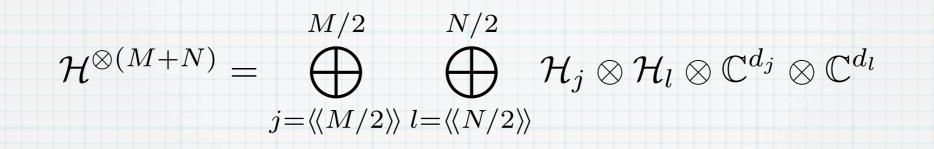
 $\tilde{\rho}^{\otimes N} = (r_+ r_-)^{N/2} \bigoplus_{l=\langle\langle N/2\rangle\rangle}^{N/2} \sum_{n=-l}^l \left(\frac{r_-}{r_+}\right)^n |ln\rangle\langle ln| \otimes I_{d_l}$

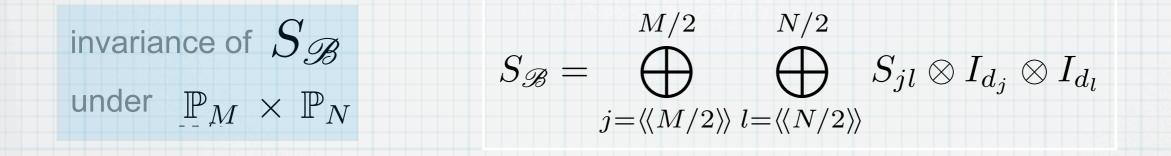
(Schur-Weyl duality)

$\rho = \frac{1}{2}(I + r\mathbf{k} \cdot \boldsymbol{\sigma}) \qquad r_{\pm} \doteq \frac{1}{2}(1 \pm r)$

[J. I. Cirac, A. K. Ekert, and C. Macchiavello, Phys. Rev. Lett. 82 4344 (1999)]

Maps characterization





 $S_{\mathscr{B}} = \bigoplus^{M/2} \bigoplus^{N/2} \bigoplus^{j+l} s_{j,l,J} P_J^{(j,l)} \otimes I_{d_j} \otimes I_{d_l}$ invariance of $S_{\mathscr{B}}$ under $U_q^{\otimes (N+M)}$ $j = \langle \langle M/2 \rangle \rangle l = \langle \langle N/2 \rangle \rangle J = |j-l|$

Convex structure

$$S_{\mathscr{B}} = \bigoplus_{j=\langle\langle M/2\rangle\rangle}^{M/2} \bigoplus_{l=\langle\langle N/2\rangle\rangle}^{N/2} \bigoplus_{J=|j-l|}^{j+l} s_{j,l,J} P_J^{(j,l)} \otimes I_{d_j} \otimes I_{d_l}$$

 $P_J^{(j,l)}$ orthogonal projector over the irreducible representation *J* coming from the couple *j*,*l*

 $s_{j,l,J}$ positive coefficients

trace-preserving condition:

$$\sum_{j=\langle\!\langle M/2\rangle\!\rangle}^{M/2} \sum_{J=|j-l|}^{j+l} d_j s_{j,l,J} \frac{2J+1}{2l+1} = 1, \quad \forall \langle\!\langle N/2\rangle\!\rangle \le l \le \frac{N}{2}$$

broadcasting maps make a convex set, with the extreme points classified by the functions φ and Φ corresponding to a given choice $j = \varphi_l$, $J = \Phi_l$, $\langle\langle M/2 \rangle\rangle \leq \varphi_l \leq M/2$, $|\varphi_l - l| \leq \Phi_l \leq \varphi_l + l$

Extremal maps

extremal broadcasting maps:

$$S_{\mathscr{B}}^{(\varphi,\Phi)} = \bigoplus_{l=\langle\langle N/2\rangle\rangle}^{N/2} \frac{2l+1}{2\Phi_l+1} \frac{1}{d_{\varphi_l}} P_{\Phi_l}^{(\varphi_l,l)} \otimes I_{d_{\varphi_l}} \otimes I_{d_l}$$

$$\mathscr{B}_{\varphi,\Phi}(\rho^{\otimes N}) = (r_{+}r_{-})^{N/2} \bigoplus_{l=\langle\langle N/2\rangle\rangle}^{N/2} \frac{2l+1}{2\Phi_{l}+1} \frac{d_{l}}{d_{\varphi_{l}}}$$

$$\times \sum_{n=-l}^{l} \left(\frac{r_{-}}{r_{+}}\right)^{n} \operatorname{Tr}_{l}\left[\left(I_{\varphi_{l}} \otimes |ln\rangle\langle ln|\right)P_{\Phi_{l}}^{(\varphi_{l},l)}\right] \otimes I_{d_{\varphi_{l}}}$$

Extremal maps

The output state can be written

$$\mathscr{B}_{\varphi,\Phi}(\rho^{\otimes N}) = (r_{+}r_{-})^{N/2} \bigoplus_{l=\langle\langle N/2\rangle\rangle}^{N/2} \frac{2l+1}{2\Phi_{l}+1} \frac{d_{l}}{d_{\varphi_{l}}}$$

$$\times \sum_{n=-l}^{l} \left(\frac{r_{-}}{r_{+}}\right)^{n} \sum_{m=-\varphi_{l}}^{\varphi_{l}} \langle \Phi_{l}m + n | \varphi_{l}m, ln \rangle^{2} | \varphi_{l}m \rangle \langle \varphi_{l}m | \otimes I_{d_{\varphi_{l}}}$$

We are now interested in the single-site output

Let's focus attention on this term

Single-site output

Change from Wedderburn to qubit representations

$$|jm\rangle \otimes |1\rangle = |jm\rangle \otimes |\Psi_{-}\rangle^{\otimes \frac{M}{2}-j}$$

$$\mathrm{Tr}_{j-\frac{1}{2}}[|jm\rangle\langle jm|] = \frac{1}{2}I + \frac{m}{2j}\boldsymbol{k}\cdot\boldsymbol{\sigma}$$

$$|jm\rangle\langle jm|\otimes I_{d_j} = \frac{d_j}{M!}\sum_{l\in\mathbb{P}_M}\pi_l X_j\pi_l^{\dagger}$$
$$X_j = |jm\rangle\langle jm|\otimes|1\rangle\langle 1|$$

$$\begin{split} \rho_{(\varphi,\Phi)}'(r) &= (r_+ r_-)^{N/2} \sum_{l=\langle\langle N/2\rangle\rangle}^{N/2} \frac{2l+1}{2\Phi(l)+1} d_l \sum_{m=-\varphi(l)}^{\varphi(l)} \\ &\times \sum_{n=-l}^l \left(\frac{r_-}{r_+}\right)^n \langle \Phi(l)m + n | \varphi(l)m, ln \rangle^2 \frac{1}{2} \left(I + \frac{2m}{M} \mathbf{k} \cdot \boldsymbol{\sigma}\right) \end{split}$$

Derivation

The single-site output state $\rho' = \operatorname{Tr}_{M-1}[\mathscr{B}(\rho^{\otimes N})]$

commutes with σ_z

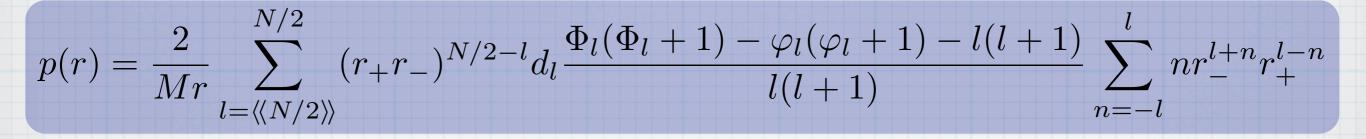
As a figure of merit we consider

$$p(r) \doteq \frac{r'}{r} = \frac{1}{r} \operatorname{Tr}[\sigma_z \otimes I^{\otimes (M-1)} \mathscr{B}(\rho^{\otimes N})]$$

Using permutation invariance it turns out that

$$p(r) = \frac{2}{Mr} \operatorname{Tr}[J_z^{\text{tot}} \mathscr{B}(\rho^{\otimes N})]$$

For extremal maps we have



Since $\sum_{n=-l}^{l} nr_{-}^{l+n}r_{+}^{l-n} \le 0$ Φ_l, φ_l must minimize

$$\Phi_l(\Phi_l+1) - \varphi_l(\varphi_l+1) - l(l+1)$$

Scaling factor

The solution is

$$\varphi_l = \frac{M}{2} \,, \ \Phi_l = \frac{M}{2} - l$$

corresponding to

$$p(r) = -\frac{M+2}{Mr} \sum_{l=\langle\langle N/2\rangle\rangle}^{N/2} (r_{+}r_{-})^{N/2-l} \frac{d_{l}}{l+1} \sum_{n=-l}^{l} nr_{-}^{l+n}r_{+}^{l-n}$$

Violation of data-processing theorem?

- Superbroadcasting doesn't mean more available information about the original input state.
- This is due to detrimental correlations between the broadcast copies, which does not allow to exploit their statistics.
- From the *point of view of each single user* our broadcasting protocol is a purification in all respects (for sufficiently mixed states). The process transfers noise from the local states to the correlations between them.

Violation of data-processing theorem?

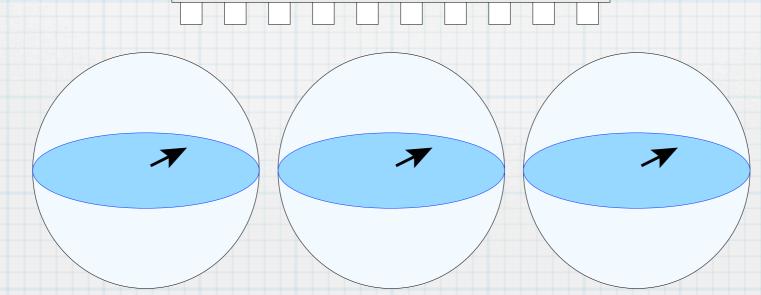
G. M. D'Ariano, Rafał Demkowicz-Dobrzanski and P. Perinotti, in progress

Optimal universal covariant superbroadcasting actually preserves the information about the original input state.

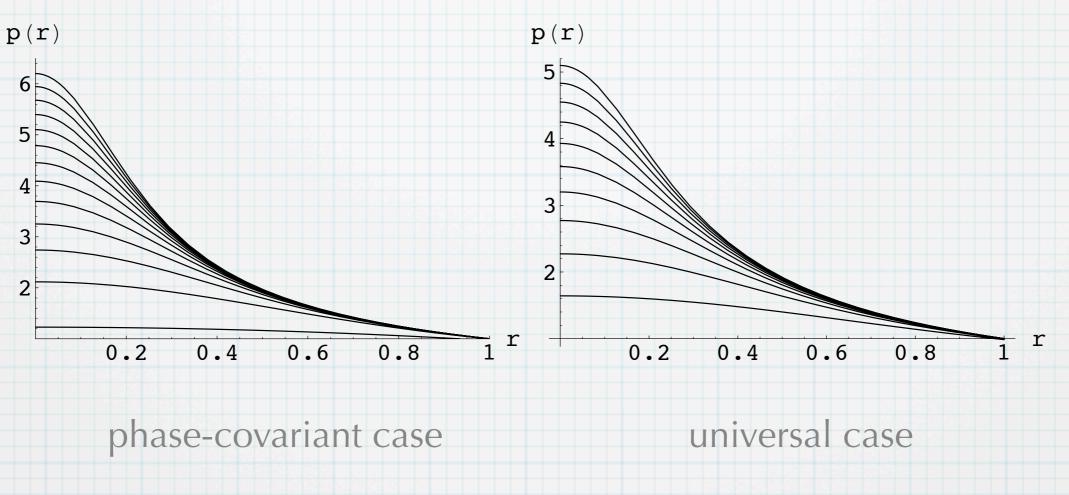
Rafał Demkowicz-Dobrzanski

Phase-covariant s.b.

broadcaster

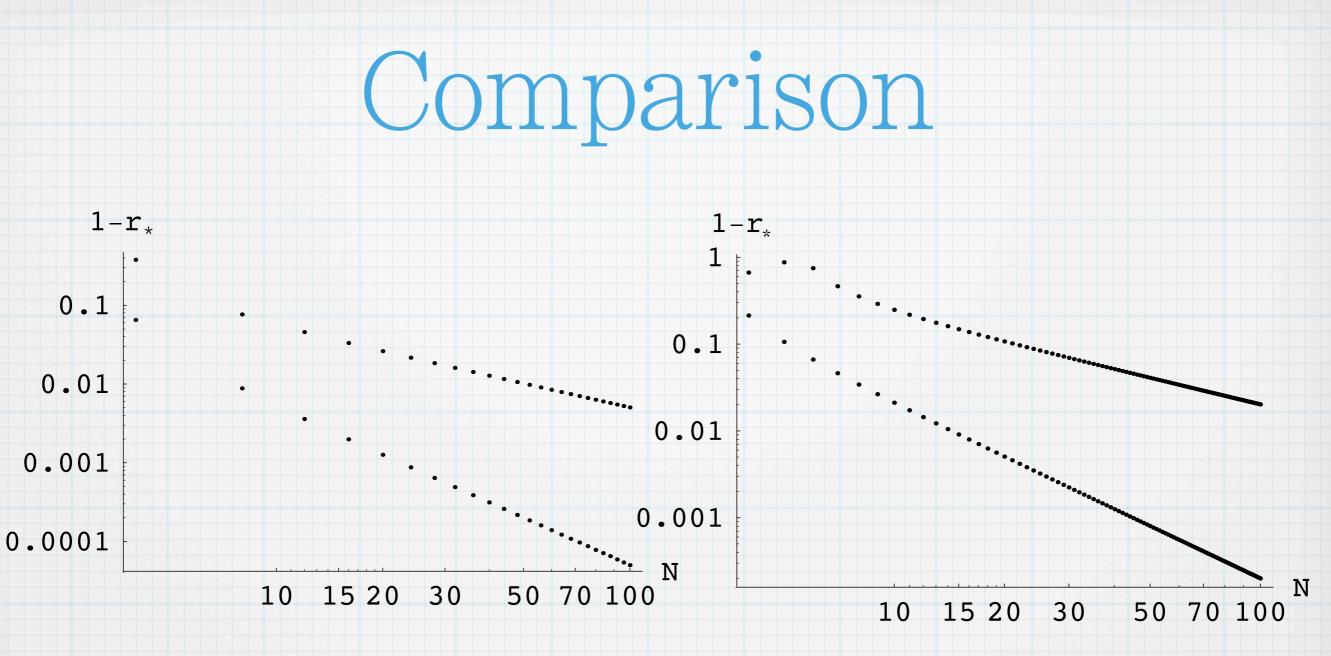


Comparison



 $M = N + 1, \quad 4 \le N \le 100 \qquad \qquad M = N + 1, \quad 10 \le N \le 100$

The purification is higher in the phase-covariant case than in the universal case, since the set of input states is smaller



universal case

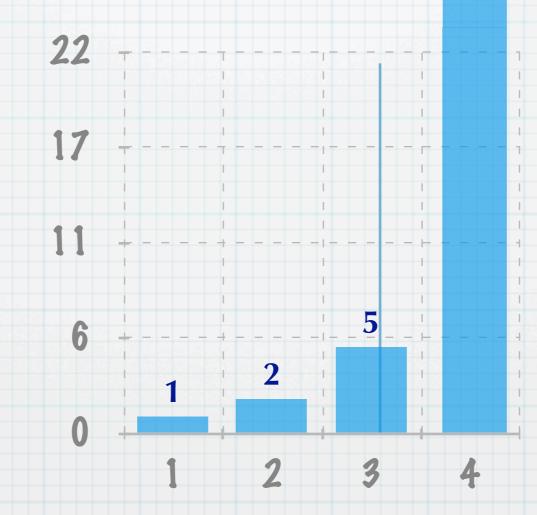
 $1 - r_*(N, N+1) \simeq 2N^{-2}$

 $1 - r_*(N, \infty) \simeq N^{-1}$

phase-covariant case

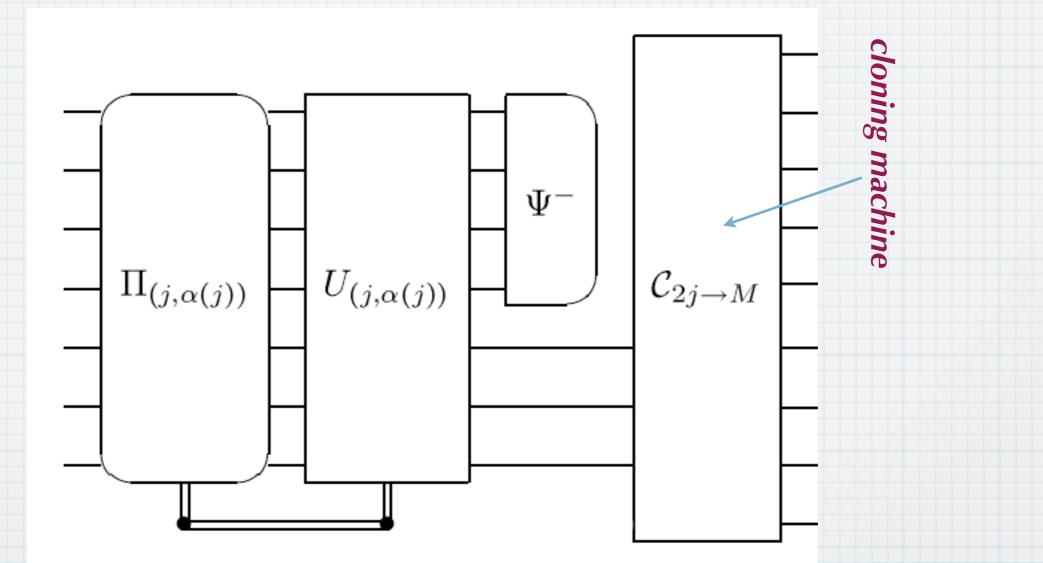
$$1 - r_*(N, N+1) \simeq \frac{2}{3}N^{-2}$$
$$1 - r_*(N, \infty) \simeq \frac{1}{2}N^{-1}$$

Phase-covariant s.b.



N

Realization scheme



 $\Pi_{(j,\alpha(j))} = I_{2j+1} \otimes |\alpha(j)\rangle \langle \alpha(j)| = U_{(l,\chi)}\rho_{(l,\chi)}U^{\dagger}_{(l,\chi)} =$

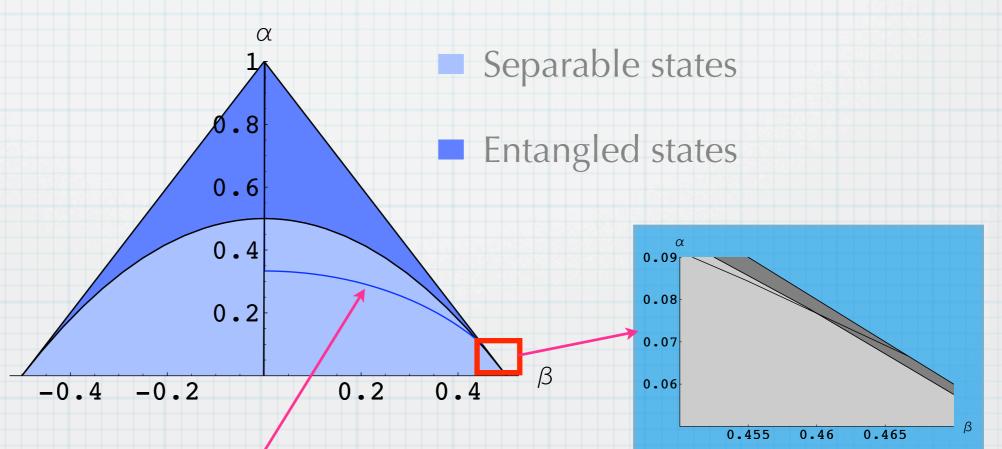
 $\rho_{(l,\chi)} = (r_+ r_-)^{N/2} \left(\frac{r_+}{r_-}\right)^{J_z^{(l)}} \otimes |\chi\rangle\langle\chi|,$

 $(r_+r_-)^{N/2} \left(\frac{r_+}{r}\right)^{J_z^{(l)}} \otimes |\Psi^-\rangle \langle \Psi^-|^{\otimes \frac{N-2l}{2}}$

Universal broadcasting: symmetric 2-sites output states commuting with $J_z^{(1)}$

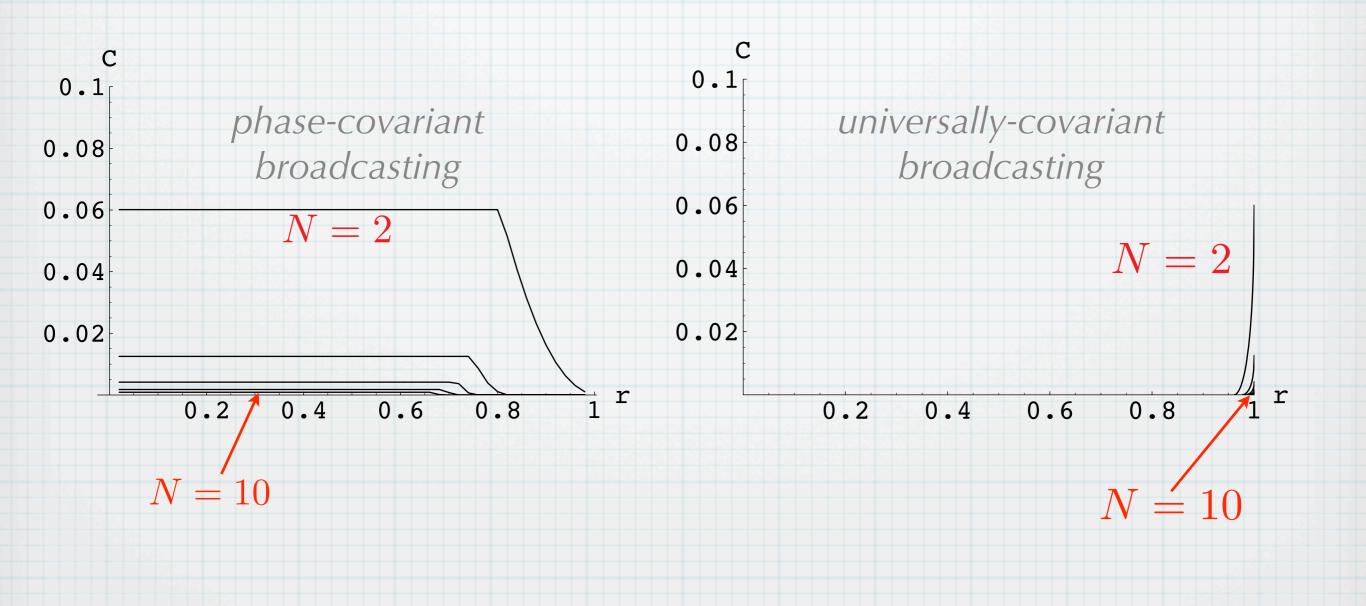
Parametrization of bipartite symmetric states:

$$\rho^{(2)} = \alpha I^{(1)} + \beta J_z^{(1)} + \frac{1 - 3\alpha}{2} J_z^{(1)^2}$$

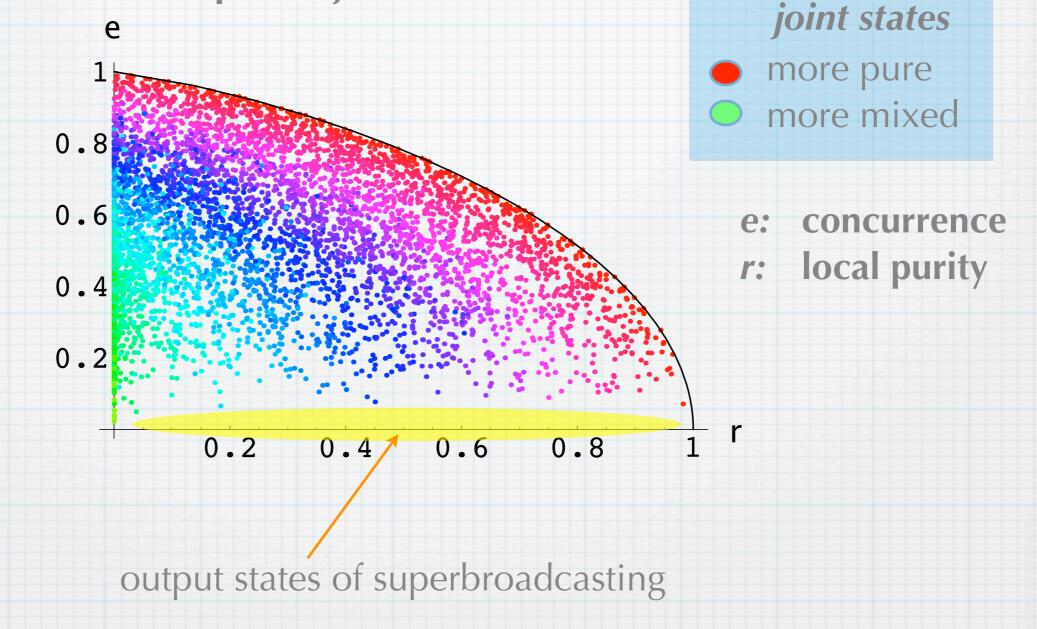


Universal broadcasting output states (4-->5)

Two-sites output *concurrence* C versus the input Bloch vector length r for $N \rightarrow N + 1$, $2 \le N \le 10$



permutation invariant bipartite joint states



Is superbroadcasting classical?

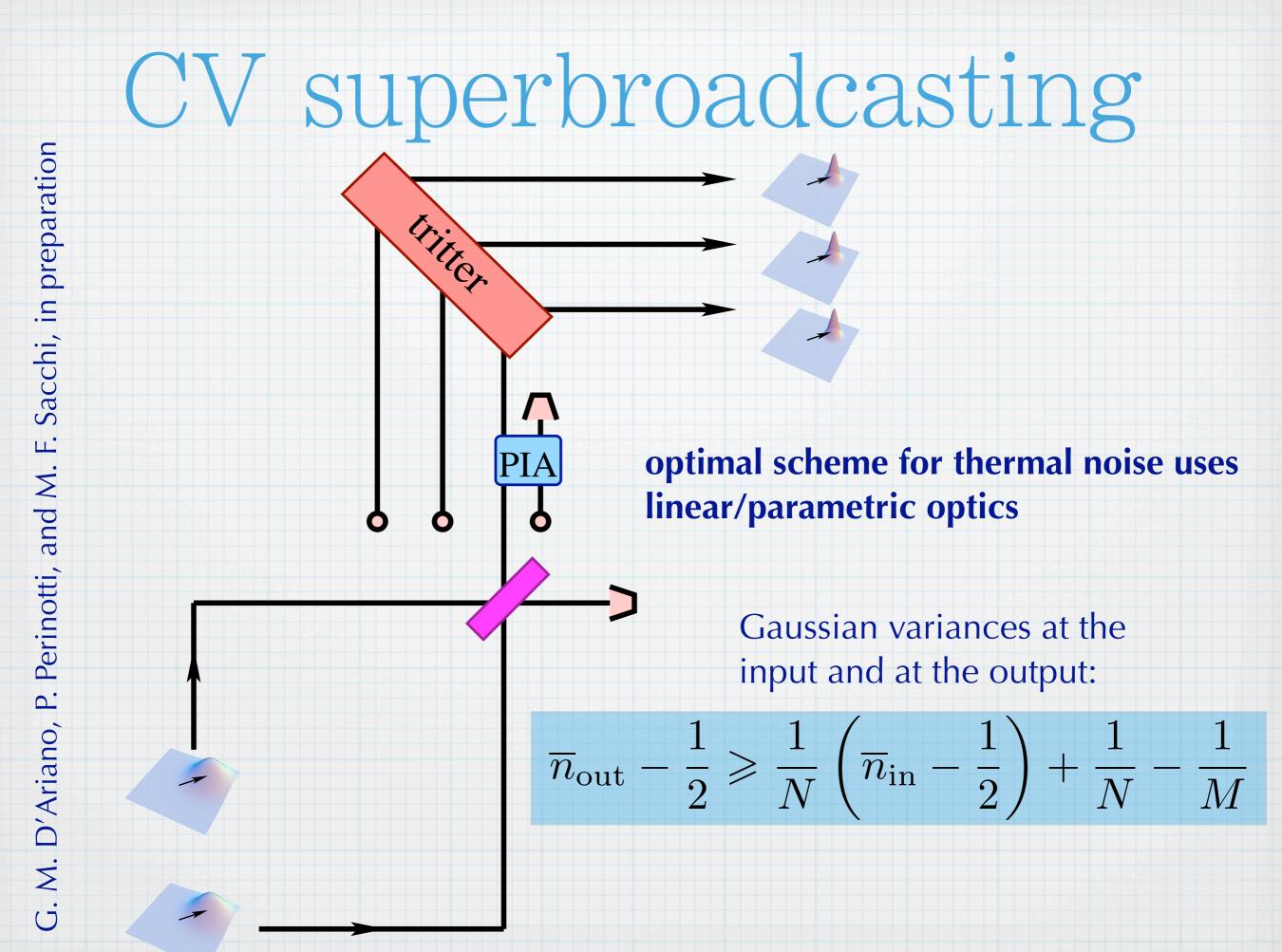
- The classical procedure (measurement + preparation) leads only to the same scaling factor as the superbroadcasting for M=∞ (F. Buscemi, G. Chiribella, G. M. D'Ariano, C. Macchiavello, and P. Perinotti, in preparation)
- The protocol for practical achievement of the superbroadcasting map involves Werner cloning map in some stage ----> quantum correlations

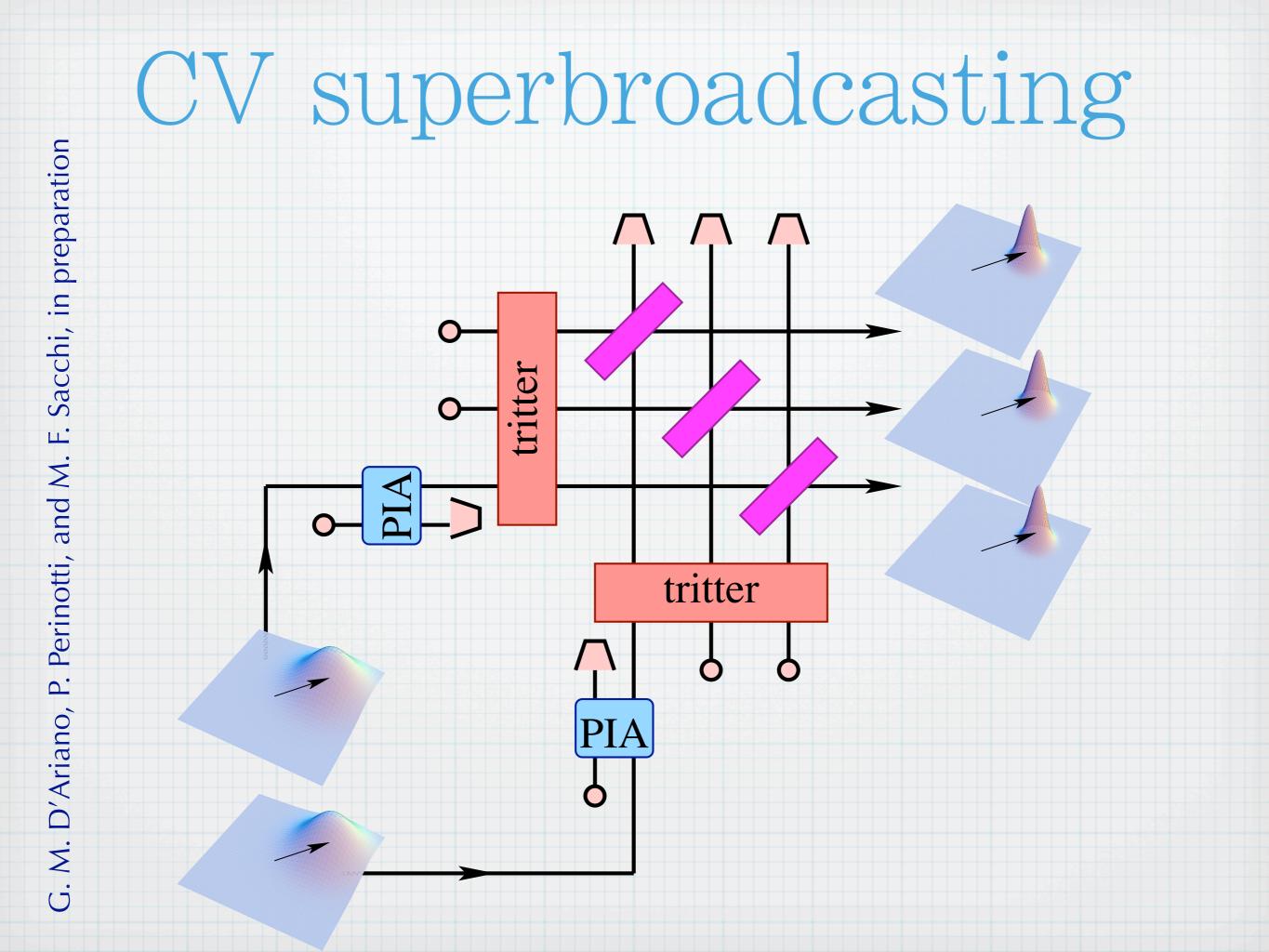
CV superbroadcasting

superbroadcasting for harmonic oscillators

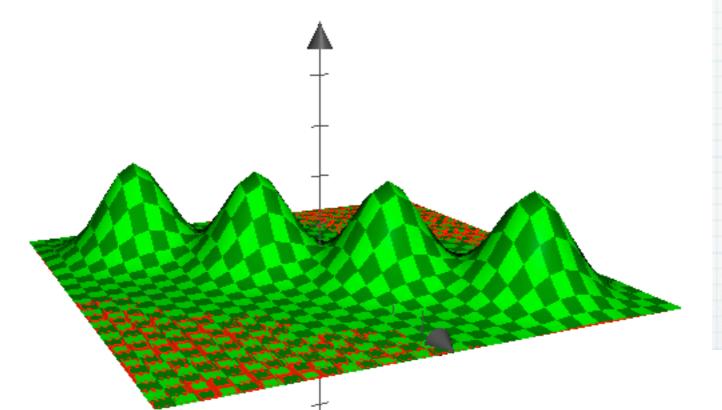
- feasible for any displaced noisy state
- covariant under the Weyl Heisenberg group of translations on the phase space

Sacchi



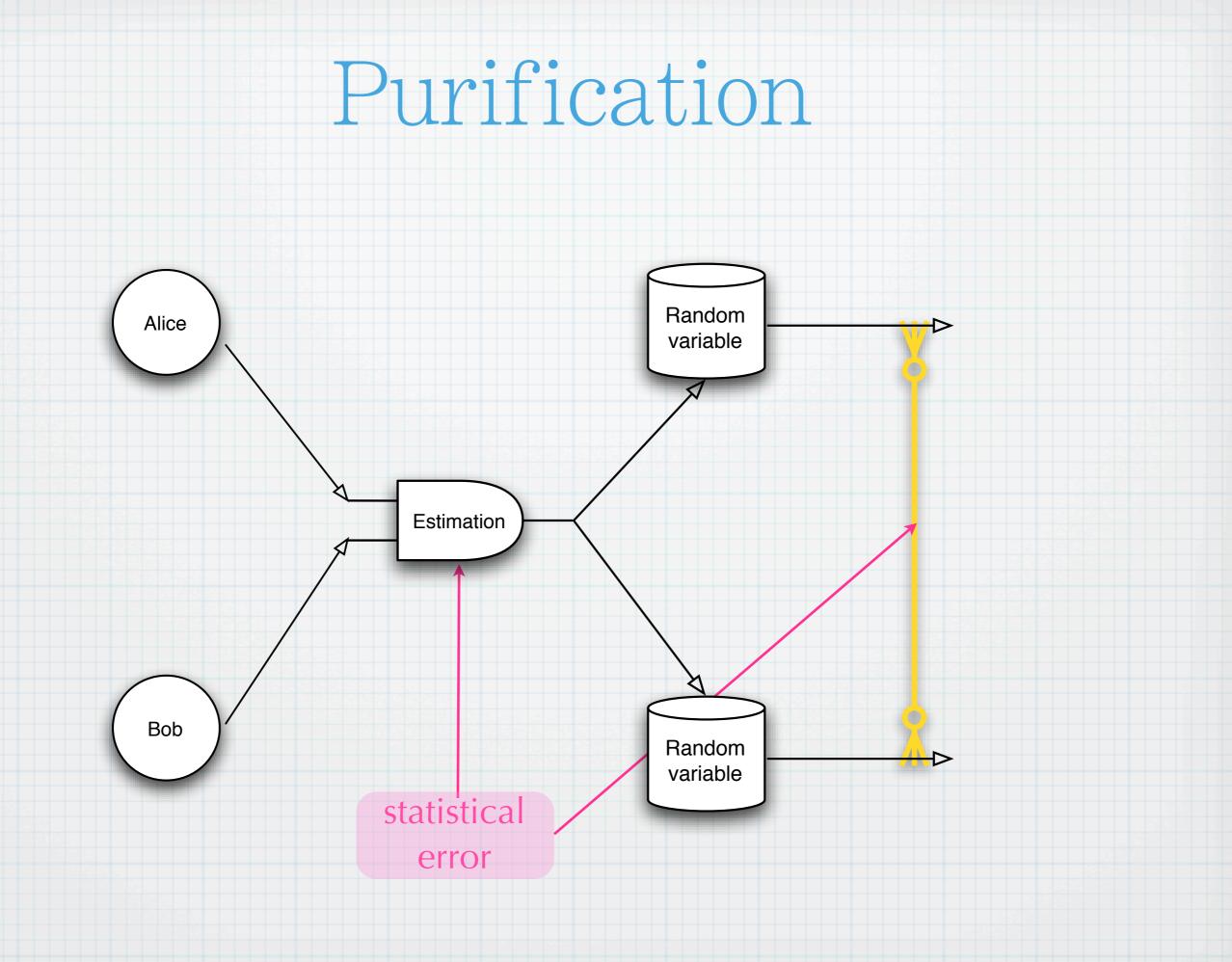


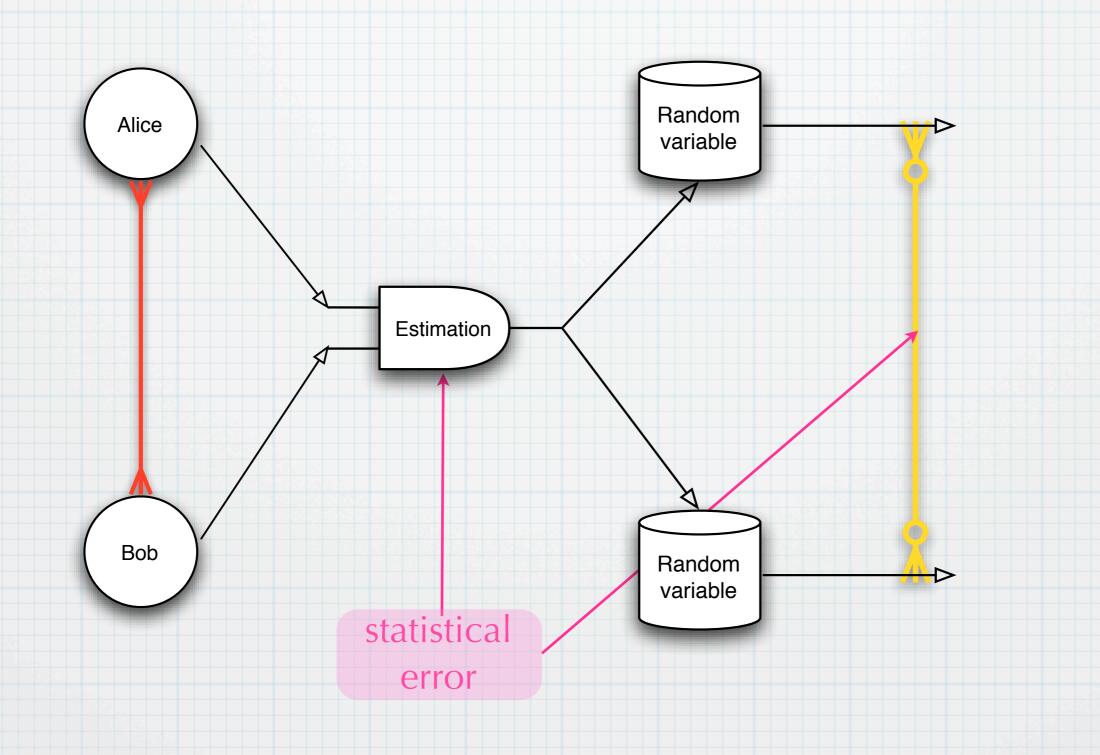
CV superbroadcasting



Pushing noise into correlations!

reducing thermal noise while creating correlations





• Classical decorrelator for $p_m(X, Y)$, X, Y random variables with

$$\langle X \rangle = \langle Y \rangle = m, \quad p_m(X,Y) \neq p_m(X)p_m(Y).$$

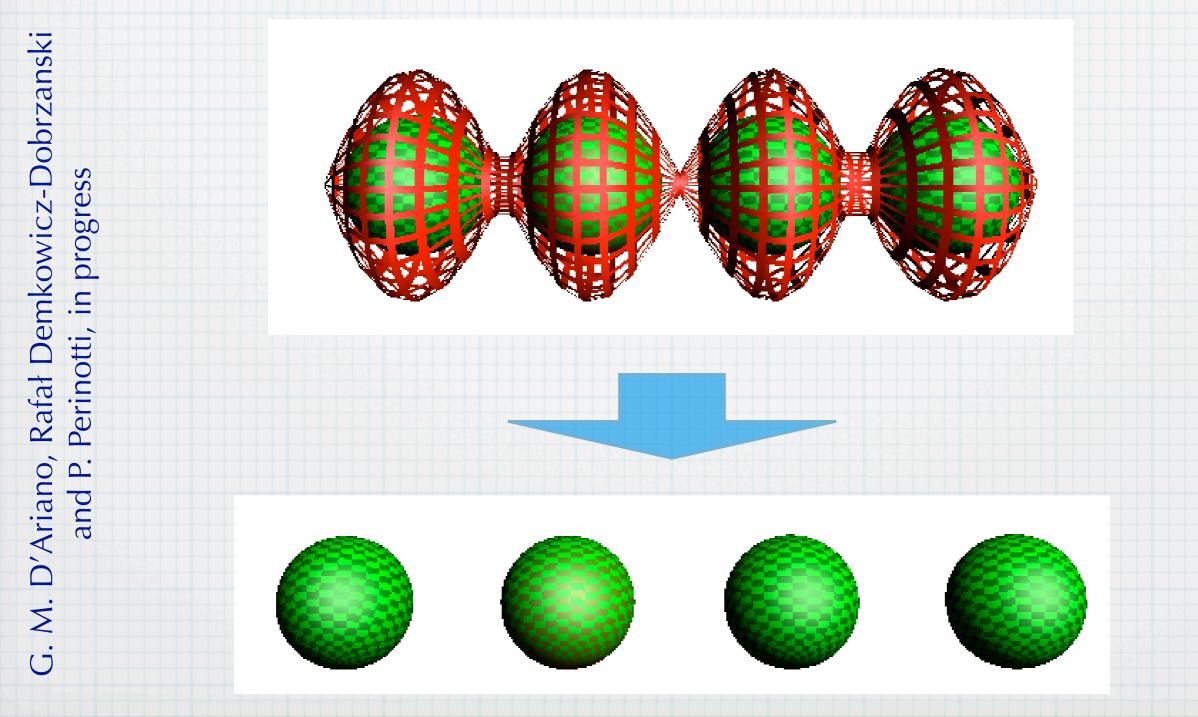
data processing:

$$\forall m \begin{cases} X' = X'(X,Y), & \langle X' \rangle = m \\ Y' = Y'(X,Y), & \langle Y' \rangle = m \end{cases} \qquad p_m(X',Y') = p_m(X')p_m(Y').$$

Quantum decorrelator \mathscr{D} for $R \neq \operatorname{Tr}_2[R] \otimes \operatorname{Tr}_1[R]$

 $\mathscr{D}(U_g^{\otimes 2}RU_g^{\otimes 2\dagger}) = U_g\rho U_g^{\dagger} \otimes U_g\rho U_g^{\dagger} \ \forall g \in \mathbf{G}.$

It is possible *to decorrelate a state* by reducing the purity at each use and/or reducing the number of uses.

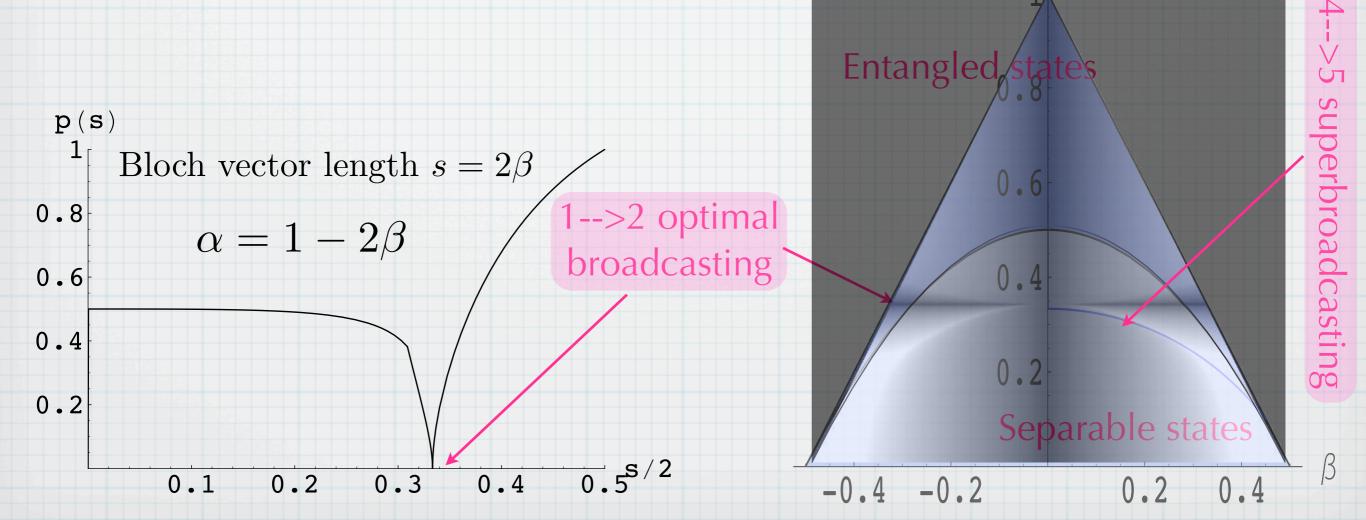


bipartite symmetric states

 Quantum mechanically perfect decorrelation is possible!

$$\rho^{(2)} = \alpha I^{(1)} + \beta J_z^{(1)} + \frac{1 - 3\alpha}{2} J_z^{(1)^2}$$

α

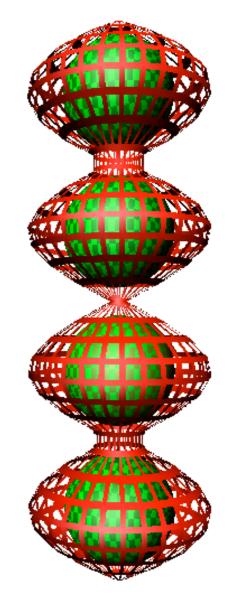


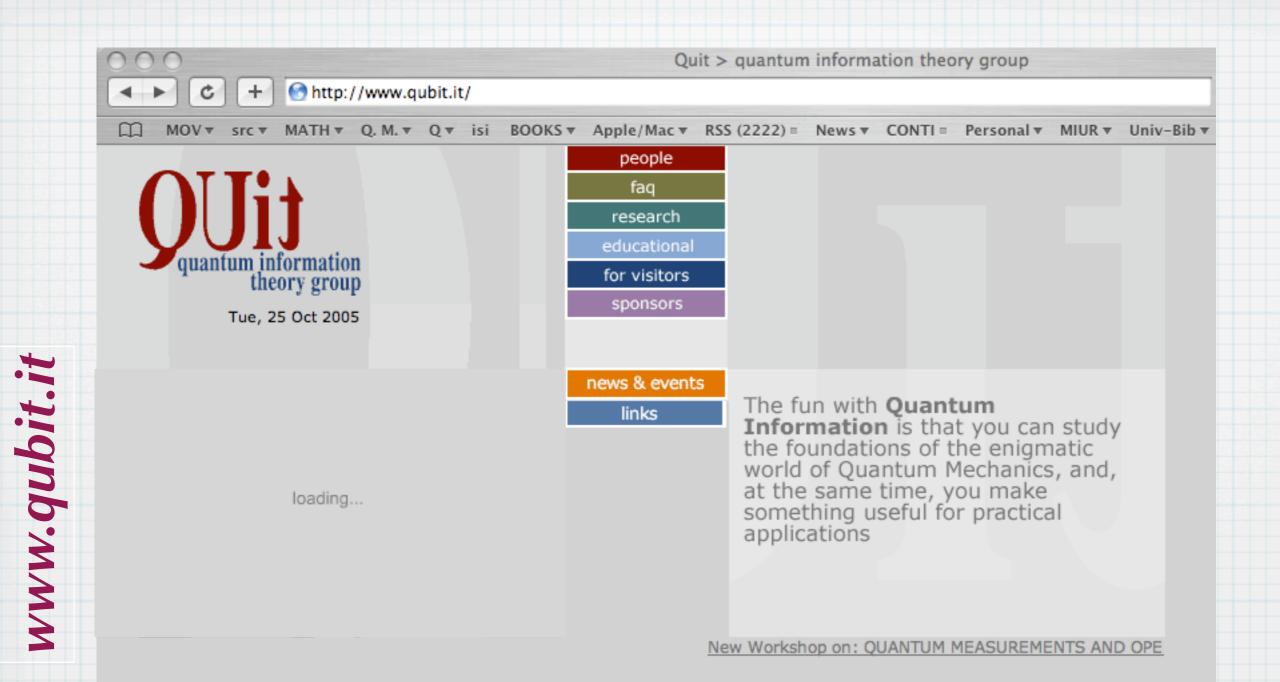
Marginal estimation

- Quantum mechanically the optimal joint state for estimation of local marginal states is a correlated state [R. Demkowicz-Dobrzanski, Phys. Rev. A 71 062321 (2005)]
- Such joint states can be decorrelated perfectly
- [classically, the optimal joint probability for estimation of marginals is uncorrelated ...]

Summary

- It is possible to purify while broadcasting for sufficiently many input copies
- It is easier to superbroadcast starting from larger numbers of input copies and from more mixed states
- The minimum number of input copies depends on the set of input states
- Optimal broadcasting is achieved by a projection followed by a conditioned unitary and a optimal cloning
 - Information on the single-site input state is preserved
 - Superbroadcasting corresponds to pushing the noise of single uses into their correlations
 - CV superbroadcasting is feasible
 - Decorrelation quantum mechanically is possible





Copyright 2003 © all rights reserved

credits