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Problem: to derive QM as 
a probabilistic theory from 
some operational principle:
the principle of Quantumness
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Test:                      set of possible events

Postulate 2 (Symmetric faithful state) For every composite system made of two iden-
tical physical systems there exist a symmetric joint state that is both dynamically and
preparationally faithful.

3. THE STATISTICAL AND DYNAMICAL STRUCTURE

The starting point of the axiomatization is the identification experiment ≡set of trans-
formations A ≡ {A j} that can occur on the object. The apparatus signals which trans-
formation actually occurs. Now, since the knowledge of the state of a physical system
allows us to predict the results of forthcoming experiments on the object, then it would
allow us to evaluate the probability of any possible transformation in any conceivable
experiment. Therefore, by definition, a state ω of a system is a rule providing probabil-
ities of transformation, and ω(A ) is the probability that the transformation A occurs.
We clearly have the completeness ∑A j∈A ω(A j) = 1, and assume ω(I ) = 1 for the
identical transformation I , corresponding to adopting I as the free evolution (this is
the Dirac picture, i. e. a suitable choice of the lab reference frame). In the following for
a given physical system we will denote by S the set of all possible states and by T the
set of all possible transformations.

When composing two transformations A and B, the probability p(B|A ) that B
occurs conditional on the previous occurrence of A is given by the rule for conditional
probabilities p(B|A ) = ω(B◦A )/ω(A ). This sets a new probability rule correspond-
ing to the notion of conditional state ωA which gives the probability that a transforma-
tion B occurs knowing that the transformation A has occurred on the object in the
state ω , namely ωA

.= ω(· ◦A )/ω(A ) 2 (in the following the central dot “·” will al-
ways denote the pertinent variable). We can see that the notion of “state” itself logi-
cally implies the identification evolution≡state-conditioning, entailing a linear action of
transformations on states (apart from normalization) A ω := ω(·◦A ): this is the same
concept of operation that we have in Quantum Mechanics, which gives the conditioning
ωA = A ω/A ω(I ). In other words, this is the analogous of the Schrödinger picture
evolution of states in Quantum Mechanics (clearly such identification of evolution as
state-conditioning also includes the deterministic case U ω = ω(· ◦U ) of transforma-
tions U with ω(U ) = 1∀ω ∈ S—the analogous of quantum unitary evolutions and
channels.

2 M. Ozawa noticed that the definition of conditional state needs to assume that

∑
B j∈B

ω(B j ◦A ) = ω(A ), ∀B, ∀A .

Such assumption which seems not implicit in the present axiomatization, would correspond to a kind
of “no-signaling from the future”. Presently, it is under consideration if this must be considered as an
additional postulate. Notice that such assumption seems to be needed whenever a notion of conditional
state is considered which involves transformations of the system. In the present context the notion of
conditional state is intimately related to that of “effect” and to the action of transformations over effects.
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NSF (No signaling from the future)
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Equivalence classes for transformations
Two transformations      and       are 
conditioning equivalent if

10 GIACOMO MAURO D’ARIANO

The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
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system.
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The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has
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The fact that two transformations are coexistent means that in principle they can occur
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have named the present kind of compatibility ”informational” since it is actually defined
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with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
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in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).
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namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
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on the informationally equivalence classes of transformations. Notice that the relation of
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an

EFFECTS
a

∀ω ∈ S : ω(A ) ≡ ω(a)
Duality: effects are positive linear 
functionals ≤1 over states.

!S



Effect    : equivalence class of  transformations occurring with 
the same probability as       for all states.

10 GIACOMO MAURO D’ARIANO
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in the same experiment, namely there exists at least an action containing both of them. We
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in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
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Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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Postulate 2 (Symmetric faithful state) For every composite system made of two iden-
tical physical systems there exist a symmetric joint state that is both dynamically and
preparationally faithful.

3. THE STATISTICAL AND DYNAMICAL STRUCTURE

The starting point of the axiomatization is the identification experiment ≡set of trans-
formations A ≡ {A j} that can occur on the object. The apparatus signals which trans-
formation actually occurs. Now, since the knowledge of the state of a physical system
allows us to predict the results of forthcoming experiments on the object, then it would
allow us to evaluate the probability of any possible transformation in any conceivable
experiment. Therefore, by definition, a state ω of a system is a rule providing probabil-
ities of transformation, and ω(A ) is the probability that the transformation A occurs.
We clearly have the completeness ∑A j∈A ω(A j) = 1, and assume ω(I ) = 1 for the
identical transformation I , corresponding to adopting I as the free evolution (this is
the Dirac picture, i. e. a suitable choice of the lab reference frame). In the following for
a given physical system we will denote by S the set of all possible states and by T the
set of all possible transformations.

When composing two transformations A and B, the probability p(B|A ) that B
occurs conditional on the previous occurrence of A is given by the rule for conditional
probabilities p(B|A ) = ω(B◦A )/ω(A ). This sets a new probability rule correspond-
ing to the notion of conditional state ωA which gives the probability that a transforma-
tion B occurs knowing that the transformation A has occurred on the object in the
state ω , namely ωA

.= ω(· ◦A )/ω(A ) 2 (in the following the central dot “·” will al-
ways denote the pertinent variable). We can see that the notion of “state” itself logi-
cally implies the identification evolution≡state-conditioning, entailing a linear action of
transformations on states (apart from normalization) A ω := ω(·◦A ): this is the same
concept of operation that we have in Quantum Mechanics, which gives the conditioning
ωA = A ω/A ω(I ). In other words, this is the analogous of the Schrödinger picture
evolution of states in Quantum Mechanics (clearly such identification of evolution as
state-conditioning also includes the deterministic case U ω = ω(· ◦U ) of transforma-
tions U with ω(U ) = 1∀ω ∈ S—the analogous of quantum unitary evolutions and
channels.

2 M. Ozawa noticed that the definition of conditional state needs to assume that

∑
B j∈B

ω(B j ◦A ) = ω(A ), ∀B, ∀A .

Such assumption which seems not implicit in the present axiomatization, would correspond to a kind
of “no-signaling from the future”. Presently, it is under consideration if this must be considered as an
additional postulate. Notice that such assumption seems to be needed whenever a notion of conditional
state is considered which involves transformations of the system. In the present context the notion of
conditional state is intimately related to that of “effect” and to the action of transformations over effects.

a

Dirac notation

state

test

effect

(a|ω) := ω(a) (a| B |ω) := ω(a ◦ B)
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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Theorem 1 Let X be a real finite-dimensional normed space with unitary sphere SX , and let L(X) be the linear
operators from X into itself. It is proved that X is an inner product space if and only if for A,C ∈ L(X)

A⊥C⇔∃u ∈ SX : ||A|| = ||Au||, Au⊥Cu,

where ⊥ denotes Birkhoff orthogonality.

Theorem 2 (Existence of an infocomplete observable) There always exists a minimal informationally complete ob-

servable.

Proof. By definition PR = SpanR(P), whence there must exists a spanning set for PR that is contained in P. The
maximal number of elements of this set that are linearly independent will constitute a basis, which we suppose has

finite cardinality dim(PR). It remains to be shown that it is possible to have a basis with sum of elements equal to I ,

and that such basis is obtained operationally starting from the available observables from which we constructed P.
If all observables are uninformative (i. e. with all effects proportional to I ) , thenPR = Span(I ), I is a minimal

infocomplete observable, and the statement of the theorem is proved. Otherwise, there exists at least an observable

E = {li} with n! 2 linearly independent effects. If this is the only observable, again the theorem is proved. Otherwise,
take a new binary observable E2 = {x,y} from the set of available ones (you can take different binary observables out
of a given observable with more than two outcomes by summing up effects to yes-no observables). If x ∈ Span(E)
discard it. If x %∈ Span(E), then necessarily also y %∈ Span(E) [since if there exists coefficients !i such that y= !i!ili,
then x= !i(1−!i)li]. Now, consider the observable

E′ =
{
1
2
y, 1
2
(l1+ x), 1

2
l2, . . . , ln

}
(1)

(which operationally corresponds to the random choice between the observables E and E2 with probability 1
2
, and

with the events corresponding to x and l − 1 made indistinguishable). This new observable has now |E′| = n+ 1
linearly independent effects (since y is linearly independent on the li and one has y=!ni=1 li−x=!ni=2 li+ l1−x). By
iterating the above procedure we reach |E′| = dim(PR), and we have so realized an apparatus that measures a minimal
informationally complete observable."

Theorem 3 (Convex set of dynamical faithful states) If a faithful state is mixed, each component state (i. e. each

state in its possible expansions as convex combination) must be faithful.

A1 ∪A2

(A1 + A2)ω = A1ω + A2ω

Test-compatible if: ω(A ) + ω(B) ! 1, ∀ω ∈ S
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an

λA λ ∈ [0, 1]

λ
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Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned

local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-

dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
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6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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1.1. BLOCH REPRESENTATION 7

Bloch vector1.1 Bloch representation
In this section we introduce an affine-space representation based on the existence of a
minimal informationally complete observable and of a separating set of states. Such
representation generalizes the popular Bloch representation used in Quantum Mechan-
ics.

In terms of a minimal informationally complete observable, denoted by {lj}, i =
1, . . . , N , and of a minimal separating set of states {λj}, i = 1, . . . , N , one can expand
(in a unique way) any effect a ∈ E and state ω ∈ S as follows

a =
N∑

j=1

λj(a)lj , ω =
N∑

j=1

lj(ω)λj . (1.11)

Instead of using a minimal informationally complete observable and a minimal set of
separating states it is convenient to adopt canonical orthonormal basis l = {li} and
λ = {λi} for ER and SR embedded into RN as Euclidean space, with

(li, λj) = li(λj) = λj(li) = δij (1.12)

It is then convenient to adopt the Dirac-like notations, in which states ω are denoted by
the “rounded ket” |ω)and effects a by the “rounded bra” (a|, and we have

(a| =
N∑

j=1

(a|λj)(lj | , |ω)=
N∑

j=1

|λj)(lj |ω). (1.13)

It is then convenient to choose a basis with lN = e equal to the deterministic effect
e, and, correspondingly have the state-basis element λN = χ equal to the functional
χ giving the deterministic component of the effect, i.e. χ(e) = 1, χ(lj) = 0 for
i = 1, . . . N − 1. It is convenient to use in parallel also the vector notation

ω =





(l1|ω)
(l2|ω)

. . .
(e|ω)



 =
[
ω̂
ω̂

]
, a =





(a|λ1)
(a|λ2)

. . .
(a|χ)



 =
[
â
â

]
(1.14)

in terms of which we have

ω(a) = a(ω) = (a|ω)= aT ω = âT ω̂ + âω̂. (1.15)

Clearly one can extend the convex sets of effects and states to their complexification
by keeping the expansion coefficients as complex.

The vectors |ω)and (a|—or their Euclidean versions ω and aT —give a complete
description of the (unnormalized) state ω and (unbounded) effect a, via identity (1.15).
We should however keep in mind that the vector representation is defined with respect
to the dual bases {li} and {λi}, whose operational meaning is given by the reference
test. For normalized state ω, the vector ω̂ is the Bloch vector representing the state ω.
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The representation is faithful (i.e. one-to-one) for orthonormal basis or, generally, for
minimal informationally complete observable.

We now recover the linear transformation describing conditioning. This is given by

(b|A |ω)= A ω(b) = ω(b ◦A ) = b(A ω), (1.16)

which, in terms of the vector notation becomes

b(A ω) = (b|A |ω) (1.17)

Corresponding to the transformation A we introduce the matrix A = {Aij} defined
as

li(A λj) = λj(li ◦A ) = Aij (1.18)

or else
A =

∑

ij

Aij |λi)(lj | (1.19)

One has
(b|A |ω)=

∑

ij

Aij (b|λi)(lj |ω)= bT Aω (1.20)

and, upon denoting a := [A ]eff , one has

(a|ω)= (e|A |ω)=
∑

i

ANili(ω) ≡ âT ω̂ + âω̂, (1.21)

from which we derive the identities

(a|λi)≡ ANi, (a|χ)= ANN . (1.22)

Therefore, the first row of the matrix is a representation of the effect a of A (see Fig.
6.1). upon denoting by

α =





(l1|A |χ)
(l2|A |χ)

. . .
(a|χ),



 (1.23)

one has

Âω =Âω̂ + α̂,

aT ω =âT ω̂ + â,

bT Aω =b̂
T
Âω + b̂Â ω

(1.24)

The matrix representation of the transformation is synthesized in Fig. 6.1.
Summarizing we have the following conditioning transformation in terms of the

Bloch vector representation

ω ∈ S, ω̂A =
Âω̂ + α̂

âT ω̂ + â
, (1.25)
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A =





Â α̂

âT â





,

Âω = Âω̂ + α̂,

(a|ω)= âT ω̂ + â,

ω̂ → ω̂A =
Âω̂ + α̂

âT ω̂ + â
.

Figure 1.1: Matrix representation of the real algebra of transformations TR. The matrix A
representing the transformation A is orled with: a) the last row giving the effect aT = [âT , â]—
â being the deterministic component of the effect; b) the last column giving the translation α̂
of the corresponding affine transformation. Overall, the conditioning ω → ωA corresponds to
the fractional affine transformation of the representing Bloch vectors ω̂ → ω̂A reported on the
right of the figure.

with the transformation occurring with probability given by

(a|ω)= âT ω̂ + â. (1.26)

Φij =Φ(li, lj) = (li ⊗ lj |Φ)= (li ⊗ lj |
∑

nmk

(T Φ)nm |λn ⊗ λk)(lm ⊗ lk| |I)

(li ⊗ lj |
∑

nm

(T Φ)nm |λn ⊗ λm)= (T Φ)ij

(1.27)

1.2 Extended Popescu-Rohrlich model
The model. The original model is defined with two local tests labeled by the variable
x = 0, 1, with two possible outcomes i = 0, 1 each. The set of states is the convex hull
of the probability rules

α, β = 0, 1, Pαβ(i|x) =

{
1, i = αx⊕ β

0 otherwise.
(1.28)

We will denote the two tests by A(x) = {A (x)
0 , A (x)

1 } with x = 0, 1, and, correspond-
ingly, we will denote the effects as a(x)

0 , a(x)
1 , with

a(0)
0 + a(0)

1 = a(1)
0 + a(1)

1 = e, (1.29)

e denoting the deterministic effect. The original model doesn’t specify the transfor-
mations, buy only the effects, and here we will extend the model by introducing trans-
formations that are compatible with the given effects. The states ωαβ corresponding
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Two systems are independent if  on each system it is possible to 
perform all their tests as local tests, i.e. such that on every joint 
state one has the commutativity of  the transformations from 
different systems

8 GIACOMO MAURO D’ARIANO

Rule 2. The faces of a ”complete” set of states are themselves ”complete” sets of states.

The problem is to define what does it mean ”completeness”. This can only be defined
in terms of all possible invertible dynamical maps (i. e. isometric transformations of the
set: see the following).

Definition 7 (Maximally chaotic state). The maximally chaotic state χ(S) of the convex
set S is the baricenter of the set, i. e. it can be obtained by averaging over all pure states
with the uniform measure, namely

(6) χ(S)
.
=

Z

Extr S

d ψ ψ

where Extr S denotes the set of extremal points of S, and d ψ is the measure which is
invariant under isomorphisms of S.

Definition 8 (Alternative definition of maximally chaotic state). The maximally chaotic
state χ(S) of S is the most mixed state of S, in the sense that if ζ ! ω, then ζ ∼ ω.

From the definition it follows that the maximally chaotic state is full-rank, i. e.
rank[χ(S)] =

p
dim(S) + 1.

It is then easy to prove the following theorem

Theorem 1. The group of isomorphisms of S leave the state χ(S) invariant. Moreover,
χ(S) is the only state that is left invariant.

Proof. Upon denoting by U the transformation corresponding to a particular isomor-
phism, by definition the convex set of states is left invariant, namely SU ≡ S. On the
other hand, [χ(S)]U ≡ χ(S), whence χ(S) is left invariant, and this must be true for
every isomorphism. We now prove that χ(S) is the only invariant state.

Any nontrivial isomorphism maps extremal states to extremal states, and for each
couple of extremal states there is always an isomorphism connecting them. The same
is no longer true for mixed states, since each isomorphism maps distinct extremal states
into distinct extremal states preserving convex combination, whence it cannot change the
coefficients of the expansion of the state into extremal states. However, for the same
mixed state there are generally infinitely many convex decompositions into pure states.
Now, from the definition it immediately follows that a maximally chaotic state must be
full-rank. . . .

4. Transformations and conditioned states

Rule 3 (Transformations make a semi-group). The composition A ◦B of two transfor-
mations A and B is itself a transformation. There exists the identical transformation I
which leaves the physical system invariant, and which for every transformation A satisfies
the composition rule

(7) I ◦A = A ◦I = A .

Consistency of compostion of transformations requires associativity, namely

(8) C ◦ (B ◦A ) = (C ◦B) ◦A .

Definition 9 (Independent systems and local experiments). We say that two physical
systems are independent if on each system it is possible to perform local experiments that
don’t affect the other system for any joint state of the two systems. This can be expressed
synthetically with the commutativity of transformations of the local experiments, namely

(9) A (1) ◦B(2) = B(2) ◦A (1),

where the label n = 1, 2 of the transformations denotes the system undergoing the trans-
formation.

=

B

AA

B

1

INDEPENDENT SYSTEMS



MULTIPARTITE SYSTEMS
We compose the two systems     and      
into the bipartite system       considered 
as a new system containing all local tests                   
           plus other tests, and closing w.r.t. 
coarse graining, convex combination 
and cascading:

Nonlocal tests:

B
AB

A× B

A

AB ⊇ A× B

AB \ A× B



For a multipartite system we define the marginal state          of  
the n-th system the state that gives the probability of  any local 
transformation      on the n-th system with all other systems 
untouched, namely  

ON THE MISSING AXIOM OF QUANTUM MECHANICS 19

Theorem 7. One has

(44) d(ω, ζ) =
1

supθ∈S min{s(ω, θ), s(ζ, θ)} − 1,

or also

(45)
1

d(ω, ζ) + 1
= sup{α ∈ [0, 1] : αω + (1− α)ω′ = αζ + (1− α)ζ′, ω′, ζ′ ∈ S}.

[CONTINUE] Equivalently s(ω, θ) + s(ζ, θ) ≤ 1 for all θ ∈ S, namely every mixture
θ contains ω and ζ in complementary proportions (i. e. sum of the proportions is not
greater than unit)

11. Local state

Definition 32 (Local state). In the presence of many independent systems in a joint state
Ω, we define the local state ω(n) of the n-th system the state that gives the probability for
any local transformation A on the n-th system, with all other systems untouched, namely

(46) ω(n)(A )
.
= Ω(I , . . . , I , A|{z}

nth

, I , . . .).

For example, for two systems only, (which is equivalent to consider n − 1 systems
as a single one), we will write simply ω(1)(A ) = Ω(A , I ). Notice that generally the
commutativity Rule 9 doesn’t imply that the occurrence of a transformation B on system
2 doesn’t change the probability of occurrence of any other transformation A on system
1, namely, generally

(47) A1 ◦B2 = B2 ◦A1 %=⇒ Ω(·, I ) =
Ω(·, B)

Ω(I , B)
.

In other words, the occurrence of the transformation B on system 2 generally affects the
conditioned local state on system 1, namely one has

(48) ΩB2(·, I )
.
=

Ω(·, B)
Ω(I , B)

%= Ω(·, I ) ≡ ω(1)

Therefore, in order not to violate the relativity principle, for independent systems (e. g.
space-like separated) we need to require explicitly the a-causality principle:

Rule 16 (A-causality of local transformations). Any local action on a system is equivalent
to the identity transformation when viewed from an independent system, namely, in terms
of states one has

(49) ∀A
X

Aj∈A
Ω(·, Aj) = Ω(·, I ) ≡ ω(1)

The a-causality of local transformations Rule 16 along with the existence of inequivalent
actions imply the existence of indistinguishable incompatible mixtures.

Corollary 4 (Existence of equivalent incompatible mixtures). For any two incompatible
actions A = {Aj} and B = {Bi}, the following mixtures are the same state

(50)
X

j

pjωj =
X

i

p′iω
′
i ≡ ω,

where

ωj =
ω(·, Aj)

ω(I , Aj)
, pj = ω(I , Aj),

ω′
i =

ω(·, Bi)
ω(I , Bi)

, p′i = ω(I , Bi),

ω
.
= ω(·, I ).

(51)

Ω|n(A ) := Ω(I , . . . ,I , A
︸︷︷︸

n−th

,I , . . .)

Ω|n

MARGINAL STATE
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= Ω(e, . . . , e, a
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nth

, e, . . .)
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NS: (no-signaling) any local test on a system is equivalent to no-
test on another independent system.

Ω|n(a)
.
= Ω(e, . . . , e, a

︸︷︷︸

nth

, e, . . .)
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Bipartite states effects
No restriction on factorized states/effects

= ⇒ Local discriminability 
 + local observability:  global 
info-complete observables made 
of  local info-complete
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Matrix representation of  
bipartite states/effects

With respect to the standard test we can represent 
bipartite states and effects as follows

|Ψ)=
∑

ij

Ψij |λi)⊗ |λj), (E| =
∑

ij

Eij (li|⊗ (lj | ,
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Consider now a couple of independent physical systems, and to distinguish the second
system from the object system, let’s call the second one reference system. As we have
seen in Eq. (48), a probabilistic transformation A that occurred on the reference system
generally affects the local state of the object, which then depends on A as follows

(52) ΩA2(·, I )
.
=

Ω(·, A )
Ω(I , A )

= ω(1)
A2

.

We can then define a maximally entangled state for a two-partite system as follows

Definition 33 (Maximally entangled state). A maximally entangled state for a two-partite
system is a pure state Ω for which the local state on each system is maximally chaotic,
namely

(53) Ω(·, I ) = Ω(I , ·) = χ(S).

12. Faithful state

Definition 34 (Dynamically faithful state). We say that a state Φ of a composite system
is dynamically faithful for the nth component system when acting on it with a transfor-
mation A the resulting (unnormalized) conditional state is in one-to-one correspondence
with the dynamical equivalence class [A ] of A , namely the following map is 1-to-1.

(54) Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn,

where in the above equation the transformation A acts locally only on the nth component
system. !

"
#
$ !

!
Φ

A

ΦA ,I

Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
systems is in one-to-one correspondence with the informational equivalence class A of A
(i. e. its propensity), namely the following map is 1-to-1

(55) Φ(· · · , A , · · · )↔ A ,

where in the above equation the transformation A acts locally only on the nth component
system.

!

!
"

#
$A

Φ

Φ(A , ·)

In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.

A state      of  a bipartite system is dynamically faithful when 
the output state                    from a local transformation      on 
one system is in 1-to-1 correspondence with the transformation
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Definition 34 (Dynamically faithful state). We say that a state Φ of a composite system
is dynamically faithful for the nth component system when acting on it with a transfor-
mation A the resulting (unnormalized) conditional state is in one-to-one correspondence
with the dynamical equivalence class [A ] of A , namely the following map is 1-to-1.

(54) Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn,

where in the above equation the transformation A acts locally only on the nth component
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Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
systems is in one-to-one correspondence with the informational equivalence class A of A
(i. e. its propensity), namely the following map is 1-to-1

(55) Φ(· · · , A , · · · )↔ A ,

where in the above equation the transformation A acts locally only on the nth component
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In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.
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In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.

A state      of  a bipartite system is dynamically faithful when 
the output state                    from a local transformation      on 
one system is in 1-to-1 correspondence with the transformation
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Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
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In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.
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A state       of  a bipartite system is 
preparationally faithful if  every joint 
state      can be achieved by a suitable 
local transformation         on one system 
occurring with nonzero probability
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In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.
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In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
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faithful.
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‣ It is always possible to build up a symmetric preparationally 
faithful state over two identical systems.
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faithful.
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‣ It is always possible to build up a symmetric preparationally 
faithful state over two identical systems.

‣ A symmetric preparationaly faithful state is also dynamically 
faithful.

FAITHFUL STATES

‣ Faithful states are pure iff       is atomic 
(joint property from local geometry!)

I
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Lesson learnt: 
all test-theories have 

a nice matrix 
representation
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Postulate PFAITH

PFAITH: For any couple of  identical systems, there exist 
a symmetric pure state      that is preparationally faithful. Φ
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proportional to a joint effect.
F := α
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‣Teleportation:

= α×
F
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Postulate FAITHE:   (faithful effect)  

proportional to a joint effect.
F := α

(
Φ−1

∣∣ ∈ E(SS), 0 < α ! 1

BOTH CLASSICAL TEST-
THEORIES AND P-BOXES ARE 
EXCLUDED



Postulate: Purification
Postulate PURIFY: Every state has a purification on two 
identical systems.



‣ Each state can be obtained by applying an atomic 
transformation to the marginal state χ = Φ(e, ·)

Postulate: Purification
Postulate PURIFY: Every state has a purification on two 
identical systems.

‣ A symmetric preparationally faithful state is necessarily 
pure and       is atomic.I

‣ Each effect contains an atomic transformation.

‣ The sets of  (bipartite) states/effects are strongly convex
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DO WE GET QUANTUM THEORY 
FROM OUR POSTULATES?

HOW TO PROVE THAT WE HAVE 
QUANTUM MECHANICS?
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