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Broadcasting
“Information” is by its nature 
broadcastable. 

What about when 
information is quantum? 

- Distributed quantum computation
- Quantum secret sharing
- Quantum game-theoretical contexts...

Broadcasting quantum 
information can be done 
only in a limited fashion  



N inputs ⇒ M outputs

No	 cloning	 theorem

For M>N the transformation cannot be achieved 
isometrically, whence it cannot occur with unit probability.

|E〉⊗|ψ〉 ⊗ . . . ⊗ |ψ〉
︸ ︷︷ ︸

N

⊗|ω1〉⊗. . .⊗|ωM−N 〉 =⇒ |Eψ〉⊗|ψ〉 ⊗ |ψ〉 ⊗ . . . ⊗ |ψ〉
︸ ︷︷ ︸

M

|〈ϕ|ψ〉|N =⇒ |〈Eϕ|Eψ〉||〈ϕ|ψ〉|
M

|ψ〉 ⊗ . . . ⊗ |ψ〉
︸ ︷︷ ︸

N

=⇒ |ψ〉 ⊗ |ψ〉 ⊗ . . . ⊗ |ψ〉
︸ ︷︷ ︸

M

, ∀|ψ〉 ∈ H



For pure states ideal broadcasting coincides with the 
quantum cloning.

For mixed states there are infinitely many joint states that 
correspond to the same local state.

Rout = ρ ⊗ ρ ⊗ . . . ⊗ ρ ”cloning”

Tr123...M−1[Rout] =Tr23...M [Rout] = ρ ”broadcasting”

N inputs ⇒ M outputs

Cloning/Broadcasting



For mixed input states the no-cloning theorem is not 
logically sufficient to forbid ideal broadcasting  

The impossibility of ideal broadcasting has been proved  
in the case of one input copy and two output copies for 
non mutually commuting density operators [H. Barnum, 
C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schumacher, 
Phys. Rev. Lett. 76 2818 (1996)]

 Is this a generalization of the no-cloning theorem to mixed states? 

No-broadcasting



The no broadcasting theorem does not 
generalize to multiple input copies!

For sufficiently many input copies it is even 
possible to purify the state while broadcasting!

 broadcasting + purification: 
“superbroadcasting”.

The answer is no!

Superbroadcasting



ρn = 1

2
(I + rn · σ)

Universally	 covariant	 superbroadcasting

broadcaster
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In terms of Clebsch-Gordan coefficients, this can be
rewritten as

M(ϕ,Φ)(ρ⊗N ) = (r+r−)N/2

×
N/2∑

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

dl

dϕ(l)

l∑

n=−l

(
r−
r+

)n

×
ϕ(l)∑

m=−ϕ(l)

〈Φ(l)m + n|ϕ(l)m, ln〉2|ϕ(l)m〉〈ϕ(l)m|⊗ Idϕ(l) .

(15)

Now, we are interested in the single output copy, which is
the broadcasted state. This is given by the partial trace
of Eq. (15) over M−1 copies. The evaluation of the par-
tial trace needs the matching between the Wedderburn
decomposition and the qubit tensor product representa-
tion. According to the Schur-Weyl duality the multi-
plicity space of the Wedderburn decomposition supports
a unitary irreducible representation of the permutation
group PM of the M qubits. Therefore, one has the iden-
tity for any operator Xj on Hj ⊗ Cdj

∑

l∈PM

πlXjπ
†
l =

M !
dj

TrCdj [Xj ]⊗ Idj (16)

where πl denotes the generic permutation. In particular,
for Xj = |jm〉〈jm|⊗ |1〉〈1|, |1〉 denoting any fixed vector
of Cdj , one has

|jm〉〈jm|⊗ Idj =
dj

M !

∑

l∈PM

πlXjπ
†
l (17)

Clearly, one can always choose the given vector of the
irreducible representation as [13]

|jm〉 ⊗ |1〉 = |jm〉 ⊗ |Ψ−〉⊗
M
2 −j , (18)

where |Ψ−〉 denotes the singlet. We can then take the
partial trace of both sides of Eq. (17). For each per-
mutation, say πs, which exchanges the last qubit with
one belonging to a singlet, one has TrM−1[πsXjπ†

s] = I
2 ,

and we have (M−2j)(M−1)! permutations of this kind.
On the other hand, for each permutation, say πm, which
exchanges the last qubit with one belonging to the j-
multiplet, one has TrM−1[πmXjπ†

m] = Trj− 1
2
[|jm〉〈jm|]

and there are 2j(M − 1)! permutations of this kind. Us-
ing the explicit form of the Clebsch-Gordan coefficients
one can derive the following identity

Trj− 1
2
[|jm〉〈jm|] =

1
2
I +

m

2j
k · σ . (19)

Substituting the above formula when performing the par-
tial trace of both sides of Eq. (17), one obtains the follow-

ing expression for the single copy output density operator

ρ′(ϕ,Φ)(r) = (r+r−)N/2
N/2∑

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

dl

ϕ(l)∑

m=−ϕ(l)

×
l∑

n=−l

(
r−
r+

)n

〈Φ(l)m + n|ϕ(l)m, ln〉2 1
2

(
I +

2m

M
k · σ

)
.

(20)

We are now in position to analyse the broadcasted state,
in particular its Bloch vector. In Eq. (20) we see that
the input and the output Bloch vectors are parallel, and
clearly [ρ′, ρ] = 0. On the other hand, the length of the
output Bloch vector is given by

r′(ϕ,Φ)(r) = (r+r−)N/2
N/2∑

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

dl

×
ϕ(l)∑

m=−ϕ(l)

l∑

n=−l

(
r−
r+

)n

〈Φ(l)m + n|ϕ(l)m, ln〉2 2m

M

(21)

We are now interested in maximizing the length of the
output Bloch vector. Since r′ this is linear on the convex
set of broadcasting channels, we just need to consider
extremal maps, and look for the maximum r′opt(r) =
max(ϕ,Φ){r′(ϕ,Φ)(r)}. By symbolic calculus we find that
the maximal r′(ϕ,Φ)(r) is achieved for ϕ(l) = M/2 and
for Φ(l) =

∣∣l − M
2

∣∣, independently on r. For pure states
these optimal maps coincide with those of optimal uni-
versal cloning transformations[5–8].
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FIG. 2: The curves p(r) versus r for N = 5 and 5 ≤ M ≤ 9
(from the top to the bottom).

As an example, in Fig. 2 we plot the so-called shrink-
ing factor p(r) = r′opt(r)/r for the maps maximizing r′

for N = 5 and several values of M . One can see that for a
wide range of values of r p(r) is actually a stretching fac-
tor, being p(r) > 1. This corresponds to a purification
of the local states, and since one also has a number of
copies at the output M > N greater than at the input, it
is actually a broadcasting with simultaneous purification,
what we call super-broadcasting. Clearly, for M ≤ N one

shrinking/stretching factor
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Using the expression (13) for extremal broadcasting
channels and Eq. (11) for the input state we can evaluate
the output state

M(ϕ,Φ)(ρ⊗N ) = (r+r−)N/2
N/2⊕

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

1
dϕ(l)

×
l∑

n=−l

(
r−
r+

)n

Trl[(Iϕ(l) ⊗ |ln〉〈ln|)P (ϕ(l),l)
Φ(l) ]⊗ Idϕ(l) .

(14)
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2Φ(l) + 1

dl

dϕ(l)

l∑

n=−l

(
r−
r+

)n

×
ϕ(l)∑

m=−ϕ(l)

〈Φ(l)m + n|ϕ(l)m, ln〉2|ϕ(l)m〉〈ϕ(l)m|⊗ Idϕ(l) .

(15)

Now, we are interested in the single output copy, which
is the broadcast state. This is given by the partial trace
of Eq. (15) over M−1 copies. The evaluation of the par-
tial trace needs the matching between the Wedderburn
decomposition and the qubit tensor product representa-
tion. According to the Schur-Weyl duality the multi-
plicity space of the Wedderburn decomposition supports
a unitary irreducible representation of the permutation
group PM of the M qubits. Therefore, one has the iden-
tity for any operator Xj on Hj ⊗ Cdj

∑

l∈PM

πlXjπ
†
l =

M !
dj

TrCdj [Xj ]⊗ Idj (16)

where πl denotes the generic permutation. In particular,
for Xj = |jm〉〈jm|⊗ |1〉〈1|, |1〉 denoting any fixed vector
of Cdj , one has

|jm〉〈jm|⊗ Idj =
dj

M !

∑

l∈PM

πlXjπ
†
l (17)

Clearly, one can always choose the given vector of the
irreducible representation as [11]

|jm〉 ⊗ |1〉 = |jm〉 ⊗ |Ψ−〉⊗
M
2 −j , (18)

where |Ψ−〉 denotes the singlet. We can then take the
partial trace of both sides of Eq. (17). For each per-
mutation, say πs, which exchanges the last qubit with
one belonging to a singlet, one has TrM−1[πsXjπ†

s] = I
2 ,

and we have (M−2j)(M−1)! permutations of this kind.
On the other hand, for each permutation, say πm, which
exchanges the last qubit with one belonging to the j-
multiplet, one has TrM−1[πmXjπ†

m] = Trj− 1
2
[|jm〉〈jm|]

and there are 2j(M − 1)! permutations of this kind. Us-
ing the explicit form of the Clebsch-Gordan coefficients
one can derive the following identity

Trj− 1
2
[|jm〉〈jm|] =

1
2
I +

m

2j
k · σ . (19)

Substituting the above formula when performing the par-
tial trace of both sides of Eq. (17), one obtains the follow-
ing expression for the single copy output density operator
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dl

ϕ(l)∑

m=−ϕ(l)

×
l∑

n=−l

(
r−
r+

)n

〈Φ(l)m + n|ϕ(l)m, ln〉2 1
2

(
I +

2m

M
k · σ

)
.

(20)

We are now in position to analyse the broadcast state,
in particular its Bloch vector. In Eq. (20) we see that
the input and the output Bloch vectors are parallel, and
clearly [ρ′, ρ] = 0. On the other hand, the length of the
output Bloch vector is given by

r′(ϕ,Φ)(r) = (r+r−)N/2
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dl
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ϕ(l)∑

m=−ϕ(l)

l∑
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(
r−
r+

)n

〈Φ(l)m + n|ϕ(l)m, ln〉2 2m

M

(21)

We are now interested in maximizing the length of the
output Bloch vector. Since r′ is linear on the convex
set of broadcasting channels, we just need to consider
extremal maps, and look for the maximum r′opt(r) =
max(ϕ,Φ){r′(ϕ,Φ)(r)}. By symbolic calculus we find that
the maximal r′(ϕ,Φ)(r) is achieved for ϕ(l) = M/2 and
for Φ(l) =

∣∣l − M
2

∣∣, independently on r. For pure states
these optimal maps coincide with those of optimal uni-
versal cloning transformations[5–8].
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FIG. 2: The stretching factor p(r) versus r. On the left:
for M = N + 1 and N = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
(from the bottom to the top. On the right: for N = 5 and
5 ≤ M ≤ 9 (from the top to the bottom).
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1
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dl

ϕ(l)∑
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r−
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2

(
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M
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We are now in position to analyse the broadcast state,
in particular its Bloch vector. In Eq. (20) we see that
the input and the output Bloch vectors are parallel, and
clearly [ρ′, ρ] = 0. On the other hand, the length of the
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M
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We are now interested in maximizing the length of the
output Bloch vector. Since r′ is linear on the convex
set of broadcasting channels, we just need to consider
extremal maps, and look for the maximum r′opt(r) =
max(ϕ,Φ){r′(ϕ,Φ)(r)}. By symbolic calculus we find that
the maximal r′(ϕ,Φ)(r) is achieved for ϕ(l) = M/2 and
for Φ(l) =

∣∣l − M
2

∣∣, independently on r. For pure states
these optimal maps coincide with those of optimal uni-
versal cloning transformations[5–8].
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extremal maps, and look for the maximum r′opt(r) =
max(ϕ,Φ){r′(ϕ,Φ)(r)}. By symbolic calculus we find that
the maximal r′(ϕ,Φ)(r) is achieved for ϕ(l) = M/2 and
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mutation, say πs, which exchanges the last qubit with
one belonging to a singlet, one has TrM−1[πsXjπ†

s] = I
2 ,

and we have (M−2j)(M−1)! permutations of this kind.
On the other hand, for each permutation, say πm, which
exchanges the last qubit with one belonging to the j-
multiplet, one has TrM−1[πmXjπ†

m] = Trj− 1
2
[|jm〉〈jm|]

and there are 2j(M − 1)! permutations of this kind. Us-
ing the explicit form of the Clebsch-Gordan coefficients
one can derive the following identity

Trj− 1
2
[|jm〉〈jm|] =

1
2
I +

m

2j
k · σ . (19)

Substituting the above formula when performing the par-
tial trace of both sides of Eq. (17), one obtains the follow-

ing expression for the single copy output density operator

ρ′(ϕ,Φ)(r) = (r+r−)N/2
N/2∑

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

dl

ϕ(l)∑

m=−ϕ(l)

×
l∑

n=−l

(
r−
r+

)n

〈Φ(l)m + n|ϕ(l)m, ln〉2 1
2

(
I +

2m

M
k · σ

)
.

(20)

We are now in position to analyse the broadcasted state,
in particular its Bloch vector. In Eq. (20) we see that
the input and the output Bloch vectors are parallel, and
clearly [ρ′, ρ] = 0. On the other hand, the length of the
output Bloch vector is given by

r′(ϕ,Φ)(r) = (r+r−)N/2
N/2∑

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

dl

×
ϕ(l)∑

m=−ϕ(l)

l∑

n=−l

(
r−
r+

)n

〈Φ(l)m + n|ϕ(l)m, ln〉2 2m

M

(21)

We are now interested in maximizing the length of the
output Bloch vector. Since r′ this is linear on the convex
set of broadcasting channels, we just need to consider
extremal maps, and look for the maximum r′opt(r) =
max(ϕ,Φ){r′(ϕ,Φ)(r)}. By symbolic calculus we find that
the maximal r′(ϕ,Φ)(r) is achieved for ϕ(l) = M/2 and
for Φ(l) =

∣∣l − M
2

∣∣, independently on r. For pure states
these optimal maps coincide with those of optimal uni-
versal cloning transformations[5–8].
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FIG. 2: The curves p(r) versus r for N = 5 and 5 ≤ M ≤ 9
(from the top to the bottom).

As an example, in Fig. 2 we plot the so-called shrink-
ing factor p(r) = r′opt(r)/r for the maps maximizing r′

for N = 5 and several values of M . One can see that for a
wide range of values of r p(r) is actually a stretching fac-
tor, being p(r) > 1. This corresponds to a purification
of the local states, and since one also has a number of
copies at the output M > N greater than at the input, it
is actually a broadcasting with simultaneous purification,
what we call super-broadcasting. Clearly, for M ≤ N one

shrinking/stretching factor
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factor, being p(r) > 1. This corresponds to a purifica-
tion of the local states, and since one also has a number
of copies at the output M > N greater than the number
of inputs, it is actually a broadcasting with simultane-
ous purification, what we call superbroadcasting. Clearly,
for M ≤ N one has more purification than for M > N ,
corresponding to the purification protocol [11]. The su-
perbroadcasting occurs for at least four input copies. As
a rule, one has purification below some value r∗(N,M) of
the input purity, for a bounded number M ≤ M∗(N) of
the output copies. In Fig. 3 we plot r∗(N,N + 1) versus
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FIG. 3: Logarithmic plot of 1 − r∗(N, N + 1) versus N .
r∗(N, M) denotes the maximum purity for which one can have
superbroadcasting from N to M copies.

the number of input copies. After the threshold at N = 4
corresponding to r∗(4, 5) = 0.787, one has a monotonic
increase of r∗(N, N + 1) toward asymptotic purity, with
a power law 1 − r∗(N, N + 1) ∝ 2N−2. For larger M
one has a generally higher threshold for N , and smaller
values of r∗(N,M). For N = 4 one has superbroadcast-
ing for up to M = 7, for N = 5 up to M = 21, and for
N = 6 up to M > 700, with a probable super-polynomial
increase.

In conclusion, we have derived the optimal universal
broadcasting for mixed states of qubits, optimal in the
sense that it maximizes the purity of local states. We
show that the no-broadcasting theorem[4] for noncom-
muting mixed states cannot be generalized to more than
a single input copy, and for more than three input copies
one can even purify while broadcasting, below some max-
imum value of the purity. We named such phenomenon
superbroadcasting. The possibility of superbroadcasting
does not correspond to an increase of the available in-

formation about the original input state ρ, due to detri-
mental correlations between the local broadcast copies,
which does not allow to exploit their statistics. This phe-
nomenon was already noticed in Ref. [14], in an asymp-
totic analysis of the rate of optimal purification proce-
dures. From the point of view of single users our broad-
casting protocol is actually a purification (for states suffi-
ciently mixed), and the same broadcasting process trans-
fers some noise from the local states to the correlations
between them. We think that the present result opens
new interesting perspectives in the ability of distributing
quantum information in a noisy environment.
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the number of input copies. After the threshold at N = 4
corresponding to r∗(4, 5) = 0.787, one has a monotonic
increase of r∗(N, N + 1) toward asymptotic purity, with
a power law 1 − r∗(N, N + 1) ∝ 2N−2. For larger M
one has a generally higher threshold for N , and smaller
values of r∗(N,M). For N = 4 one has superbroadcast-
ing for up to M = 7, for N = 5 up to M = 21, and for
N = 6 up to M > 700, with a probable super-polynomial
increase.

In conclusion, we have derived the optimal universal
broadcasting for mixed states of qubits, optimal in the
sense that it maximizes the purity of local states. For
pure states and M > N the map coincides with the op-
timal universal cloning transformation[5–8], whereas for
N < M it is equivalent to the optimal purification map
of Ref. [11]. Thus our optimal broadcasting map gener-
alizes/interpolates between optimal cloning and optimal
purification. We have shown that the no-broadcasting
theorem[4] for noncommuting mixed states cannot be
generalized to more than a single input copy, and for
more than three input copies one can even purify the
state while broadcasting, below some maximum value of

the purity. We named such phenomenon superbroadcast-
ing. The possibility of superbroadcasting does not corre-
spond to an increase of the available information about
the original input state ρ, due to detrimental correla-
tions between the local broadcast copies, which does not
allow to exploit their statistics. This phenomenon was
already noticed in Ref. [14], in an asymptotic analysis of
the rate of optimal purification procedures. Notice that
the correlations alone among qubits cannot be erased by
any physical process, since the de-correlating map which
sends a state to the tensor product of its partial traces
is non linear. From the point of view of single users our
broadcasting protocol is actually a purification (for states
sufficiently mixed), and the same broadcasting process
transfers some noise from the local states to the corre-
lations between them. We think that the present result
opens new interesting perspectives in the ability of dis-
tributing quantum information in a noisy environment.
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Universally	 covariant	 superbroadcasting



For pure states the optimal superbroadcasting map is 
the same as the optimal universal cloning [R. F. 
Werner, Phys. Rev. A 58 1827 (1998)].

For M<N it corresponds to the optimal purification 
map [ J. I. Cirac, A. K. Ekert, and C. Macchiavello, 
Phys. Rev. Lett. 82 4344 (1999)].

Therefore, the superbroadcasting map generalizes and 
interpolates optimal purification and optimal cloning.

skip derivation

Universally	 covariant	 superbroadcasting
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On the most efficient unitary transformation for programming quantum channels 3

will use instead the following distance

δ(C,P) .=
√

1− F (C,P), (3)

where F (C,P) denotes the Raginsky fidelity 9, which for unitary map C ≡
U = U · U† is equivalent to the channel fidelity 1

F (U ,P) =
1
d2

∑

i

|Tr[C†
i U ]|2, (4)

where C =
∑

i Ci · C†
i . Such fidelity is also related to the input-output

fidelity averaged over all pure states F io(U ,P), by the formula F io(U ,P) =
[1+dF (U ,P)]/(d+1). Therefore, our optimal unitary V will maximize the
fidelity

F (V ) .= min
U∈U(H)

F (U, V ), F (U, V ) .= max
σ∈A

F (U ,PV,σ) (5)

3. Reducing the problem to an operator norm

In the following we will use the GNS representation |Ψ〉〉 = (Ψ ⊗ I)|I〉〉 of
operators Ψ ∈ B(H), and denote by Xᵀ the transposed with respect to the
cyclic vector |I〉〉, i. e. |Ψ〉〉 = (Ψ ⊗ I)|I〉〉 = (I ⊗ Ψᵀ)|I〉〉, and by X∗ the
complex conjugated operator X∗ .= (Xᵀ)†, and write |υ∗〉 for the vector
such that (|υ〉〈υ| ⊗ I)|I〉〉 = |υ〉|υ∗〉. Upon spectralizing the unitary V as
follows

V =
∑

k

eiθk |Ψk〉〉〈〈Ψk|, (6)

we obtain the Kraus operators for the map PV,σ(ρ)

PV,σ(ρ) =
∑

nm

CnmρC†
nm, Cnm =

∑

k

eiθkΨk|υ∗n〉〈υ∗m|Ψ†
k

√
λm (7)

where |υn〉 denotes the eigenvector of σ corresponding to the eigenvalue λn.
We then obtain∑

nm

|Tr[C†
nmU ]|2 =

∑

kh

ei(θk−θh) Tr[Ψ†
kU†ΨkσᵀΨ†

hUΨh]

=Tr[σᵀS(U, V )†S(U, V )]
(8)

where

S(U, V ) =
∑

k

e−iθkΨ†
kUΨk . (9)

The fidelity (5) can then be rewritten as follows

F (U, V ) =
1
d2

||S(U, V )||2. (10)

transposition
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complex conjugation

|Ψ〉〉 =

∑

nm

Ψnm|n〉 ⊗ |m〉.
(A ⊗ B)|C〉〉 = |AC B

ᵀ〉〉

〈〈A|B〉〉 ≡ Tr[A†
B].

G
N

S 
sim

plifi
ed

Ψ ∈ HS(K,H), |Ψ〉〉 = (Ψ ⊗ I)|I〉〉

cyclic vector |I〉〉 ∈ H ⊗ H



Choi-Jamiolkowski
Choi-Jamiołkowski correspondence

M (UgρU†
g ) = WgM (ρ)W †

g ⇔ [Wg ⊗ U∗
g , RM ] = 0

M (ThρT
†
h) = M (ρ) ⇔ [I ⊗ T ∗

h , RM ] = 0

VkM (ρ)V †
k = M (ρ) ⇔ [Vk ⊗ I, RM ] = 0

Covariance and invariance constraints are easier to handle
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2
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Conjugation/covariance
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the j = 1
2 representation [the symbol |I〉〉 denotes the

maximally entangled vector |I〉〉 =
∑

n |n〉 ⊗ |n〉, and ᵀ

denotes transposition with respect to the orthonormal
basis {|n〉}]. In the Choi-Jamiolkowsky representation
the trace-preserving condition on the CP map reads

Trout[RB] = Iin , (3)

where Iin denotes the identity on Hin. For the unitary
group SU(2) the complex conjugate representation of any
unitary representation, say Vg, is unitarily equivalent to
the direct representation, i. e. V ∗

g = CVgC†, under the
π-rotation C around the y axis. The explicit form of C
actually depends on the particular representation Vg: for
the tensor representation U⊗N

g one has C ≡ iσ⊗N
y . It is

then convenient to rewrite the map as follows

B(Q) = Trin[(Iout ⊗ Q̃)SB] (4)

with

Q̃
.= CQᵀC†, SB

.= (Iout ⊗ C)RB(Iout ⊗ C†), (5)

and now covariance of the CP map B corresponds to in-
variance of SB under the representation U⊗(N+M)

g . A
tensor product representation U⊗L

g decomposes into ir-
reducible components according to the Wedderburn de-
composition of spaces

H⊗L =
L/2⊕

j=〈〈L/2〉〉

Hj ⊗ Cdj , (6)

where 〈〈x〉〉 denotes the fractional part of x (i. e.
〈〈L/2〉〉 = 0 for L even and 〈〈L/2〉〉 = 1/2 for L odd),
and dj = 2j+1

L/2+j+1

( L
L/2+j

)
(Eq. (6) is the usual Clebsch-

Gordan series). The spaces Hj and Cdj are called rep-
resentation and multiplicity spaces, respectively. With
the above decomposition the group representation writes
U⊗L

g = ⊕L/2
j=〈〈L/2〉〉U

(j)
g ⊗ Idj , whereas an operator invari-

ant under U⊗L
g has the form ⊕L/2

j=〈〈L/2〉〉Ij ⊗W (j), Ij de-
noting the identity over the representation space Hj , and
W (j) an operator on the multiplicity space Cdj . On
the other hand, an operator invariant under the per-
mutation group PL of the L copies of the representa-
tion has the form ⊕L/2

j=〈〈L/2〉〉Zj ⊗ Idj , where Zj is any
operator on the representation space Hj (this is the so-
called Schur-Weyl duality) [11]. Since the operator SB

is invariant under PM × PN it must be of the form
SB = ⊕M/2

j=〈〈M/2〉〉 ⊕
N/2
l=〈〈N/2〉〉 Sjl ⊗ Idj ⊗ Idl , where Sjl is

a positive operator over Hj ⊗ Hl. By further decompos-
ing Hj ⊗ Hl = ⊕j+l

J=|j−l|HJ into invariant subspaces and

imposing invariance of SB under U⊗(M+N)
g , one obtains

the general form

SM =
M/2⊕

j=〈〈M/2〉〉

N/2⊕

l=〈〈N/2〉〉

j+l⊕

J=|j−l|

sj,l,JP (j,l)
J ⊗Idj⊗Idl , (7)

for positive coefficients sj,l,J , P (j,l)
J denoting the orthog-

onal projector over the irreducible representation J com-
ing from the couple j, l.

The trace preservation condition is now equivalent to

Trout[SM ] =
M/2∑

j=〈〈M/2〉〉

N
2⊕

l=〈〈N/2〉〉

Trj




j+l⊕

J=|j−l|

djsj,l,JP (j,l)
J



⊗ Idl = Iin .

(8)

Since Trj [P
(j,l)
J ] is invariant under U (l)

g , one can easily
see that Trj [P

(j,l)
J ] = 2J+1

2l+1 Il, whence the latter condition
becomes

N/2⊕

l=〈〈N/2〉〉

M/2∑

j=〈〈M/2〉〉

j+l∑

J=|j−l|

djsj,l,J
2J + 1
2l + 1

Il⊗Idl = Iin , (9)

namely
M/2∑

j=〈〈M/2〉〉

j+l∑

J=|j−l|

djsj,l,J
2J + 1
2l + 1

= 1 , ∀〈〈N/2〉〉 ≤ l ≤ N

2
,

(10)
with positive coefficients sj,l,J .

Upon writing the input state Q̃ = ρ̃⊗N in the Bloch
vector form, we have the decomposition

ρ̃⊗N =
[
1
2 (I − rk · σ)

]⊗N

= (r+r−)N/2
N/2⊕

l=〈〈N/2〉〉

l∑

n=−l

(
r−
r+

)n

|ln〉〈ln|⊗ Idl ,
(11)

where 0 ≤ r ≤ 1, and r±
.= 1

2 (1 ± r), and |ln〉 denotes
the eigenstate of the angular momentum component k ·
J (l) with eigenvalue n. From Eq. (10) we see that the
broadcasting channels from N to M make a convex set,
with the extreme points classified by functions ϕ and
Φ corresponding to a given choice j = ϕ(l), J = Φ(l),
namely to the choice of coefficients

s(ϕ,Φ)
j,l,J =

2l + 1
2J + 1

1
dj

δj,ϕ(l)δJ,Φ(l) , (12)

or to the Choi-Jamiolkowsky operator

S(ϕ,Φ)
M =

N/2⊕

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

1
dϕ(l)

P (ϕ(l),l)
Φ(l) ⊗ Idϕ(l) ⊗ Idl .

(13)
Using the expression (13) for extremal broadcasting
channels and Eq. (11) for the input state we can evaluate
the output state

M(ϕ,Φ)(ρ⊗N ) = (r+r−)N/2
N/2⊕

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

1
dϕ(l)

×
l∑

n=−l

(
r−
r+

)n

Trl[(Iϕ(l) ⊗ |ln〉〈ln|)P (ϕ(l),l)
Φ(l) ]⊗ Idϕ(l) .

(14)

2

the j = 1
2 representation [the symbol |I〉〉 denotes the

maximally entangled vector |I〉〉 =
∑

n |n〉 ⊗ |n〉, and ᵀ

denotes transposition with respect to the orthonormal
basis {|n〉}]. In the Choi-Jamiolkowsky representation
the trace-preserving condition on the CP map reads

Trout[RB] = Iin , (3)

where Iin denotes the identity on Hin. For the unitary
group SU(2) the complex conjugate representation of any
unitary representation, say Vg, is unitarily equivalent to
the direct representation, i. e. V ∗

g = CVgC†, under the
π-rotation C around the y axis. The explicit form of C
actually depends on the particular representation Vg: for
the tensor representation U⊗N

g one has C ≡ iσ⊗N
y . It is

then convenient to rewrite the map as follows

B(Q) = Trin[(Iout ⊗ Q̃)SB] (4)

with

Q̃
.= CQᵀC†, SB

.= (Iout ⊗ C)RB(Iout ⊗ C†), (5)

and now covariance of the CP map B corresponds to in-
variance of SB under the representation U⊗(N+M)

g . A
tensor product representation U⊗L

g decomposes into ir-
reducible components according to the Wedderburn de-
composition of spaces

H⊗L =
L/2⊕

j=〈〈L/2〉〉

Hj ⊗ Cdj , (6)

where 〈〈x〉〉 denotes the fractional part of x (i. e.
〈〈L/2〉〉 = 0 for L even and 〈〈L/2〉〉 = 1/2 for L odd),
and dj = 2j+1

L/2+j+1

( L
L/2+j

)
(Eq. (6) is the usual Clebsch-

Gordan series). The spaces Hj and Cdj are called rep-
resentation and multiplicity spaces, respectively. With
the above decomposition the group representation writes
U⊗L

g = ⊕L/2
j=〈〈L/2〉〉U

(j)
g ⊗ Idj , whereas an operator invari-

ant under U⊗L
g has the form ⊕L/2

j=〈〈L/2〉〉Ij ⊗W (j), Ij de-
noting the identity over the representation space Hj , and
W (j) an operator on the multiplicity space Cdj . On
the other hand, an operator invariant under the per-
mutation group PL of the L copies of the representa-
tion has the form ⊕L/2

j=〈〈L/2〉〉Zj ⊗ Idj , where Zj is any
operator on the representation space Hj (this is the so-
called Schur-Weyl duality) [11]. Since the operator SB

is invariant under PM × PN it must be of the form
SB = ⊕M/2

j=〈〈M/2〉〉 ⊕
N/2
l=〈〈N/2〉〉 Sjl ⊗ Idj ⊗ Idl , where Sjl is

a positive operator over Hj ⊗ Hl. By further decompos-
ing Hj ⊗ Hl = ⊕j+l

J=|j−l|HJ into invariant subspaces and

imposing invariance of SB under U⊗(M+N)
g , one obtains

the general form

SM =
M/2⊕

j=〈〈M/2〉〉

N/2⊕

l=〈〈N/2〉〉

j+l⊕

J=|j−l|

sj,l,JP (j,l)
J ⊗Idj⊗Idl , (7)

for positive coefficients sj,l,J , P (j,l)
J denoting the orthog-

onal projector over the irreducible representation J com-
ing from the couple j, l.

The trace preservation condition is now equivalent to

Trout[SM ] =
M/2∑

j=〈〈M/2〉〉

N
2⊕

l=〈〈N/2〉〉

Trj




j+l⊕

J=|j−l|

djsj,l,JP (j,l)
J



⊗ Idl = Iin .

(8)

Since Trj [P
(j,l)
J ] is invariant under U (l)

g , one can easily
see that Trj [P

(j,l)
J ] = 2J+1

2l+1 Il, whence the latter condition
becomes

N/2⊕

l=〈〈N/2〉〉

M/2∑

j=〈〈M/2〉〉

j+l∑

J=|j−l|

djsj,l,J
2J + 1
2l + 1

Il⊗Idl = Iin , (9)

namely
M/2∑

j=〈〈M/2〉〉

j+l∑

J=|j−l|

djsj,l,J
2J + 1
2l + 1

= 1 , ∀〈〈N/2〉〉 ≤ l ≤ N

2
,

(10)
with positive coefficients sj,l,J .

Upon writing the input state Q̃ = ρ̃⊗N in the Bloch
vector form, we have the decomposition

ρ̃⊗N =
[
1
2 (I − rk · σ)

]⊗N

= (r+r−)N/2
N/2⊕

l=〈〈N/2〉〉

l∑

n=−l

(
r−
r+

)n

|ln〉〈ln|⊗ Idl ,
(11)

where 0 ≤ r ≤ 1, and r±
.= 1

2 (1 ± r), and |ln〉 denotes
the eigenstate of the angular momentum component k ·
J (l) with eigenvalue n. From Eq. (10) we see that the
broadcasting channels from N to M make a convex set,
with the extreme points classified by functions ϕ and
Φ corresponding to a given choice j = ϕ(l), J = Φ(l),
namely to the choice of coefficients

s(ϕ,Φ)
j,l,J =

2l + 1
2J + 1

1
dj

δj,ϕ(l)δJ,Φ(l) , (12)

or to the Choi-Jamiolkowsky operator

S(ϕ,Φ)
M =

N/2⊕

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

1
dϕ(l)

P (ϕ(l),l)
Φ(l) ⊗ Idϕ(l) ⊗ Idl .

(13)
Using the expression (13) for extremal broadcasting
channels and Eq. (11) for the input state we can evaluate
the output state

M(ϕ,Φ)(ρ⊗N ) = (r+r−)N/2
N/2⊕

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

1
dϕ(l)

×
l∑

n=−l

(
r−
r+

)n

Trl[(Iϕ(l) ⊗ |ln〉〈ln|)P (ϕ(l),l)
Φ(l) ]⊗ Idϕ(l) .

(14)

2

the j = 1
2 representation [the symbol |I〉〉 denotes the

maximally entangled vector |I〉〉 =
∑

n |n〉 ⊗ |n〉, and ᵀ

denotes transposition with respect to the orthonormal
basis {|n〉}]. In the Choi-Jamiolkowsky representation
the trace-preserving condition on the CP map reads

Trout[RB] = Iin , (3)

where Iin denotes the identity on Hin. For the unitary
group SU(2) the complex conjugate representation of any
unitary representation, say Vg, is unitarily equivalent to
the direct representation, i. e. V ∗

g = CVgC†, under the
π-rotation C around the y axis. The explicit form of C
actually depends on the particular representation Vg: for
the tensor representation U⊗N

g one has C ≡ iσ⊗N
y . It is

then convenient to rewrite the map as follows

B(Q) = Trin[(Iout ⊗ Q̃)SB] (4)

with

Q̃
.= CQᵀC†, SB

.= (Iout ⊗ C)RB(Iout ⊗ C†), (5)

and now covariance of the CP map B corresponds to in-
variance of SB under the representation U⊗(N+M)

g . A
tensor product representation U⊗L

g decomposes into ir-
reducible components according to the Wedderburn de-
composition of spaces

H⊗L =
L/2⊕

j=〈〈L/2〉〉

Hj ⊗ Cdj , (6)

where 〈〈x〉〉 denotes the fractional part of x (i. e.
〈〈L/2〉〉 = 0 for L even and 〈〈L/2〉〉 = 1/2 for L odd),
and dj = 2j+1

L/2+j+1

( L
L/2+j

)
(Eq. (6) is the usual Clebsch-

Gordan series). The spaces Hj and Cdj are called rep-
resentation and multiplicity spaces, respectively. With
the above decomposition the group representation writes
U⊗L

g = ⊕L/2
j=〈〈L/2〉〉U

(j)
g ⊗ Idj , whereas an operator invari-

ant under U⊗L
g has the form ⊕L/2

j=〈〈L/2〉〉Ij ⊗W (j), Ij de-
noting the identity over the representation space Hj , and
W (j) an operator on the multiplicity space Cdj . On
the other hand, an operator invariant under the per-
mutation group PL of the L copies of the representa-
tion has the form ⊕L/2

j=〈〈L/2〉〉Zj ⊗ Idj , where Zj is any
operator on the representation space Hj (this is the so-
called Schur-Weyl duality) [11]. Since the operator SB

is invariant under PM × PN it must be of the form
SB = ⊕M/2

j=〈〈M/2〉〉 ⊕
N/2
l=〈〈N/2〉〉 Sjl ⊗ Idj ⊗ Idl , where Sjl is

a positive operator over Hj ⊗ Hl. By further decompos-
ing Hj ⊗ Hl = ⊕j+l

J=|j−l|HJ into invariant subspaces and

imposing invariance of SB under U⊗(M+N)
g , one obtains

the general form

SM =
M/2⊕

j=〈〈M/2〉〉

N/2⊕

l=〈〈N/2〉〉

j+l⊕

J=|j−l|

sj,l,JP (j,l)
J ⊗Idj⊗Idl , (7)

for positive coefficients sj,l,J , P (j,l)
J denoting the orthog-

onal projector over the irreducible representation J com-
ing from the couple j, l.

The trace preservation condition is now equivalent to

Trout[SM ] =
M/2∑

j=〈〈M/2〉〉

N
2⊕

l=〈〈N/2〉〉

Trj




j+l⊕

J=|j−l|

djsj,l,JP (j,l)
J



⊗ Idl = Iin .

(8)

Since Trj [P
(j,l)
J ] is invariant under U (l)

g , one can easily
see that Trj [P

(j,l)
J ] = 2J+1

2l+1 Il, whence the latter condition
becomes

N/2⊕

l=〈〈N/2〉〉

M/2∑

j=〈〈M/2〉〉

j+l∑

J=|j−l|

djsj,l,J
2J + 1
2l + 1

Il⊗Idl = Iin , (9)

namely
M/2∑

j=〈〈M/2〉〉

j+l∑

J=|j−l|

djsj,l,J
2J + 1
2l + 1

= 1 , ∀〈〈N/2〉〉 ≤ l ≤ N

2
,

(10)
with positive coefficients sj,l,J .

Upon writing the input state Q̃ = ρ̃⊗N in the Bloch
vector form, we have the decomposition

ρ̃⊗N =
[
1
2 (I − rk · σ)

]⊗N

= (r+r−)N/2
N/2⊕

l=〈〈N/2〉〉

l∑

n=−l

(
r−
r+

)n

|ln〉〈ln|⊗ Idl ,
(11)

where 0 ≤ r ≤ 1, and r±
.= 1

2 (1 ± r), and |ln〉 denotes
the eigenstate of the angular momentum component k ·
J (l) with eigenvalue n. From Eq. (10) we see that the
broadcasting channels from N to M make a convex set,
with the extreme points classified by functions ϕ and
Φ corresponding to a given choice j = ϕ(l), J = Φ(l),
namely to the choice of coefficients

s(ϕ,Φ)
j,l,J =

2l + 1
2J + 1

1
dj

δj,ϕ(l)δJ,Φ(l) , (12)

or to the Choi-Jamiolkowsky operator

S(ϕ,Φ)
M =

N/2⊕

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

1
dϕ(l)

P (ϕ(l),l)
Φ(l) ⊗ Idϕ(l) ⊗ Idl .

(13)
Using the expression (13) for extremal broadcasting
channels and Eq. (11) for the input state we can evaluate
the output state

M(ϕ,Φ)(ρ⊗N ) = (r+r−)N/2
N/2⊕

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

1
dϕ(l)

×
l∑

n=−l

(
r−
r+

)n

Trl[(Iϕ(l) ⊗ |ln〉〈ln|)P (ϕ(l),l)
Φ(l) ]⊗ Idϕ(l) .

(14)

“conjugation”:

Completely positive trace-preserving map from states of N qubits 
to states of M qubits that is invariant under permutations of input 

copies and of output copies and unitarily covariant

ΠσB(ΠτρΠ†
τ
)Π†

σ
= B(ρ)

[Πσ ⊗ Πτ , SB] = 0

Superbroadcasting of mixed states
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We derive the optimal universal broadcasting for mixed states of qubits. We show that the no-
broadcasting theorem cannot be generalized to more than a single input copy. More precisely, for
more than three input copies one can even purify while broadcasting. We name such purifying
broadcasting superbraodcasting.

PACS numbers: 03.65.-w, 03.67.-a

Broadcasting—namely distributing information over
many users—suffers in-principle limitations when the in-
formation is quantum, and this poses a critical issue
in quantum information theory, for distributed process-
ing and networked communications. For pure states an
ideal broadcasting coincides with the so-called quantum
cloning, corresponding to an ideal device capable of pro-
ducing from a finite number N of copies of the same
state |ψ〉 a larger number M > N of output copies of the
same state, for a given set of input states. Since such
a transformation is not isometric, it cannot be achieved
by any physical machine on a generally nonorthogonal
set of states (this is essentially the content of the no-
cloning theorem [1–3]). The situation is more involved
when the states are mixed, since from the point of view
of each single user the local mixed state is indistinguish-
able from the partial trace of an entangled state, and
there are infinitely many joint states corresponding to
ideal broadcasting. For this reason in the literature [4]
the word broadcasting is used technically to denote a map
whose output has identical local states, versus the word
cloning used for the case of tensor product of identical
states.

Since ideal cloning is not possible, the quantum in-
formation encoded on pure states can be broadcast only
approximately, and this posed the problem of optimizing
the broadcasting e. g. by maximizing an input-output fi-
delity equally well on all pure states. In the literature this
kind of optimized broadcasting is called optimal universal
cloning [5–8]. For mixed states the no-cloning theorem
is not logically sufficient to forbid ideal broadcasting. In
Ref. [4] the impossibility of broadcasting has been proved
in the case of one input copy and two output copies for
a set of density operators generally non mutually com-
muting. Later, in the literature (see, for example, Ref.
[9]) this result has been often implicitly considered as
the generalization of the no-cloning theorem to the case
of mixed input states, according to the general statement
that an arbitrary pair of states can be broadcasted if and
only if they are represented by mutually commuting den-
sity matrices. In the present paper we will show that this
assertion is true only for number of input copies N ≤ 3,
whereas for larger N the no-broadcasting theorem does

not hold, and it is even possible to purify while broad-
casting. We named such a procedure superbraodcasting.
We now present the theoretical derivation of our result.

FIG. 1: With more than three input copies the no-
broadcasting theorem can be violated. One can actually in-
crease the purity of local states while cloning, corresponding
to a stretching of the Bloch vector. In this purifying broad-
casting mechanism, called superbroadcasting, the available in-
formation on the state of the input copies cannot increase due
to the detrimental correlations among the output copies.

Let us consider a general broadcasting channel from N
to M copies, namely a completely positive (CP) trace-
preserving map from states on Hin

.= H⊗N to states on
Hout

.= H⊗M that is invariant under permutations of in-
put copies and of output copies. Moreover, we take the
broadcasting to be universal, namely the broadcasting
map B is covariant under the group of unitary transfor-
mations of H, more precisely

B(U⊗Nρ⊗NU†⊗N ) = U⊗MB(ρ⊗N )U†⊗M . (1)

We will restrict attention to qubits, namely H # C2.
Upon using the Choi-Jamiolkowsky representation [10]

RB =B ⊗I (|I〉〉〈〈I|),
B(Q) = Trin[(Iout ⊗Qᵀ)RB]

(2)

where Q denotes a state on Hin, and RB is a positive
operator on Hin ⊗ Hout for B CP, the covariance con-
dition (1) becomes invariance of RB under the group
representation U⊗M

g ⊗ U∗
g
⊗N , Ug, g ∈ SU(2) denoting

[U⊗(M+N), SB] = 0

C ≡ (iσy)⊗N

CUC
†

= U
∗



Schur-Weyl	 duality
We exploit the Schur-Weyl duality

[SU(d)⊗N , PN ] = 0

H⊗N ≡
⊕

ν

Hν ⊗Hdν

U
(ν)
g

Π
(dν)
σ

2
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n |n〉 ⊗ |n〉, and ᵀ

denotes transposition with respect to the orthonormal
basis {|n〉}]. In the Choi-Jamiolkowsky representation
the trace-preserving condition on the CP map reads

Trout[RB] = Iin , (3)

where Iin denotes the identity on Hin. For the unitary
group SU(2) the complex conjugate representation of any
unitary representation, say Vg, is unitarily equivalent to
the direct representation, i. e. V ∗

g = CVgC†, under the
π-rotation C around the y axis. The explicit form of C
actually depends on the particular representation Vg: for
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g one has C ≡ iσ⊗N
y . It is

then convenient to rewrite the map as follows
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with
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or to the Choi-Jamiolkowsky operator

S(ϕ,Φ)
M =

N/2⊕

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

1
dϕ(l)

P (ϕ(l),l)
Φ(l) ⊗ Idϕ(l) ⊗ Idl .

(13)
Using the expression (13) for extremal broadcasting
channels and Eq. (11) for the input state we can evaluate
the output state

M(ϕ,Φ)(ρ⊗N ) = (r+r−)N/2
N/2⊕

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

1
dϕ(l)

×
l∑

n=−l

(
r−
r+

)n

Trl[(Iϕ(l) ⊗ |ln〉〈ln|)P (ϕ(l),l)
Φ(l) ]⊗ Idϕ(l) .

(14)

:

:

SU(2)



Input	 states

(Schur-Weyl duality)

ρ̃⊗N = (r+r−)N/2

N/2
⊕

l=〈〈N/2〉〉

l
∑

n=−l

(

r−
r+

)n

|ln〉〈ln|⊗ Idl

2

U⊗M
g ⊗U∗

g
⊗N , Ug denoting the j = 1

2 representation, for
g ∈ SU(2) [the symbol |I〉〉 denotes the maximally entan-
gled vector |I〉〉 =

∑
n |n〉 ⊗ |n〉, and ᵀ denotes transposi-

tion with respect to the orthonormal basis {|n〉}]. In the
Choi-Jamiolkowsky representation the trace-preserving
condition on the CP map reads

Trout[RB] = Iin , (3)

where Iin denotes the identity on Hin. For the unitary
group SU(2) the complex conjugate representation of any
unitary representation, say Vg, is unitarily equivalent to
the direct representation, i. e. V ∗

g = CVgC†, under the
π-rotation C around the y axis. The explicit form of C
actually depends on the particular representation Vg: for
the tensor representation U⊗N

g one has C ≡ iσ⊗N
y . It is

then convenient to rewrite the map as follows

B(Q) = Trin[(Iout ⊗ Q̃)SB] (4)

with

Q̃
.= CQᵀC†, SB

.= (Iout ⊗ C)RB(Iout ⊗ C†), (5)

and now covariance of the CP map B corresponds to in-
variance of SB under the representation U⊗(N+M)

g . A
tensor product representation U⊗L

g decomposes into ir-
reducible components according to the Wedderburn de-
composition of spaces

H⊗L =
L/2⊕

j=〈〈L/2〉〉

Hj ⊗ Cdj , (6)

where 〈〈x〉〉 denotes the fractional part of x (i. e. 〈〈L/2〉〉 =
0 for L even and 〈〈L/2〉〉 = 1/2 for L odd), and the multi-
plicity dj can be evaluated by recurrence on L by adding
a qubit at a time, giving dj = 2j+1

L/2+j+1

( L
L/2+j

)
[11]. Eq.

(6) is also called Clebsch-Gordan series. The spaces
Hj and Cdj are called representation and multiplicity
spaces, respectively. With the above decomposition the
group representation writes U⊗L

g = ⊕L/2
j=〈〈L/2〉〉U

(j)
g ⊗ Idj ,

whereas an operator invariant under U⊗L
g has the form

⊕L/2
j=〈〈L/2〉〉Ij⊗W (j), Ij denoting the identity over the rep-

resentation space Hj , and W (j) an operator on the multi-
plicity space Cdj . On the other hand, an operator invari-
ant under the permutation group PL of the L copies of
the representation has the form ⊕L/2

j=〈〈L/2〉〉Zj⊗Idj , where
Zj is any operator on the representation space Hj (this
is the so-called Schur-Weyl duality) [12]. Since the op-
erator SB is invariant under PM × PN it must be of the
form SB = ⊕M/2

j=〈〈M/2〉〉⊕
N/2
l=〈〈N/2〉〉 Sjl⊗ Idj ⊗ Idl , where Sjl

is a positive operator over Hj⊗Hl. By further decompos-
ing Hj ⊗ Hl = ⊕j+l

J=|j−l|HJ into invariant subspaces and

imposing invariance of SB under U⊗(M+N)
g , one obtains

the general form

SM =
M/2⊕

j=〈〈M/2〉〉

N/2⊕

l=〈〈N/2〉〉

j+l⊕

J=|j−l|

sj,l,JP (j,l)
J ⊗Idj⊗Idl , (7)

for positive coefficients sj,l,J , P (j,l)
J denoting the orthog-

onal projector over the irreducible representation J com-
ing from the couple j, l.

The trace preservation condition is now equivalent to

Trout[SM ] =
M/2∑

j=〈〈M/2〉〉

N
2⊕

l=〈〈N/2〉〉

Trj




j+l⊕

J=|j−l|

djsj,l,JP (j,l)
J



⊗ Idl = Iin .

(8)

Since Trj [P
(j,l)
J ] is invariant under U (l)

g , one can easily
see that Trj [P

(j,l)
J ] = 2J+1

2l+1 Il, whence the latter condition
becomes

N/2⊕

l=〈〈N/2〉〉

M/2∑

j=〈〈M/2〉〉

j+l∑

J=|j−l|

djsj,l,J
2J + 1
2l + 1

Il⊗Idl = Iin , (9)

namely

M/2∑

j=〈〈M/2〉〉

j+l∑

J=|j−l|

djsj,l,J
2J + 1
2l + 1

= 1 , ∀〈〈N/2〉〉 ≤ l ≤ N

2
,

(10)
with positive coefficients sj,l,J .

Upon writing the input state Q̃ = ρ̃⊗N in the Bloch
vector form, we have the decomposition

ρ̃⊗N =
[
1
2 (I − rk · σ)

]⊗N

= (r+r−)N/2
N/2⊕

l=〈〈N/2〉〉

l∑

n=−l

(
r−
r+

)n

|ln〉〈ln|⊗ Idl ,
(11)

where 0 ≤ r ≤ 1, and r±
.= 1

2 (1 ± r), and |ln〉 denotes
the eigenstate of the angular momentum component k ·
J (l) with eigenvalue n. From Eq. (10) we see that the
broadcasting channels from N to M make a convex set,
with the extreme points classified by functions ϕ and
Φ corresponding to a given choice j = ϕ(l), J = Φ(l),
namely to the choice of coefficients

s(ϕ,Φ)
j,l,J =

2l + 1
2J + 1

1
dj

δj,ϕ(l)δJ,Φ(l) , (12)

or to the Choi-Jamiolkowsky operator

S(ϕ,Φ)
M =

N/2⊕

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

1
dϕ(l)

P (ϕ(l),l)
Φ(l) ⊗ Idϕ(l) ⊗ Idl .

(13)

ρ =
1

2
(I + rk · σ)

[ J. I. Cirac, A. K. Ekert, and C. Macchiavello, Phys. Rev. Lett. 82 4344 (1999)]



Maps	 characterization
H⊗(M+N)

=

M/2⊕

j=〈〈M/2〉〉

N/2⊕

l=〈〈N/2〉〉

Hj ⊗Hl ⊗ C
dj ⊗ C

dl

2

the j = 1
2 representation [the symbol |I〉〉 denotes the

maximally entangled vector |I〉〉 =
∑

n |n〉 ⊗ |n〉, and ᵀ

denotes transposition with respect to the orthonormal
basis {|n〉}]. In the Choi-Jamiolkowsky representation
the trace-preserving condition on the CP map reads

Trout[RB] = Iin , (3)

where Iin denotes the identity on Hin. For the unitary
group SU(2) the complex conjugate representation of any
unitary representation, say Vg, is unitarily equivalent to
the direct representation, i. e. V ∗

g = CVgC†, under the
π-rotation C around the y axis. The explicit form of C
actually depends on the particular representation Vg: for
the tensor representation U⊗N

g one has C ≡ iσ⊗N
y . It is

then convenient to rewrite the map as follows

B(Q) = Trin[(Iout ⊗ Q̃)SB] (4)

with

Q̃
.= CQᵀC†, SB

.= (Iout ⊗ C)RB(Iout ⊗ C†), (5)

and now covariance of the CP map B corresponds to in-
variance of SB under the representation U⊗(N+M)

g . A
tensor product representation U⊗L

g decomposes into ir-
reducible components according to the Wedderburn de-
composition of spaces

H⊗L =
L/2⊕

j=〈〈L/2〉〉

Hj ⊗ Cdj , (6)

where 〈〈x〉〉 denotes the fractional part of x (i. e.
〈〈L/2〉〉 = 0 for L even and 〈〈L/2〉〉 = 1/2 for L odd),
and dj = 2j+1

L/2+j+1

( L
L/2+j

)
(Eq. (6) is the usual Clebsch-

Gordan series). The spaces Hj and Cdj are called rep-
resentation and multiplicity spaces, respectively. With
the above decomposition the group representation writes
U⊗L

g = ⊕L/2
j=〈〈L/2〉〉U

(j)
g ⊗ Idj , whereas an operator invari-

ant under U⊗L
g has the form ⊕L/2

j=〈〈L/2〉〉Ij ⊗W (j), Ij de-
noting the identity over the representation space Hj , and
W (j) an operator on the multiplicity space Cdj . On
the other hand, an operator invariant under the per-
mutation group PL of the L copies of the representa-
tion has the form ⊕L/2

j=〈〈L/2〉〉Zj ⊗ Idj , where Zj is any
operator on the representation space Hj (this is the so-
called Schur-Weyl duality) [11]. Since the operator SB

is invariant under PM × PN it must be of the form
SB = ⊕M/2

j=〈〈M/2〉〉 ⊕
N/2
l=〈〈N/2〉〉 Sjl ⊗ Idj ⊗ Idl , where Sjl is

a positive operator over Hj ⊗ Hl. By further decompos-
ing Hj ⊗ Hl = ⊕j+l

J=|j−l|HJ into invariant subspaces and

imposing invariance of SB under U⊗(M+N)
g , one obtains

the general form

SM =
M/2⊕

j=〈〈M/2〉〉

N/2⊕

l=〈〈N/2〉〉

j+l⊕

J=|j−l|

sj,l,JP (j,l)
J ⊗Idj⊗Idl , (7)

for positive coefficients sj,l,J , P (j,l)
J denoting the orthog-

onal projector over the irreducible representation J com-
ing from the couple j, l.

The trace preservation condition is now equivalent to

Trout[SM ] =
M/2∑

j=〈〈M/2〉〉

N
2⊕

l=〈〈N/2〉〉

Trj




j+l⊕

J=|j−l|

djsj,l,JP (j,l)
J



⊗ Idl = Iin .

(8)

Since Trj [P
(j,l)
J ] is invariant under U (l)

g , one can easily
see that Trj [P

(j,l)
J ] = 2J+1

2l+1 Il, whence the latter condition
becomes

N/2⊕

l=〈〈N/2〉〉

M/2∑

j=〈〈M/2〉〉

j+l∑

J=|j−l|

djsj,l,J
2J + 1
2l + 1

Il⊗Idl = Iin , (9)

namely
M/2∑

j=〈〈M/2〉〉

j+l∑

J=|j−l|

djsj,l,J
2J + 1
2l + 1

= 1 , ∀〈〈N/2〉〉 ≤ l ≤ N

2
,

(10)
with positive coefficients sj,l,J .

Upon writing the input state Q̃ = ρ̃⊗N in the Bloch
vector form, we have the decomposition

ρ̃⊗N =
[
1
2 (I − rk · σ)

]⊗N

= (r+r−)N/2
N/2⊕

l=〈〈N/2〉〉

l∑

n=−l

(
r−
r+

)n

|ln〉〈ln|⊗ Idl ,
(11)

where 0 ≤ r ≤ 1, and r±
.= 1

2 (1 ± r), and |ln〉 denotes
the eigenstate of the angular momentum component k ·
J (l) with eigenvalue n. From Eq. (10) we see that the
broadcasting channels from N to M make a convex set,
with the extreme points classified by functions ϕ and
Φ corresponding to a given choice j = ϕ(l), J = Φ(l),
namely to the choice of coefficients

s(ϕ,Φ)
j,l,J =

2l + 1
2J + 1

1
dj

δj,ϕ(l)δJ,Φ(l) , (12)

or to the Choi-Jamiolkowsky operator

S(ϕ,Φ)
M =

N/2⊕

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

1
dϕ(l)

P (ϕ(l),l)
Φ(l) ⊗ Idϕ(l) ⊗ Idl .

(13)
Using the expression (13) for extremal broadcasting
channels and Eq. (11) for the input state we can evaluate
the output state

M(ϕ,Φ)(ρ⊗N ) = (r+r−)N/2
N/2⊕

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

1
dϕ(l)

×
l∑

n=−l

(
r−
r+

)n

Trl[(Iϕ(l) ⊗ |ln〉〈ln|)P (ϕ(l),l)
Φ(l) ]⊗ Idϕ(l) .

(14)

2

the j = 1
2 representation [the symbol |I〉〉 denotes the

maximally entangled vector |I〉〉 =
∑

n |n〉 ⊗ |n〉, and ᵀ

denotes transposition with respect to the orthonormal
basis {|n〉}]. In the Choi-Jamiolkowsky representation
the trace-preserving condition on the CP map reads

Trout[RB] = Iin , (3)

where Iin denotes the identity on Hin. For the unitary
group SU(2) the complex conjugate representation of any
unitary representation, say Vg, is unitarily equivalent to
the direct representation, i. e. V ∗

g = CVgC†, under the
π-rotation C around the y axis. The explicit form of C
actually depends on the particular representation Vg: for
the tensor representation U⊗N

g one has C ≡ iσ⊗N
y . It is

then convenient to rewrite the map as follows

B(Q) = Trin[(Iout ⊗ Q̃)SB] (4)

with

Q̃
.= CQᵀC†, SB

.= (Iout ⊗ C)RB(Iout ⊗ C†), (5)

and now covariance of the CP map B corresponds to in-
variance of SB under the representation U⊗(N+M)

g . A
tensor product representation U⊗L

g decomposes into ir-
reducible components according to the Wedderburn de-
composition of spaces

H⊗L =
L/2⊕

j=〈〈L/2〉〉

Hj ⊗ Cdj , (6)

where 〈〈x〉〉 denotes the fractional part of x (i. e.
〈〈L/2〉〉 = 0 for L even and 〈〈L/2〉〉 = 1/2 for L odd),
and dj = 2j+1

L/2+j+1

( L
L/2+j

)
(Eq. (6) is the usual Clebsch-

Gordan series). The spaces Hj and Cdj are called rep-
resentation and multiplicity spaces, respectively. With
the above decomposition the group representation writes
U⊗L

g = ⊕L/2
j=〈〈L/2〉〉U

(j)
g ⊗ Idj , whereas an operator invari-

ant under U⊗L
g has the form ⊕L/2

j=〈〈L/2〉〉Ij ⊗W (j), Ij de-
noting the identity over the representation space Hj , and
W (j) an operator on the multiplicity space Cdj . On
the other hand, an operator invariant under the per-
mutation group PL of the L copies of the representa-
tion has the form ⊕L/2

j=〈〈L/2〉〉Zj ⊗ Idj , where Zj is any
operator on the representation space Hj (this is the so-
called Schur-Weyl duality) [11]. Since the operator SB

is invariant under PM × PN it must be of the form
SB = ⊕M/2

j=〈〈M/2〉〉 ⊕
N/2
l=〈〈N/2〉〉 Sjl ⊗ Idj ⊗ Idl , where Sjl is

a positive operator over Hj ⊗ Hl. By further decompos-
ing Hj ⊗ Hl = ⊕j+l

J=|j−l|HJ into invariant subspaces and

imposing invariance of SB under U⊗(M+N)
g , one obtains

the general form

SM =
M/2⊕

j=〈〈M/2〉〉

N/2⊕

l=〈〈N/2〉〉

j+l⊕

J=|j−l|

sj,l,JP (j,l)
J ⊗Idj⊗Idl , (7)

for positive coefficients sj,l,J , P (j,l)
J denoting the orthog-

onal projector over the irreducible representation J com-
ing from the couple j, l.

The trace preservation condition is now equivalent to

Trout[SM ] =
M/2∑

j=〈〈M/2〉〉

N
2⊕

l=〈〈N/2〉〉

Trj




j+l⊕

J=|j−l|

djsj,l,JP (j,l)
J



⊗ Idl = Iin .

(8)

Since Trj [P
(j,l)
J ] is invariant under U (l)

g , one can easily
see that Trj [P

(j,l)
J ] = 2J+1

2l+1 Il, whence the latter condition
becomes

N/2⊕

l=〈〈N/2〉〉

M/2∑

j=〈〈M/2〉〉

j+l∑

J=|j−l|

djsj,l,J
2J + 1
2l + 1

Il⊗Idl = Iin , (9)

namely
M/2∑

j=〈〈M/2〉〉

j+l∑

J=|j−l|

djsj,l,J
2J + 1
2l + 1

= 1 , ∀〈〈N/2〉〉 ≤ l ≤ N

2
,

(10)
with positive coefficients sj,l,J .

Upon writing the input state Q̃ = ρ̃⊗N in the Bloch
vector form, we have the decomposition

ρ̃⊗N =
[
1
2 (I − rk · σ)

]⊗N

= (r+r−)N/2
N/2⊕

l=〈〈N/2〉〉

l∑

n=−l

(
r−
r+

)n

|ln〉〈ln|⊗ Idl ,
(11)

where 0 ≤ r ≤ 1, and r±
.= 1

2 (1 ± r), and |ln〉 denotes
the eigenstate of the angular momentum component k ·
J (l) with eigenvalue n. From Eq. (10) we see that the
broadcasting channels from N to M make a convex set,
with the extreme points classified by functions ϕ and
Φ corresponding to a given choice j = ϕ(l), J = Φ(l),
namely to the choice of coefficients

s(ϕ,Φ)
j,l,J =

2l + 1
2J + 1

1
dj

δj,ϕ(l)δJ,Φ(l) , (12)

or to the Choi-Jamiolkowsky operator

S(ϕ,Φ)
M =

N/2⊕

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

1
dϕ(l)

P (ϕ(l),l)
Φ(l) ⊗ Idϕ(l) ⊗ Idl .

(13)
Using the expression (13) for extremal broadcasting
channels and Eq. (11) for the input state we can evaluate
the output state

M(ϕ,Φ)(ρ⊗N ) = (r+r−)N/2
N/2⊕

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

1
dϕ(l)

×
l∑

n=−l

(
r−
r+

)n

Trl[(Iϕ(l) ⊗ |ln〉〈ln|)P (ϕ(l),l)
Φ(l) ]⊗ Idϕ(l) .

(14)

invariance of  

under
SB =

M/2⊕

j=〈〈M/2〉〉

N/2⊕

l=〈〈N/2〉〉

Sjl ⊗ Idj
⊗ Idl

2

the j = 1
2 representation [the symbol |I〉〉 denotes the

maximally entangled vector |I〉〉 =
∑

n |n〉 ⊗ |n〉, and ᵀ

denotes transposition with respect to the orthonormal
basis {|n〉}]. In the Choi-Jamiolkowsky representation
the trace-preserving condition on the CP map reads

Trout[RB] = Iin , (3)

where Iin denotes the identity on Hin. For the unitary
group SU(2) the complex conjugate representation of any
unitary representation, say Vg, is unitarily equivalent to
the direct representation, i. e. V ∗

g = CVgC†, under the
π-rotation C around the y axis. The explicit form of C
actually depends on the particular representation Vg: for
the tensor representation U⊗N

g one has C ≡ iσ⊗N
y . It is

then convenient to rewrite the map as follows

B(Q) = Trin[(Iout ⊗ Q̃)SB] (4)

with

Q̃
.= CQᵀC†, SB

.= (Iout ⊗ C)RB(Iout ⊗ C†), (5)

and now covariance of the CP map B corresponds to in-
variance of SB under the representation U⊗(N+M)

g . A
tensor product representation U⊗L

g decomposes into ir-
reducible components according to the Wedderburn de-
composition of spaces

H⊗L =
L/2⊕

j=〈〈L/2〉〉

Hj ⊗ Cdj , (6)

where 〈〈x〉〉 denotes the fractional part of x (i. e.
〈〈L/2〉〉 = 0 for L even and 〈〈L/2〉〉 = 1/2 for L odd),
and dj = 2j+1

L/2+j+1

( L
L/2+j

)
(Eq. (6) is the usual Clebsch-

Gordan series). The spaces Hj and Cdj are called rep-
resentation and multiplicity spaces, respectively. With
the above decomposition the group representation writes
U⊗L

g = ⊕L/2
j=〈〈L/2〉〉U

(j)
g ⊗ Idj , whereas an operator invari-

ant under U⊗L
g has the form ⊕L/2

j=〈〈L/2〉〉Ij ⊗W (j), Ij de-
noting the identity over the representation space Hj , and
W (j) an operator on the multiplicity space Cdj . On
the other hand, an operator invariant under the per-
mutation group PL of the L copies of the representa-
tion has the form ⊕L/2

j=〈〈L/2〉〉Zj ⊗ Idj , where Zj is any
operator on the representation space Hj (this is the so-
called Schur-Weyl duality) [11]. Since the operator SB

is invariant under PM × PN it must be of the form
SB = ⊕M/2

j=〈〈M/2〉〉 ⊕
N/2
l=〈〈N/2〉〉 Sjl ⊗ Idj ⊗ Idl , where Sjl is

a positive operator over Hj ⊗ Hl. By further decompos-
ing Hj ⊗ Hl = ⊕j+l

J=|j−l|HJ into invariant subspaces and

imposing invariance of SB under U⊗(M+N)
g , one obtains

the general form

SM =
M/2⊕

j=〈〈M/2〉〉

N/2⊕

l=〈〈N/2〉〉

j+l⊕

J=|j−l|

sj,l,JP (j,l)
J ⊗Idj⊗Idl , (7)

for positive coefficients sj,l,J , P (j,l)
J denoting the orthog-

onal projector over the irreducible representation J com-
ing from the couple j, l.

The trace preservation condition is now equivalent to

Trout[SM ] =
M/2∑

j=〈〈M/2〉〉

N
2⊕

l=〈〈N/2〉〉

Trj




j+l⊕

J=|j−l|

djsj,l,JP (j,l)
J



⊗ Idl = Iin .

(8)

Since Trj [P
(j,l)
J ] is invariant under U (l)

g , one can easily
see that Trj [P

(j,l)
J ] = 2J+1

2l+1 Il, whence the latter condition
becomes

N/2⊕

l=〈〈N/2〉〉
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g = CVgC†, under the
π-rotation C around the y axis. The explicit form of C
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g one has C ≡ iσ⊗N
y . It is

then convenient to rewrite the map as follows
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with
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J=|j−l|

sj,l,JP (j,l)
J ⊗Idj⊗Idl , (7)

for positive coefficients sj,l,J , P (j,l)
J denoting the orthog-

onal projector over the irreducible representation J com-
ing from the couple j, l.

The trace preservation condition is now equivalent to

Trout[SM ] =
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N
2⊕
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(8)

Since Trj [P
(j,l)
J ] is invariant under U (l)

g , one can easily
see that Trj [P

(j,l)
J ] = 2J+1

2l+1 Il, whence the latter condition
becomes
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(10)
with positive coefficients sj,l,J .

Upon writing the input state Q̃ = ρ̃⊗N in the Bloch
vector form, we have the decomposition

ρ̃⊗N =
[
1
2 (I − rk · σ)

]⊗N

= (r+r−)N/2
N/2⊕

l=〈〈N/2〉〉

l∑

n=−l

(
r−
r+

)n

|ln〉〈ln|⊗ Idl ,
(11)

where 0 ≤ r ≤ 1, and r±
.= 1

2 (1 ± r), and |ln〉 denotes
the eigenstate of the angular momentum component k ·
J (l) with eigenvalue n. From Eq. (10) we see that the
broadcasting channels from N to M make a convex set,
with the extreme points classified by functions ϕ and
Φ corresponding to a given choice j = ϕ(l), J = Φ(l),
namely to the choice of coefficients

s(ϕ,Φ)
j,l,J =

2l + 1
2J + 1

1
dj

δj,ϕ(l)δJ,Φ(l) , (12)

or to the Choi-Jamiolkowsky operator

S(ϕ,Φ)
M =
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2l + 1
2Φ(l) + 1

1
dϕ(l)
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(13)
Using the expression (13) for extremal broadcasting
channels and Eq. (11) for the input state we can evaluate
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(14)
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the other hand, an operator invariant under the per-
mutation group PL of the L copies of the representa-
tion has the form ⊕L/2
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j = ϕl , J = Φl , 〈〈M/2〉〉 ≤ ϕl ≤ M/2 , |ϕl − l| ≤ Φl ≤ ϕl + l



extremal broadcasting maps: 

Extremal	 maps

S
(ϕ,Φ)
B

=

N/2⊕

l=〈〈N/2〉〉

2l + 1

2Φl + 1

1

dϕl

P
(ϕl,l)
Φl

⊗ Idϕl
⊗ Idl

Bϕ,Φ(ρ⊗N ) = (r+r−)N/2
N/2
⊕

l=〈〈N/2〉〉

2l + 1

2Φl + 1

dl

dϕl

×
l

∑

n=−l

(

r−
r+

)n

Trl[(Iϕl
⊗ |ln〉〈ln|)P (ϕl,l)

Φl
] ⊗ Idϕl



Extremal	 maps
The output state can be written

Bϕ,Φ(ρ⊗N ) = (r+r−)N/2

N/2
⊕

l=〈〈N/2〉〉

2l + 1

2Φl + 1

dl

dϕl

×
l

∑

n=−l

(

r−
r+

)n ϕl
∑

m=−ϕl

〈Φlm + n|ϕlm, ln〉2|ϕlm〉〈ϕlm|⊗ Idϕl

We are now interested in the single-site output

Let’s focus attention on this term



Change from Wedderburn to qubit representations

3

In terms of Clebsch-Gordan coefficients, this can be
rewritten as

M(ϕ,Φ)(ρ⊗N ) = (r+r−)N/2

×
N/2∑

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

dl

dϕ(l)

l∑

n=−l

(
r−
r+

)n

×
ϕ(l)∑

m=−ϕ(l)

〈Φ(l)m + n|ϕ(l)m, ln〉2|ϕ(l)m〉〈ϕ(l)m|⊗ Idϕ(l) .

(15)

Now, we are interested in the single output copy, which is
the broadcasted state. This is given by the partial trace
of Eq. (15) over M−1 copies. The evaluation of the par-
tial trace needs the matching between the Wedderburn
decomposition and the qubit tensor product representa-
tion. According to the Schur-Weyl duality the multi-
plicity space of the Wedderburn decomposition supports
a unitary irreducible representation of the permutation
group PM of the M qubits. Therefore, one has the iden-
tity for any operator Xj on Hj ⊗ Cdj

∑

l∈PM

πlXjπ
†
l =

M !
dj

TrCdj [Xj ]⊗ Idj (16)

where πl denotes the generic permutation. In particular,
for Xj = |jm〉〈jm|⊗ |1〉〈1|, |1〉 denoting any fixed vector
of Cdj , one has

|jm〉〈jm|⊗ Idj =
dj

M !

∑

l∈PM

πlXjπ
†
l (17)

Clearly, one can always choose the given vector of the
irreducible representation as [13]

|jm〉 ⊗ |1〉 = |jm〉 ⊗ |Ψ−〉⊗
M
2 −j , (18)

where |Ψ−〉 denotes the singlet. We can then take the
partial trace of both sides of Eq. (17). For each per-
mutation, say πs, which exchanges the last qubit with
one belonging to a singlet, one has TrM−1[πsXjπ†

s] = I
2 ,

and we have (M−2j)(M−1)! permutations of this kind.
On the other hand, for each permutation, say πm, which
exchanges the last qubit with one belonging to the j-
multiplet, one has TrM−1[πmXjπ†

m] = Trj− 1
2
[|jm〉〈jm|]

and there are 2j(M − 1)! permutations of this kind. Us-
ing the explicit form of the Clebsch-Gordan coefficients
one can derive the following identity

Trj− 1
2
[|jm〉〈jm|] =

1
2
I +

m

2j
k · σ . (19)

Substituting the above formula when performing the par-
tial trace of both sides of Eq. (17), one obtains the follow-

ing expression for the single copy output density operator

ρ′(ϕ,Φ)(r) = (r+r−)N/2
N/2∑

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

dl

ϕ(l)∑

m=−ϕ(l)

×
l∑

n=−l

(
r−
r+

)n

〈Φ(l)m + n|ϕ(l)m, ln〉2 1
2

(
I +

2m

M
k · σ

)
.

(20)

We are now in position to analyse the broadcasted state,
in particular its Bloch vector. In Eq. (20) we see that
the input and the output Bloch vectors are parallel, and
clearly [ρ′, ρ] = 0. On the other hand, the length of the
output Bloch vector is given by

r′(ϕ,Φ)(r) = (r+r−)N/2
N/2∑

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

dl

×
ϕ(l)∑

m=−ϕ(l)

l∑

n=−l

(
r−
r+

)n

〈Φ(l)m + n|ϕ(l)m, ln〉2 2m

M

(21)

We are now interested in maximizing the length of the
output Bloch vector. Since r′ this is linear on the convex
set of broadcasting channels, we just need to consider
extremal maps, and look for the maximum r′opt(r) =
max(ϕ,Φ){r′(ϕ,Φ)(r)}. By symbolic calculus we find that
the maximal r′(ϕ,Φ)(r) is achieved for ϕ(l) = M/2 and
for Φ(l) =

∣∣l − M
2

∣∣, independently on r. For pure states
these optimal maps coincide with those of optimal uni-
versal cloning transformations[5–8].
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FIG. 2: The curves p(r) versus r for N = 5 and 5 ≤ M ≤ 9
(from the top to the bottom).

As an example, in Fig. 2 we plot the so-called shrink-
ing factor p(r) = r′opt(r)/r for the maps maximizing r′

for N = 5 and several values of M . One can see that for a
wide range of values of r p(r) is actually a stretching fac-
tor, being p(r) > 1. This corresponds to a purification
of the local states, and since one also has a number of
copies at the output M > N greater than at the input, it
is actually a broadcasting with simultaneous purification,
what we call super-broadcasting. Clearly, for M ≤ N one
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mutation, say πs, which exchanges the last qubit with
one belonging to a singlet, one has TrM−1[πsXjπ†

s] = I
2 ,

and we have (M−2j)(M−1)! permutations of this kind.
On the other hand, for each permutation, say πm, which
exchanges the last qubit with one belonging to the j-
multiplet, one has TrM−1[πmXjπ†

m] = Trj− 1
2
[|jm〉〈jm|]

and there are 2j(M − 1)! permutations of this kind. Us-
ing the explicit form of the Clebsch-Gordan coefficients
one can derive the following identity

Trj− 1
2
[|jm〉〈jm|] =

1
2
I +

m

2j
k · σ . (19)

Substituting the above formula when performing the par-
tial trace of both sides of Eq. (17), one obtains the follow-

ing expression for the single copy output density operator

ρ′(ϕ,Φ)(r) = (r+r−)N/2
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2Φ(l) + 1

dl

ϕ(l)∑
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〈Φ(l)m + n|ϕ(l)m, ln〉2 1
2

(
I +

2m

M
k · σ

)
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(20)

We are now in position to analyse the broadcasted state,
in particular its Bloch vector. In Eq. (20) we see that
the input and the output Bloch vectors are parallel, and
clearly [ρ′, ρ] = 0. On the other hand, the length of the
output Bloch vector is given by

r′(ϕ,Φ)(r) = (r+r−)N/2
N/2∑

l=〈〈N/2〉〉

2l + 1
2Φ(l) + 1

dl
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〈Φ(l)m + n|ϕ(l)m, ln〉2 2m

M

(21)

We are now interested in maximizing the length of the
output Bloch vector. Since r′ this is linear on the convex
set of broadcasting channels, we just need to consider
extremal maps, and look for the maximum r′opt(r) =
max(ϕ,Φ){r′(ϕ,Φ)(r)}. By symbolic calculus we find that
the maximal r′(ϕ,Φ)(r) is achieved for ϕ(l) = M/2 and
for Φ(l) =

∣∣l − M
2

∣∣, independently on r. For pure states
these optimal maps coincide with those of optimal uni-
versal cloning transformations[5–8].
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As an example, in Fig. 2 we plot the so-called shrink-
ing factor p(r) = r′opt(r)/r for the maps maximizing r′

for N = 5 and several values of M . One can see that for a
wide range of values of r p(r) is actually a stretching fac-
tor, being p(r) > 1. This corresponds to a purification
of the local states, and since one also has a number of
copies at the output M > N greater than at the input, it
is actually a broadcasting with simultaneous purification,
what we call super-broadcasting. Clearly, for M ≤ N one
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Now, we are interested in the single output copy, which is
the broadcasted state. This is given by the partial trace
of Eq. (15) over M−1 copies. The evaluation of the par-
tial trace needs the matching between the Wedderburn
decomposition and the qubit tensor product representa-
tion. According to the Schur-Weyl duality the multi-
plicity space of the Wedderburn decomposition supports
a unitary irreducible representation of the permutation
group PM of the M qubits. Therefore, one has the iden-
tity for any operator Xj on Hj ⊗ Cdj
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where πl denotes the generic permutation. In particular,
for Xj = |jm〉〈jm|⊗ |1〉〈1|, |1〉 denoting any fixed vector
of Cdj , one has
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We are now in position to analyse the broadcasted state,
in particular its Bloch vector. In Eq. (20) we see that
the input and the output Bloch vectors are parallel, and
clearly [ρ′, ρ] = 0. On the other hand, the length of the
output Bloch vector is given by
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We are now interested in maximizing the length of the
output Bloch vector. Since r′ this is linear on the convex
set of broadcasting channels, we just need to consider
extremal maps, and look for the maximum r′opt(r) =
max(ϕ,Φ){r′(ϕ,Φ)(r)}. By symbolic calculus we find that
the maximal r′(ϕ,Φ)(r) is achieved for ϕ(l) = M/2 and
for Φ(l) =

∣∣l − M
2

∣∣, independently on r. For pure states
these optimal maps coincide with those of optimal uni-
versal cloning transformations[5–8].
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2
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We are now in position to analyse the broadcasted state,
in particular its Bloch vector. In Eq. (20) we see that
the input and the output Bloch vectors are parallel, and
clearly [ρ′, ρ] = 0. On the other hand, the length of the
output Bloch vector is given by
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We are now interested in maximizing the length of the
output Bloch vector. Since r′ this is linear on the convex
set of broadcasting channels, we just need to consider
extremal maps, and look for the maximum r′opt(r) =
max(ϕ,Φ){r′(ϕ,Φ)(r)}. By symbolic calculus we find that
the maximal r′(ϕ,Φ)(r) is achieved for ϕ(l) = M/2 and
for Φ(l) =

∣∣l − M
2

∣∣, independently on r. For pure states
these optimal maps coincide with those of optimal uni-
versal cloning transformations[5–8].
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As an example, in Fig. 2 we plot the so-called shrink-
ing factor p(r) = r′opt(r)/r for the maps maximizing r′

for N = 5 and several values of M . One can see that for a
wide range of values of r p(r) is actually a stretching fac-
tor, being p(r) > 1. This corresponds to a purification
of the local states, and since one also has a number of
copies at the output M > N greater than at the input, it
is actually a broadcasting with simultaneous purification,
what we call super-broadcasting. Clearly, for M ≤ N one

Xj = |jm〉〈jm|⊗ |1〉〈1|

Single-site	 output



Derivation
The single-site output state ρ

′ = TrM−1[B(ρ⊗N )]

commutes with σz

As a figure of merit we consider

Using permutation invariance it turns out that
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=

r′

r
=

1

r
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B(ρ⊗N )]

p(r) =
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Mr
Tr[J tot

z B(ρ⊗N )]



Derivation

Φl(Φl + 1) − ϕl(ϕl + 1) − l(l + 1)

For extremal maps we have

Since 
l∑

n=−l

nr
l+n

−
r

l−n

+ ≤ 0 must minimize 

p(r) =
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Mr
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Scaling	 factor

ϕl =
M

2
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The solution is
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End



Superbroadcasting doesn’t mean more available 
information about the original input state.

This is due to detrimental correlations between 
the broadcast copies, which does not allow to 
exploit their statistics.

From the point of view of each single user our 
broadcasting protocol is a purification in all 
respects (for sufficiently mixed states). The 
process transfers noise from the local states to the 
correlations between them.

Violation	 of	 data-processing	 theorem?
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Violation	 of	 data-processing	 theorem?

Optimal universal covariant 
superbroadcasting actually preserves the 
information about the original input state.
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Comparison
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universal case, since the set of input states is smaller
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Realization	 scheme
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Figure 2: Phase-covariant cloning of equatorial
qubits. Left: optimal scaling factor pN,N+1(r) =
r′/r for N ranging from 4 to 100 in steps of 8.
Right: logarithmic plot of 1− r∗(N, N + 1) (lower
line) and 1 − r∗(N,M∗(N)) (upper line) for 3 !
N ! 100. The corresponding asymptotic behaviors
are 2

3N−2 and 1
2N−1, respectively.

2
3N−2 and 1

2N−1, respectively. As expected, the
phase-covariant superbroadcaster is always more ef-
ficient than the universally covariant, since the set
of broadcasted input states is smaller.

5 Realization scheme

We propose here a scheme to achieve the optimal
N → M superbroadcasting channels, for both uni-
versal covariance and phase-covariance, using opti-
mal pure state cloners. The method exploits a pro-
cedure similar to that presented in Ref. [14], based
on the decomposition (18).

The first step is a joint measurement on ρ⊗N of
the observable described by the orthogonal projec-
tors

Π(j,α(j)) = I2j+1 ⊗ |α(j)〉〈α(j)|, (30)

where j0 ≤ j ≤ N/2 labels representation spaces,
and {|α(j)〉} is an orthonormal basis spanning the
multiplicity space Cdj , 0 ≤ α(j) ≤ dj . For outcome
(l,χ), the (non normalized) output state after the
measurement is

ρ(l,χ) = (r+r−)N/2

(
r+

r−

)J(l)
z

⊗ |χ〉〈χ|, (31)

which belongs to the abstract subspace C2l+1⊗Cdl ⊆(
C2

)⊗N . By applying a suitable unitary transforma-
tion to the collapsed state (31) it is always possible
to rotate it as follows

U(l,χ)ρ(l,χ)U
†
(l,χ) =

(r+r−)N/2

(
r+

r−

)J(l)
z

⊗ |Ψ−〉〈Ψ−|⊗
N−2l

2 ,
(32)

where now the first 2l qubits are in the (non normal-

ized) state (r+r−)N/2
(

r+
r−

)J(l)
z

, whilst the remaining
N − 2l qubits are coupled in singlets |Ψ−〉. Finally,
once collected the outcome (l, χ) and rotated the
state to the form (32), one discards the last (N −
2l) qubits and applies the universal (resp. phase-
covariant) optimal 2l → M cloning machine for pure

Figure 3: Sketch of the scheme proposed to realize
the optimal N → M superbroadcaster. On the in-
put state ρ⊗N the measurement of Π(j,α(j)) in Eq.
(30) is performed. Depending on the measurement
outcome, the rotation Uj,α(j) is applied to the col-
lapsed state. The (N − 2j) qubits coupled in sin-
glets are discarded. The remaining 2j qubits pass
through the optimal 2j → M cloner of pure states.
At the output we get the M qubits broadcast state.

states [15, 17] to the remaining 2l qubits. One can
prove [18] that using this scheme the optimal N →
M universally covariant (resp. phase-covariant) broad-
casting map is achieved in average, for universally
covariant (resp. phase-covariant) cloner. The whole
procedure is sketched in Fig. 3.

6 Role of correlations

The optimal superbroadcasting channel allows to
obtain a large number of individually good copies
of the same state, starting from fewer—and even
more noisy—copies. Indeed, this is possible with-
out violating the data processing theorem, since the
total amount of information about the single-site in-
put state ρ is not greater at the output than at the
input. The apparently paradoxical reduction of in-
formation on ρ in the presence of purification is due
to the fact that the output copies are not indepen-
dent, and the total information is not simply the
sum of local contributions. In other words, the phe-
nomenon of superbroadcasting relies on the presence
of correlations at the output, and the superbroad-
casting channel can then be regarded as a tool that
moves noise from local states into correlations be-
tween them.

It is then natural to ask which kind of correla-
tions occur at the output state: are they classical or
quantum? In order to answer this question, we ana-
lyzed the bipartite correlations at the output of the
superbroadcasting channels, both for the universally
covariant and the phase-covariant cases (the bipar-
tite state corresponds to trace out M − 2 systems
in the global output state Σ). For both types of co-
variance, the bipartite state is supported in the sym-
metric subspace of (C2)⊗2 corresponding to the rep-
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metric subspace of (C2)⊗2 corresponding to the rep-
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Figure 2: Phase-covariant cloning of equatorial
qubits. Left: optimal scaling factor pN,N+1(r) =
r′/r for N ranging from 4 to 100 in steps of 8.
Right: logarithmic plot of 1− r∗(N, N + 1) (lower
line) and 1 − r∗(N,M∗(N)) (upper line) for 3 !
N ! 100. The corresponding asymptotic behaviors
are 2

3N−2 and 1
2N−1, respectively.

2
3N−2 and 1

2N−1, respectively. As expected, the
phase-covariant superbroadcaster is always more ef-
ficient than the universally covariant, since the set
of broadcasted input states is smaller.

5 Realization scheme

We propose here a scheme to achieve the optimal
N → M superbroadcasting channels, for both uni-
versal covariance and phase-covariance, using opti-
mal pure state cloners. The method exploits a pro-
cedure similar to that presented in Ref. [14], based
on the decomposition (18).

The first step is a joint measurement on ρ⊗N of
the observable described by the orthogonal projec-
tors

Π(j,α(j)) = I2j+1 ⊗ |α(j)〉〈α(j)|, (30)

where j0 ≤ j ≤ N/2 labels representation spaces,
and {|α(j)〉} is an orthonormal basis spanning the
multiplicity space Cdj , 0 ≤ α(j) ≤ dj . For outcome
(l,χ), the (non normalized) output state after the
measurement is

ρ(l,χ) = (r+r−)N/2

(
r+

r−

)J(l)
z

⊗ |χ〉〈χ|, (31)

which belongs to the abstract subspace C2l+1⊗Cdl ⊆(
C2

)⊗N . By applying a suitable unitary transforma-
tion to the collapsed state (31) it is always possible
to rotate it as follows

U(l,χ)ρ(l,χ)U
†
(l,χ) =

(r+r−)N/2

(
r+

r−

)J(l)
z

⊗ |Ψ−〉〈Ψ−|⊗
N−2l

2 ,
(32)

where now the first 2l qubits are in the (non normal-

ized) state (r+r−)N/2
(

r+
r−

)J(l)
z

, whilst the remaining
N − 2l qubits are coupled in singlets |Ψ−〉. Finally,
once collected the outcome (l, χ) and rotated the
state to the form (32), one discards the last (N −
2l) qubits and applies the universal (resp. phase-
covariant) optimal 2l → M cloning machine for pure

Figure 3: Sketch of the scheme proposed to realize
the optimal N → M superbroadcaster. On the in-
put state ρ⊗N the measurement of Π(j,α(j)) in Eq.
(30) is performed. Depending on the measurement
outcome, the rotation Uj,α(j) is applied to the col-
lapsed state. The (N − 2j) qubits coupled in sin-
glets are discarded. The remaining 2j qubits pass
through the optimal 2j → M cloner of pure states.
At the output we get the M qubits broadcast state.

states [15, 17] to the remaining 2l qubits. One can
prove [18] that using this scheme the optimal N →
M universally covariant (resp. phase-covariant) broad-
casting map is achieved in average, for universally
covariant (resp. phase-covariant) cloner. The whole
procedure is sketched in Fig. 3.

6 Role of correlations

The optimal superbroadcasting channel allows to
obtain a large number of individually good copies
of the same state, starting from fewer—and even
more noisy—copies. Indeed, this is possible with-
out violating the data processing theorem, since the
total amount of information about the single-site in-
put state ρ is not greater at the output than at the
input. The apparently paradoxical reduction of in-
formation on ρ in the presence of purification is due
to the fact that the output copies are not indepen-
dent, and the total information is not simply the
sum of local contributions. In other words, the phe-
nomenon of superbroadcasting relies on the presence
of correlations at the output, and the superbroad-
casting channel can then be regarded as a tool that
moves noise from local states into correlations be-
tween them.

It is then natural to ask which kind of correla-
tions occur at the output state: are they classical or
quantum? In order to answer this question, we ana-
lyzed the bipartite correlations at the output of the
superbroadcasting channels, both for the universally
covariant and the phase-covariant cases (the bipar-
tite state corresponds to trace out M − 2 systems
in the global output state Σ). For both types of co-
variance, the bipartite state is supported in the sym-
metric subspace of (C2)⊗2 corresponding to the rep-
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The	 role	 of	 correlations
Universal broadcasting: symmetric 2-sites output states commuting with J
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Two-sites output concurrence C versus the input Bloch vector 
length r for N → N + 1 , 2 ≤ N ≤ 10
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The	 role	 of	 correlations
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The classical procedure (measurement + preparation) leads 
only to the same scaling factor as the superbroadcasting for 
M=∞ (F. Buscemi, G. Chiribella, G. M. D’Ariano, C. 
Macchiavello, and P. Perinotti, in preparation)

The protocol for practical achievement of the 
superbroadcasting map involves Werner cloning map in 
some stage ----> quantum correlations

The	 role	 of	 correlations

Is superbroadcasting classical?
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 superbroadcasting for harmonic oscillators
 feasible for any displaced noisy state
 covariant under the Weyl Heisenberg group of   
translations on the phase space 
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CV	 superbroadcasting

Pushing noise 
into correlations!

reducing thermal noise 
while creating correlations
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Decorrelation

• Quantum decorrelator D for R != Tr2[R] ⊗ Tr1[R]

D(U⊗2

g RU⊗2

g

†) = UgρU†
g ⊗ UgρU†

g ∀g ∈ G.

• Classical decorrelator for pm(X, Y ), X, Y random variables with

〈X〉 = 〈Y 〉 = m, pm(X, Y ) #= pm(X)pm(Y ).

data processing:

∀m

{

X ′ = X ′(X, Y ), 〈X ′〉 = m

Y ′ = Y ′(X, Y ), 〈Y ′〉 = m
pm(X ′, Y ′) = pm(X ′)pm(Y ′).



Decorrelation
It is possible to decorrelate a state by reducing the 
purity at each use and/or reducing the number of uses.
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Decorrelation

Quantum mechanically 
perfect decorrelation is 
possible!

1-->2 optimal 
broadcasting

ρ(2)
= αI(1)

+ βJ (1)
z

+
1 − 3α

2
J (1)

z

2
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6

case of α = 1−2β, 0 ≤ β ≤ 1/2, which corresponds to the states analyzed
by Rafał in its notes, the system becomes

s0
11 =

β(β + 3)r2 + 2(3β − 1)r + β(3β − 1)
12β(3β − 1)

s1
11 =

β(β − 2)r2 + (3β − 1)r + β(3β − 1)
4β(3β − 1)

(35)

s2
11 =

5β2r2 − 5(3β − 1)r + 5β(3β − 1)
12β(3β − 1)

, (36)

and the conditions for positivity of the three weights are

r ≤ 3β − 1 +
√
−12β2 + 4β3 + 9β2 − 6β + 1

2β2
0 ≤ β ≤

√
5− 1
4

(37)

r ≤ 1− 3β +
√
−3β4 − 8β3 + 12t2 − 6β + 1

β2 + 3β

√
5− 1
4

< β ≤ 1
3

(38)

r ≤ 1− 3β −
√
−12β4 + 28β3 + β2 − 6β + 1

2(β2 − 2β)
1
3

< β ≤ 1
2
. (39)

The plot of the maximum output Bloch vector compatible with factor-
ized output is shown in Fig. 1 along with the corresponding scaling
factor p(s) = r/s = r/2β. The system of inequalities in the general case
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Figure 1:

November 7, 2005

Bloch vector length s = 2β

α = 1 − 2β

0.1. DECORRELATING A SYMMETRIC STATE OF TWO QUBITS 7

gives the following optimal surface for r as a function of (β,α)

r =
√

(3α− 1)2 + 4β2(3α− 1)(1− α)− (3α− 1)
|β|(1− α)

α ≥ 1
3
(5− 2

√
4− 3β2)

(40)

r =
3α− 1 +

√
(3α− 1)2 + β2(3α− 1)(7− α)

|β|(7− α)
1
3
≤ α <

1
3
(5− 2

√
4− 3β2)

(41)

r =
1− 3α +

√
(1− 3α)2 + 4β2(1− 3α)(α + 3)

2|β|(3 + α)
1
3
(2

√
1− 3β2 − 1) ≤ α <

1
3

(42)

r =
1− 3α−

√
(1− 3α)2 − 4β2(1− 3α− 1)(1− α)

2|β|(1− α)
α <

1
3
(2

√
1− 3β2 − 1).

(43)

A density plot of this function is shown in Fig. 2.
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Figure 2: The density plot shows the output Bloch vector length as a
function of (β,α). The lighter is the color, the longer is the Bloch vector.
The black lines are β = 0 and α = 1/3, whereas the white parabola
on the lower half of the triangle is the curve α = 1/3(2

√
1− 3β2 − 1).

The line represents the border between separable and entangled states
α = 1−4β2

2 . The lower vertices of the triangle are the factorized states
|− 1/2〉|− 1/2〉 and |1/2〉|1/2〉.

November 7, 2005

4-->
5 superbroadcasting



Marginal	 estimation

Quantum mechanically the optimal joint state for 
estimation of local marginal states is a correlated 
state [R. Demkowicz-Dobrzanski, Phys. Rev. A 71 
062321 (2005)]

Such joint states can be decorrelated perfectly

[classically, the optimal joint probability for 
estimation of marginals is uncorrelated ... ]



It is possible to purify while broadcasting for sufficiently 
many input copies

It is easier to superbroadcast starting from larger numbers of 
input copies and from more mixed states

The minimum number of input copies depends on the set of 
input states

Optimal broadcasting is achieved by a projection followed 
by a conditioned unitary and a optimal cloning

Information on the single-site input state is preserved

Superbroadcasting corresponds to pushing the noise of single 
uses into their correlations

CV superbroadcasting is feasible

Decorrelation quantum mechanically is possible

Summary
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