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Introduction

The new field of quantum information has opened the way to a new kind of

astonishingly efficient information processing achieved by physical transfor-

mations. This new kind of processing will be performed by a radically new

generation of quantum devices, and this will make the design of characteriza-

tion tools for such devices of paramount importance, besides being already of

foundational interest by themselves, for the obvious possibility of experimental

determination of the dynamics of a quantum system.

Quantum devices can perform either deterministic or probabilistic trasfor-

mations of a quantum state. The transformations of the deterministic class are

generally referred to as “processes” or “channels”, and describe the evolution

of closed systems or of open systems undergoing an irreversible dynamics, such

as due to an in interaction with a bath. The class of probabilistic transforma-

tions, on the other hand, typically describes the so called “state reduction”

occurring in a quantum measurement. Both types of transformations can be

described in the language of quantum operations (QO) [1, 2], and, within this

common mathematical structure, both deterministic and non-deterministic

transformations can be characterized by the same means.

At the root of the characterization problem, there is the need of finding a

way to imprint the description of the QO of the device on a suitable input state

which is processed by the device, and is then characterized at its output by

some quantum tomographic means. Linearity of QO’s is the first key ingredient

for solving this “quantum black box” problem. In Refs. [3, 4] it was shown

that for a “complete” set of input states, i.e. for a set of generators of the

space of states, the “transfer matrix” of the device remains encoded in the

input/output correlations in the same way as for any classical linear system,

the only difference being that in the quantum case one needs many copies of the

outputs to perform their quantum tomography. Quantum process tomography
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was achieved by this methods in liquid nuclear magnetic resonance systems

[5, 6, 7], and for processes on qubits encoded in the polarization of a radiation

mode [8, 9]. Unfortunately, this method needs the preparation of an orthogonal

set of input states along with some relative superpositions, and such sets of

states are very seldom available in the lab: for example, they are not achievable

in quantum optics.

Quantum Mechanics, however, offers a unique opportunity to achieve our

goal by using a composite system. In fact, in Refs. [10] we showed that the

action of a quantum process on one system of an entangled pair produces a

joint output state containing a complete description of the process itself, a

result also known as the Jamiolkowsky isomorphism [11, 12]. In simple words,

a fixed maximally entangled input state supports the imprinting of any QO,

as if it was effectively running all possible input states in parallel, and in

this way the determination of the process is achieved by simply performing

the tomography of the joint state at the output, with the device acting on

one of the two entangled systems only. Experiments of process tomography

using entangled input probes have been recently implemented [13, 14, 15] for

optical qubits, and proposed for optical “continuous variables” systems using

homodyne tomography [10].

In our work of Ref. [16], the two methods—“many inputs” versus “single

entangled input”—have been bridged together in a complete classification of all

states (and/or all set of states) that support a complete imprinting of a generic

QO, thereafter named “faithful states”. There, the existence of separable

faithful states has been established, thus clarifying that for the “quantum

black box” problem the only thing that matters is the use of composite systems

(i. e. with the tensor product rule), more than entanglement itself. Among

such faithful separable states there are also the Werner states used in the

process tomography experiment of Ref. [14]. In Ref. [16], a measure of the

“faithfulness” of the state has been also given, which measure in some way

the precision of the tomographic characterization, showing that maximally

entangled states offer the best performance.

Once the information on the process is encoded on the quantum state,

all known techniques of state-tomography and state-discrimination can be ap-

plied. Such techniques will allow in the future a precise characterization of

any kind of quantum device, from an optical fiber for a quantum commu-

nication channel, to an NMR qubit gate, from a parametric amplifier to a
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photon-counting detector.

Structure of the Thesis

The present Thesis is aimed at a presentation of the theoretical basis for either

a mathematical or an experimental characterization of quantum devices.

In Chapter 1 we introduce the formalism of quantum operations (QO) and

positive operator-valued measures (POVM) for describing the state transfor-

mations operated by a quantum device and the statistics of the outcomes of

a quantum measurement, respectively. The properties of these two mathe-

matical objects are derived as necessary consequences of the definition and

interpretation of quantum state, and the definition of the states of composite

systems. These properties are the starting point for constructing powerful

representations of QO’s that will be used first for illustrating the relation be-

tween QO’s and POVM’s with customary unitary evolutions and projective

measurements, and then to analyze first the problem of the mathematical

characterization of a extremal and covariant devices, and then the problem of

the experimental characterization of quantum device.

In Chapter 2 the convex structure of the set of quantum devices and of the

set of POVM’s is analyzed and its physical meaning is explained, showing how

the extremal points of these sets can be considered – in some sense – as affected

by intrinsically quantum randomness. A mathematical characterization of the

extremal points is found either for the set of POVM’s or for the set of quantum

devices, along with an algorithm to decompose a non-extremal point into the

convex linear combination of extremals [17]. In the second section of the

chapter we give a complete mathematical characterization of covariant QO’s,

which correspond to physical transformations that propagate, from the input

to the output, the action of the elements of a unitary representation of a group.

The characterization of extremal covariant QO’s is given, and finally quantum

cloning is interpreted as a quantum channel being covariant with respect to

permutations, and the result of the previous section is employed to parametrize

cloning transformations, and then to calculate some novel examples of optimal

covariant cloning transformations [18].

Chapter 3 is entirely devoted to the classification of faithful states — i.e.

the input states that can be used for the characterization (intended as mea-

surement) of a quantum device — and to address the problem of quantifying

their degree of faithfulness [16].
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In Chapter 4 we propose a quantum optical setup for performing a device

characterization by homodyne tomography using as input faithful state an

entangled state from parametric down-conversion of vacuum. Numerical sim-

ulations are reported of the experimental results obtainable with the current

technology for the homodyne tomography of an amplitude displacing device

[10], of an On/Off photo-detector, and of a photon-counting detector [19], us-

ing either the pattern function averaging or the maximum-likelihood strategies

for the reconstruction.

In Chapter 5 we analyze the role of entanglement in improving either the

precision or the stability of quantum measurements resorting to the discrim-

ination of unitary transformations [20]. For the case of the estimation of

unitary transformations belonging to an irreducible representation of a group,

to use an entangled probe produces an enhancement of several figures of merit,

whereas in other situations, entanglement makes the measurement more ro-

bust with respect to noise or miscalibration of the measuring device. Finally,

we show how the use of multiparty entanglement would make it possible a per-

fect discrimination of among a finite number of unitary transformations, when

several yet limeted uses of the questioned transformation are at our disposal.



Chapter 1

Quantum operations and

quantum measurements

Quantum operations (QO), introduced for the first time in Refs. [1, 2], describe

all possible transformations — either deterministic or probabilistic — of the

state ρ of a quantum system. Mathematically, QO’s are completely positive

linear maps from the set of (trace-class) operators on H to itself, and are trace

preserving when deterministic and trace-decreasing when probabilistic, with

the probability of occurrence given by the output trace.

In this chapter we’ll show how these properties for QO’s can be traced back

to the indistinguishability of different preparations of the same ensemble of

systems and to the tensor product structure of composite systems. After these

observations, by means of a particularly useful notation for bipartite states we

have adopted since Ref. [21], we will introduce two representations of CP

maps in terms of operators on H⊗2, one evidencing the properties of the map

descending from linearity, the other the ones bound to its complete positivity.

These representations will provide the easiest framework to proof the most

relevant results concerning quantum operations. Then, we will review the

concept of POVM for representing the probability distribution of the outcomes

of a quantum measurement, and its connection with quantum operations.
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1.1 Properties of quantum operations

Let’s consider a system in the state ρ, and suppose it enters a device in which

a physical transformation described by the map T

ρ 7→ T (ρ) (1.1)

occurs with a probability p(ρ), in such a way that we know whether the trans-

formation has occurred or not. This situation describes a general quantum

measurement, in which an “occurrence flag” for the transformation represents

the “outcome”, and the dependence of p(ρ) on ρ will give us some information

on the state of the system. Since T (ρ) is a quantum state, then the map T
satisfies for all ρ

T (ρ) ∈ T(H) , T (ρ) ≥ 0 , and tr T (ρ) = 1 , (1.2)

where T(H) denotes trace-class operators on H. Consider now an ensemble of

systems prepared as {(pi, ρi)}. After the action of the device, the portion of

systems having undergone the transformation is
∑

i pi p(ρi), and the selection

of these systems yields an ensemble described by the state

ρ′ =

∑
i pi p(ρi) T (ρi)∑

i pi p(ρi)
.

On the other hand, the initial ensemble is also represented by the state

ρ =
∑

i pi ρi, so that the final post-selected ensemble will correspond to the

state T (ρ), with a fraction of transformed systems equal to p(ρ). The two

descriptions must be consistent, because of the hypothesized indistinguisha-

bility of two different preparations of the same ensemble, thus the fraction

of transformed systems and the final state must be the same in both cases,

namely

p(ρ) =
∑

i

pi p(ρi) , (1.3)

T (ρ) =

∑
i pi p(ρi) T (ρi)∑

i pi p(ρi)
. (1.4)

The first equation implies that p(ρ) is a linear function of ρ, and, as we shall see

later, this holds for any probability distribution of the outcomes of a quantum

measurement, and it is unrelated to the details of the state transformation

corresponding to each outcome: this will allow us to introduce the concept
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of POVM, which gives only the probability distribution of the outcomes as

a function of the state. In the present context we are actually describing a

“yes/no” measurement, i.e. our transformation T “has” or “has not” occurred.

If we now introduce the map E(ρ)
.
= p(ρ)T (ρ), Eq. (1.4) tells us that E is a

linear function of ρ. Taking the trace of the above definition of E , and remem-

bering that tr T (ρ) = 1, we find p(ρ) = tr E(ρ), so that the transformation T
and the probability p(ρ) can be written in terms of E as follows

T (ρ) =
E(ρ)

tr E(ρ)
, p(ρ) = tr E(ρ) . (1.5)

From Eq. (1.2), and from the fact that p(ρ) is a probability, one argues that

also the following properties must hold for E

E(ρ) ≥ 0 (positivity) ,

tr E(ρ) ≤ 1 (trace decreasing or preserving) . (1.6)

The more stringent property of complete positivity for E follows from the

tensor-product structure of composite systems in Quantum Mechanics. In

fact, when T acts only on a single subsystem of a bipartite quantum system,

the joint state R of the system transforms according to

ρ 7→ (E ⊗ I) (R) ,

and thus not only E but also its extension E ⊗ I must be positive, in such a

way that the result of the local transformation is still a quantum state. This

must hold for all possible extensions of to larger composite systems. This

property is called complete positivity and it is not equivalent to positivity,

as counterexamples exist. For example, the transposition of the state with

respect to a given basis ρ 7→ ρT is a linear, positive, trace preserving map,

but generally gives a non positive operator when acting on a system of an

entangled pair, whence it is not completely positive and it can’t be achieved

physically. In the following, we will refer to completely positive linear maps

simply as CP maps, quantum operations corresponding to the class of trace

non-increasing CP maps.

Up to now, we have shown that any transformation of the state of a quan-

tum system is described by a quantum operation (QO), namely a linear, com-

pletely positive, trace non increasing map E : T(H) → T(H), with the state

transformation given by ρ 7→ E(ρ)/ tr E(ρ), and occurring with probability
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p(ρ) = tr E(ρ). Trace preserving QO’s describe deterministic transformations

— also called quantum processes, or channels — namely with p(ρ) = 1, whereas

trace decreasing QO’s describe the transformation of the state of a system

undergoing a quantum measurement in concomitance with a given outcome

occurring with a probability p(ρ) = tr E(ρ) ≤ 1.

1.2 Representing CP maps

In the following we will suppose dim(H) < ∞, whence we will generically

denote trace-class, Hilbert-Schmidt and bounded operators on H simply as

B(H). CP maps are nothing but a special subset of the set of linear maps

from B(H) to B(H), and therefore they can be represented by means of their

“matrix elements”

E lmij = 〈i| E
(
|l〉〈m|

)
|j〉 , (1.7)

so that, once defined ρlm = 〈l|ρ|m〉, E(ρ) can be evaluated as

E(ρ) =
∑

ijlm

E lmij ρlm|i〉〈j| . (1.8)

However, to have more insight into the structure of linear maps, it is preferable

to reorganize the set of matrix elements E lmij into an operator on H⊗H, aiming

that the properties of the map (being CP, trace decreasing, invertible, etc.)

have a simple translation into properties of the associated operator.

The following notation [21] will be useful to simplify calculations by avoid-

ing the use of a lot of indices in our equations, thus making them more insight-

ful. Fixed an orthonormal basis {|m〉} for the Hilbert space H, we identify any

vector |Ψ〉〉 ∈ H⊗ H,

|Ψ〉〉 =
∑

m,n

Ψmn|m〉 ⊗ |n〉 , (1.9)

with the operator Ψ ∈ B(H) whose matrix elements on the chosen basis are

Ψmn. For example, the vector |I〉〉 represents the maximally entangled unnor-

malized vector
∑

m |m〉 ⊗ |m〉. It is easy to check that

A⊗B|C〉〉 = |ACBT 〉〉 , 〈〈A|B〉〉 = tr[A†B] ,

tr2[|A〉〉〈〈B|] = AB† , tr1[|A〉〉〈〈B|] = ATB∗ , (1.10)

where OT and O∗ denote respectively the transposition and the complex con-

jugation of the operator O with respect to the chosen basis.
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Focusing our attention on the linearity of E , with the notation introduced

in Eq. (1.9), we notice that the vector |E(ρ)〉〉 is a linear transformation of |ρ〉〉,
and thus the relation between the two vectors can be expressed by means of

an operator ŠE ∈ B(H⊗ H) such that

| E(ρ) 〉〉 = ŠE |ρ〉〉 . (1.11)

The map is faithully represented by ŠE , since the previous relation defines its

action on any state. By substituting in the above equation the definition of

E lmij given in Eq. (1.7) one finds

ŠE =
∑

ijlm

E lmij |i〉〈l| ⊗ |j〉〈m| . (1.12)

The power of this representation of linear maps resides in the fact that it

translates the composition of two maps into the multiplication of their related

operators, as one can easily verify from the following identity

| E1 ◦ E2(ρ) 〉〉 = ŠE1 | E2(ρ) 〉〉 = ŠE1 ŠE2 |ρ〉〉 . (1.13)

Moreover, such a representation provides a useful tool to evaluate some prop-

erties of the map. For example, the image of the map E(B(H)) corresponds

to the set the operators A such that |A〉〉 ∈ Rng ŠE , where “Rng” denotes the

range (i.e. the image) of an operator. Analogously, the kernel of E , i.e. the

set of operators A such that E(A) = 0, is exactly the set of operators A such

that |A〉〉 ∈ Ker ŠE . Finally, by definition, E is invertible iff ŠE is so, and the

two inverses are related through the identity

| E−1(ρ) 〉〉 = Š−1
E |ρ〉〉 , (1.14)

so that

| E−1 ◦ E(ρ) 〉〉 = Š−1
E ŠE |ρ〉〉 = |ρ〉〉 .

Being too much geared around linearity, unfortunately the above repre-

sentation of maps tells us nothing about complete positivity. For such reason

it is convenient to introduce another operator representation of the map E in

terms of the operator SE ∈ B(H⊗ H) resulting from the action of the extended

map E ⊗ I on the operator |I〉〉〈〈I| ∈ B(H⊗H) [12, 11], namely

SE = (E ⊗ I) [ |I〉〉〈〈I| ] =
∑

ijlm

E lmij |i〉〈j| ⊗ |l〉〈m| . (1.15)
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The inverse relation of identity (1.15) can be easily checked to be

E(ρ) = tr2[(I ⊗ ρT )SE ] . (1.16)

A comparison between Eq. (1.12) and Eq. (1.15) shows that ŠE and SE are

connected by a transposition of indices: if the matrix elements of the first are

E lmij , the ones of the second are E jmil , or in other terms

ŠE = (ST2
E E)T2 = (E ST1

E )T1 , (1.17)

where E =
∑

ij |i〉〈j| ⊗ |j〉〈i| is the so called swap operator, and OTl denotes

the partial transposition of the operator O on the l-th Hilbert space.

One immediately notices that if E is CP, then SE is a positive operator,

since it results from the application of the extension E ⊗ I of a CP map to

the positive operator |I〉〉〈〈I|. Actually, the converse holds too, namely any

map defined through Eq. (1.16) with SE ≥ 0 is CP. In fact, given that SE is

positive, it can be decomposed as

SE =
∑

i

|Ai〉〉〈〈Ai| , (1.18)

so that by substituting the above equation into Eq. (1.16), and applying the

rules of Eq. (1.10), one finds that the resulting map can be expressed in the

so called Kraus form [22]

E(ρ) =
∑

i

AiρA
†
i . (1.19)

Any map of this form is completely positive, in fact the result of the action of

its extension E ⊗ I on a positive operator R ∈ B(H⊗ K) is

RE = E ⊗ I[R ] =
∑

i

(Ai ⊗ I) R (A†i ⊗ I) , (1.20)

which is still positive since

〈〈Ψ|RE |Ψ〉〉 =
∑

i

〈〈A†iΨ|R|A
†
iΨ〉〉 ≥ 0 , ∀ |Ψ〉〉 . (1.21)

Of course, any CP map E admits a Kraus form that can be found by

decomposing SE as we did in Eq. (1.18). When this decomposition is a diag-

onalization, i.e. |Ai〉〉 are the unnormalized orthogonal eigenvectors, then the

related Kraus form is said canonical, and it has the minimum required num-

ber of operators, corresponding to the eigenvectors of SE , i.e. the cardinality
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of the Kraus decomposition is rank SE . Any couple of Kraus decompositions

{Ai} and {Bi} are connected as Bi =
∑

j vijAj , where vij is an isometry (i.e.∑
j vijvjk = δik). In terms of a Kraus decomposition {Ai} of the map E one

can also express ŠE as

ŠE =
∑

i

Ai ⊗A∗i , (1.22)

as it easily follows from the definition of ŠE in Eq. (1.11) and the first rule in

Eq. (1.10).

Several properties other than complete positivity can be expressed in terms

of SE or equivalently in terms of the elements of a Kraus decomposition {Ai},
for example, the trace decreasing condition becomes

tr1 SE ≤ I or equivalently
∑

i

A†iAi ≤ I , (1.23)

where the equality sign would imply that the map is trace preserving.

If rankSE = 1 then the map is pure (i.e. it preserves purity of input states),

and its Kraus decomposition has only one element. Unitary evolutions are the

only pure trace preserving transformations, and they play a special role since

any other deterministic map can be realized as a unitary transformation acting

on the system plus an ancilla whose state is then disregarded. In fact, given

a Kraus decomposition {Ai}i=1...r of the map E one can define an operator U

on the Hilbert space H ⊗ Cr whose action on the vectors of the basis of the

form |m〉|0〉 is defined as

U |m〉|0〉 =

r∑

i=1

(Ai|m〉) |i〉 = |m, 0〉〉′ , (1.24)

Since the map is trace preserving, then
∑

iA
†
iAi = I, and this assures that the

resulting vectors |m, 0〉〉′ in Eq. (1.24) are orthonormal: the operator U can be

then be easily estended to a unitary operator using a larger orthonormal set

by means of the customary Gram-Schmidt procedure. By making the ancilla

prepared in the state |0〉 interact with the system in the state ρ by means of

the unitary transformation U , the final ”local” state of the system only reads

E(ρ) = tr2[ U (ρ⊗ |0〉〈0|)U † ] . (1.25)

Notice that instead of disregarding the ancilla as we did in the previous equa-

tion, one could instead perform a measurement on it, for example by measuring
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the orthonormal basis |i〉, thus obtaining the state of the system in correspon-

dence of the outcome i in terms of the pure trace decreasing quantum operation

ρi =
Ai ρA

†
i

tr [Ai ρA
†
i ]
. (1.26)

If we do not read the result of such a measurement, we still end up with a

system in the state E(ρ) =
∑

i p(i|ρ)ρi : the emergence of a non-pure quantum

operation such as E can be interpreted as a “measurement without reading the

outcome”, or else as an information leakage in an environment. This is another

way to understand how unitary operators describe the evolution of a closed

system, whereas non pure trace preserving CP maps represent the evolution

of open systems in interaction with a reservoir.

The procedure used to build U actually accomplishes a purification of E
which is analogous to the purification of a mixed state, and it is a sort of

purification of the operator SE . It also returns unitaries to their priviliged role

at the axiomatic level.

As we argued from Eq. (1.26), it is possible to realize a trace decreasing

map by means of a suitable joint unitary evolution of the system coupled with

an ancilla, followed by a final projective measurement on the ancilla. Consider

for example a measurement leading to N possible results E = {1 . . . N}, and

such that in relation to the outcome k the state is transformed according to

a map E (e) whose Kraus decomposition is {A(e)
i }i=1...re . If we do not read the

outcomes of the measurement and we do not separate the reduced systems

accordingly, the final ensemble will be described by the state

E(ρ) =
∑

e

p(e|ρ)
E (e)(ρ)

tr E (e)(ρ)
=
∑

e

E (e)(ρ) . (1.27)

The map E is a non-pure deterministic map admitting {A(e)
i } as its Kraus

decomposition, hence
∑N

e=1

∑re
i=1A

†(e)
i A

(e)
i = I. If we define U on H⊗Crmax⊗

CN such that on the elements of the basis of the form |m〉|0〉|0〉 it behaves as

U |m〉|0〉|0〉 =

N∑

e=1

re∑

i=1

(A
(e)
i |m〉) |i〉|e〉 , (1.28)

then U can be completed to a unitary operator on the whole space, since the

resulting vectors in the above equation are orthonormal. The original maps

can now be realized by evolving with the unitary U the system in the state
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ρ jointly with the two additional ancillas prepared in the state |0〉|0〉, and

then performing a projective measurement |e〉〈e| on the second ancilla while

disregarding the first one with a partial trace, i.e.

E (e)(ρ) = 3〈e| tr2

[
U (ρ⊗ |0〉〈0| ⊗ |0〉〈0|)U †

]
|e〉3 . (1.29)

Also in this case, the maps E (e) are non-pure because some infomation has

leaked into the first ancilla, which has been disregarded. If we would measure

also the basis of the first ancilla, instead of taking the partial trace, in corre-

spondence with the outcome (i, e) the state of the system would be described

by a pure quantum operation

ρ(i,e) =
A

(e)
i ρA

(e)†
i

tr [A
(e)
i ρA

(e)†
i ]

. (1.30)

1.3 Positive operator valued measures (POVM)

When what matters in a quantum measurement is only the probability distri-

bution of outcomes in relation to the state of the system, we don’t need the

detailed description of the measurement process given in terms of quantum

operations. Following reasoning lines similar to those followed in Sec. 1.1, in

particular referring to Eq. (1.3), it follows that the probability distribution of

the outcomes of any quantum measurement must be linear in the state ρ, and

that therefore it is described by the so called Born’s rule

p(e|ρ) = tr[ρPe] , (1.31)

where e is the outcome and the set {Pe} is called positive operator valued

measure (POVM ), namely it is a set of operators that must be positive and

with
∑

e Pe = I, in order to have p(e|ρ) a properly positive and normalized

probability distribution [23]. In the next chapter we will denote the POVM of

a measuring device as the vector P = (P1, . . . , PN ).

In the present context we are interested in deriving the connection between

QO’s and POVM’s using the operator representation of maps. Considering a

measuring process which for each outcome e is described by the CP maps E (e),

by means of Eq. (1.16), the probability distribution of the outcomes reads

p(e|ρ) = tr[ E (e)(ρ) ] = tr
[
ρ tr1[SE(e) ]T

]
= tr[ρPe] , (1.32)
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and thus the measurement maps E (e) induce the POVM elements Pe which

can also be expressed as

Pe = tr1[SE(e) ]T =
∑

i

A
(e)†
i A

(e)
i , (1.33)

{A(e)
i } being a Kraus decomposition of the e-th map. On the contrary, given

a POVM {Pe} one can always find a set of QO’s E (e) describing a measuring

process with the given POVM, for example using Ae =
√
Pe and E (e)(ρ) =

A(e)ρA(e)† . By “purifying” these maps with the unitary transformation U

defined in Eq. (1.28) of the previous section, we see that it is possible to

realize any POVM in terms of an indirect measurement scheme in which a

projective measurement is performed on an ancilla after a unitary interaction

with the system [24, 25, 23, 26, 22, 27].



Chapter 2

Convexity and covariance for

quantum devices

This chapter is devoted to the mathematical characterization of devices satis-

fying particular yet significative mathematical properties.

In first part of this chapter, the convex structure of the sets of QO’s and

POVM’s will be discussed in relation with its physical significance, along with

our results of Ref. [17] concerning the characterization of the extremal points

of such sets, which turn out to be affected by purely quantum noise, and the

construction of a convex decomposition algorithm for both the cases.

The second part of the chapter reports our work of Ref. [18]: we will

introduce covariant QO’s and their characterization, which we will employ for

parametrizing covariant cloning transformations, an essential step for cloning

optimization.

2.1 Convex structure of POVM’s and quantum de-

vices

Let’s consider two quantum devices A and B with the same set of possible

outcomes E = {1 . . . N}, and with state reduction maps E (e)
A and E (e)

B , respec-

tively. Now suppose to build a black box in which either the device A or the

device B are employed with probability pA and pB = 1 − pA, respectively.

The black box can be interpreted as a new device with state reduction maps

pAE (e)
A + pBE (e)

B and POVM pAPA + pBPB . Exactly as for states, also in the

case of quantum devices, the emergence of linear convex combinations reflects
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a lack of knowledge about the system, which can be thought as originated

by an external source of additional randomness (in our example it is due to

the random choice between the devices A and B). This randomness causes

the mixing of the state reduction maps and of the POVM’s, and it manifests

itself as an added noise either in the statistics of the outcomes of the device,

or at least in the statistics of a measurement performed later on the reduced

states, where the noise is measured as an increased entropy in the statistics

of the outcome, which corresponds to a flatter statistics and thus to a less

sensitive measurement. In fact, within the above example, the statistics of the

outcomes of the black box reads

p(e|ρ) = pA tr[ρPAe ] + pB tr[ρPBe ] , (2.1)

so that if PA 6= PB , for the convexity property of the entropy, the statistics

resulting from the mixing is noisier than the ones of the devices A and B

alone. In the case PA = PB , the statistics of the box is equal to the one of

the devices, however a further measurement with POVM P′ carried on the

reduced state ρe = pAρ
A
e + pBρ

B
e corresponding to the outcome e of the box

leads to the statistics

p(i|ρe) = pA tr[P ′iρ
A
e ] + pB tr[P ′iρ

B
e ] , (2.2)

which is noisier then the ones one would obtain by using one device at once.

Actually, the sets of quantum devices and POVM’s are convex — i.e. any

linear convex combinations of their elements still belongs to the same set —

and the device resulting from a combination can be physically implemented

with the black box scheme we have described above, in which each compo-

nent of the combination is randomly chosen with a probability equal to its

weight in the combination. Therefore, each element that can be written as

combination of others can be thought as affected by an additional source of

classical randomness that manifests itself in noisier outcome statistics. On the

other hand, indecomposable elements, i.e. the ones that cannot be realized by

mixing others, will exhibit an intrinsic noise of purely quantum nature, and

will generate all the other elements of the set through mixing. They are the

extremal points of the considered set and, in analogy with states, we will also

call them “pure”.

Thus, pure devices and POVM’s are of fundamental interest either because

they generate all the other devices by means of mixing, or because they are free
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from added noise. Moreover, they deserve attention also from the practical

point of view, when dealing with problems of measurement optimization, that

very often can be restricted to extremal devices or POVM’s.

Reporting our results of Ref. [17], in what follows we will characterize

“pure” devices and POVM’s.

2.1.1 Extremal POVM’s characterization

Let’s denote by PN the convex set of POVM’s on a finite dimensional Hilbert

space H, with a number N of outcomes E = {1, . . . N}. We will represent a

POVM in the set as the vector P = (P1, . . . , PN ) of theN positive operators Pe

satisfying the completeness constraint
∑

e Pe = I, that assures the probability

distribution of the outcomes is normalized. The fact that the set PN is

convex means that it is closed under convex linear combinations, namely for

any P′,P′′ ∈PN also P = pP′+(1−p)P′′ ∈PN with 0 ≤ p ≤ 1 — i.e. p is a

probability. Then, P can be also equivalently achieved by randomly choosing

between two different apparatuses corresponding to P′ and P′′, respectively,

with probability p and 1 − p, since, the overall statistical distribution p(e|ρ)

will be the convex combination of the statistics coming from P′ and P′′. Notice

that PN contains also the set of POVM’s whose possible outcomes are a subset

E′ ⊂ E: for such POVM’s the elements corresponding to outcomes in E \ E′

will be zero, so that they have zero probability of occurrence for all states.

The extremal points of PN represent indecomposable measurements, i.e.

which cannot be performed by mixing other measurements as above. Besides

representing the apparatuses with purely intrinsically quantum noise, such ex-

tremal POVM’s are also of practical relevance, since in any linear optimization

problem of quantum estimation theory [23] the optimal apparatuses will have

extremal POVM’s.

Let’s start with a simple example. Consider the following two-outcome

POVM for a qubit

P =

(
1

2
|0〉〈0|, 1

2
|0〉〈0| + |1〉〈1|

)
. (2.3)

By defining D = 1
2 (|0〉〈0|,−|0〉〈0|), the two vectors P± = P ±D correspond

to the following different POVM’s

P+ = (|0〉〈0|, |1〉〈1|) , P− = (0, I) , (2.4)
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which, intuitively are extremal, whereas P is not, since P = 1
2P+ + 1

2P−.

How to assess whether a POVM is extremal or not? Looking at the above

example, one notices that P is not extremal if there exists a vector of operators

D 6= 0 such that P± = P ±D are POVM’s, because in this case P could be

written as a convex combination of P+ and P−. The normalization for P±
requires vanishing sum of the elements of D,

∑
eDe = 0, whereas in order to

guarantee positivity of all elements of both P+ and P− it necessary to have

De Hermitian and |De| ≤ Pe for all e ∈ E.

The existence of a non-vanishing D = (De), with
∑

eDe = 0, De Hermi-

tian, and |De| ≤ Pe, is therefore a sufficient condition for non extremality of

the POVM P = (Pe). Actually, such condition is also necessary. In fact, for

a non extremal P one has P =
∑

i piPi, with 0 < pi < 1 strictly, and unequal

POVM’s Pi. Then

P = P1 +

(∑

i>1

piPi − (1− p1)P1

)
= P1 + D, (2.5)

with D = (De) a non vanishing vector of Hermitian operators De with zero

sum, due to normalization of both P and P1. Also, De = Pe − P1e, and thus

any vector which is not in the kernel of De neither is in the kernel of Pe, so

that at the end Supp(De) ⊆ Supp(Pe), where Supp(De) = Ker⊥(De). Then,

by rescaling D, we can fulfill also the bound |De| ≤ Pe.
Therefore, we can state the following:

Theorem 1 A POVM P = (Pe) is not extremal iff there exists D = (De) 6= 0

with Hermitian De and
∑

eDe = 0, such that |De| ≤ Pe.

This result can be expressed in other useful equivalent forms. In fact the

requirements on the De’s can be independently relaxed: the De’s can be sim-

ply linearly dependent instead of having zero sum, i.e.
∑

e λeDe = 0 with

some non-vanishing λe’s, and they can satisfy Supp(De),Rng(De) ⊆ Supp(Pe)

instead of being Hermitian and satisfying |De| ≤ Pe. In fact, one can rede-

fine each De with the substitution De ← λeDe + λ∗eD
†
e and a possible overall

rescaling, thus obtaining a set of Hermitian De’s such that
∑

eDe = 0 and

|De| ≤ Pe, namely the conditions of the theorem.

The above considerations show that what really matters in assessing the

extremality of a POVM P = (Pe) is just the condition on supports Supp(Pe)

— not the actual values of Pe — i.e. we have the equivalent statement
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Theorem 2 The extremality of the POVM P is equivalent to the nonexistence

of non trivial solutions D for the equation

∑

e

De = 0, Supp(De),Rng(De) ⊆ Supp(Pe). (2.6)

This condition can be made more explicit by choosing a basis {|v(e)
n 〉} (not

necessarily orthogonal or normalized) for each Supp(Pe): Eq. (2.6) becomes

the linear homogeneous system of equations in the variables D
(e)
nm

∑

e∈E

rank(Pe)∑

nm=1

D(e)
nm|v(e)

n 〉〈v(e)
m | = 0, (2.7)

where D
(e)
nm are actually the components of the operators De on the basis

|v(e)
n 〉〈v(e)

m |. This means the following:

Theorem 3 A POVM P is extremal iff the operators |v(e)
n 〉〈v(e)

m | are linearly

independent.

By choosing |v(e)
n 〉 as the eigenvectors of Pe, Theorem 3 is the characterization

of extremal POVM’s derived by Parthasaraty [28], using the correspondence

between POVM’s and CP-maps from the Abelian C∗-algebra built on CN to

operators on H, and then deriving a version of Choi’s theorem for this kind of

CP-maps.

It is immediate to draw from the main result some simple corollaries, such

as:

Corollary 1 If
∑

e dim[Supp(Pe)]
2 > d2, then the POVM P = (Pe) is not

extremal.

This means that a POVM with too many elements (i. e. N > d2) will

be decomposable into several POVM’s, each with less than d2 non-vanishing

elements.

Corollary 2 If some elements have non-disjoint supports, then P is not ex-

tremal.

Corollary 3 Orthogonal POVM’s are extremal.

As an example of application of Theorem 1, one can check that the set of

four projectors (multiplied by 1
2) at the vertexes of a tetrahedron on the Bloch
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sphere provides a four-outcome extremal POVM for a qubit. Notice that,

even though this POVM is extremal, it can’t generate extremal statistics, i.e.

there will be no state corresponding to a sharp probability distribution — i.e.

p(e|ρ) = 1 for a single e — thus providing an example of un-sharp POVM

with purely quantum noise for all states.

2.1.2 Convex decomposition of a POVM

Here we address the problem of how to decompose a POVM P ∈ PN into

extremal POVM’s. The answer will be an algorithm that allows us to find those

“primitive” measurements that employed randomly with the right probabilities

would give the same outcome statistics as P. Starting from P = (Pe), let’s

denote by D(P) the set of solutions D = (De) of

∑

e

De = 0. (2.8)

with De Hermitian and Supp(De) ⊆ Supp(Pe). Since the above equation is

linear and homogeneous, D(P) is a real vector space with strictly positive

dimension r = dim[D(P)] > 0 iff P is not extremal (see Th. 1). The elements

D of this vector space satisfying [De]
− ≤ Pe form a convex set C(P) containing

the origin, and each of them is in one-to-one correspondence with a POVM

P′ that is P-compatible, in the sense that there is a convex decomposition of

P containing P′. The correspondence is D ↔ P + D, in fact, thanks to the

hypotheses on the supports Supp[De], for a small enough λ > 0 the inequality

λ[De]
+ ≤ Pe holds for all e ∈ E, so that P − λD will be a POVM too, and

P + D will be compatible with P since

P =
λ

1 + λ
(P + D) +

1

1 + λ
(P− λD). (2.9)

Of course, the D’s corresponding to extremal P–compatible POVM’s will be-

long to the boundary ∂C(P) of C(P), whence we will search the elements of

extremal convex decompositions of P right on that boundary only.

Now, let’s fix any “norm” on D(P), and consider a normalized D̂. We

can move away from the origin of the space D(P) towards the two opposite

directions D̂ and −D̂, until we reach ∂C(P) respectively in the two vectors

D± = λ±D̂, corresponding to the P–compatible POVM’s P± = P+D±. The

constant λ+ corresponds to the greatest value of λ for which P + λD̂ is still a

POVM, namely for which Pe+λD̂e ≥ 0 for all e ∈ E. In other words, λ+ is the
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smallest positive value of λ for which at least one of the operators Pe + λD̂e

develops a further null eigenvalue with respect to the ones that Pe previously

had. Analogous considerations hold for λ−, which, on the contrary, is the

smallest value of λ such that P +λD̂ is still a POVM. It is easy to check that

Pe+λD̂e has an additional null eigenvalue iff λ is a non-vanishing eigenvalue of

−PeD̂‡e, where D̂‡e is the Moore-Penrose pseudo-inverse (see note 1 in Sec. 3.3)

of D̂e, since DeD
‡
e is the orthogonal projector on Supp(De), whence λ+ and

λ− are respectively the smallest positive and the greatest negative numbers

among all the non-vanishing eigenvalues of −PeD̂‡e for varying e ∈ E.

The original POVM P can now be split into the convex combination P =

p+P+ + p−P− of the two “children” POVM’s P±

P
p+

p− P−

P+

with weights p± = ∓λ∓
λ+−λ− . For the particular choice of λ±, one has that

D(P±) ⊆ D(P) \ Span(D̂), whence the dimension of the space D(P±) of so-

lutions of Eq. (2.8) for the two children is decreased at least by one with

respect to dim D(P). By applying the same splitting scheme to both children

recursively, we obtain a weighted binary tree of POVM’s rooted in P, with the

property that the POVM P′ at each node can be written as convex combina-

tion of its descendants, and that the subtree starting from the node P′ has a

depth bounded by dim D(P′) which is necessarily decreasing at each splitting.

Of course the leaves of the tree are extremal POVM’s Pi, and one can combine

them to obtain the original POVM P weighting each leaf Pi with the product

of all weights found along the path from the root P to the leaf Pi.

Unfortunately, this raw algorithm can produce up to a maximum of 2r

extremal POVM’s Pi in the decompositions
∑

i piPi = P, each leaf being

addressed by the vector Di = P−Pi ∈ ∂C(P), with
∑

i piDi = 0. However, by

the Caratheodory’s theorem [29], we know that a maximum of r+1 elements is

enough to decompose P. In fact if the number of Di’s is larger than r+1, then

they must be linearly dependent, and thus there exist λi’s not all vanishing and

not all positive such that
∑

i λiDi = 0. Since
∑

i piDi + µ(
∑

i λiDi) = 0, by

choosing the greatest µ such that pi+µλi ≥ 0 for all the i’s, one finds that 0 can

be written as a convex combination of a subset of the Di’s. This procedure

can be applied recursively to this subset (the pi’s must be also upgraded)

until one remains with the Di’s whose only combination giving 0 has positive

coefficients: at this point their number is for sure not larger than r + 1. We
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will call this procedure “Caratheodory reduction”. Therefore, from an intial

decomposition of P into many elements, we end up with a decomposition with

less than r + 1 operators Di and probabilities pi such that
∑r+1

i=1 piDi = 0,

whence

P =

r+1∑

i=1

pi(P + Di) =

r+1∑

i=1

piPi. (2.10)

Notice that the evaluation of λ± at each splitting step involves an eigen-

value evaluation, whence the algorithm generally doesn’t provide analytical

decompositions. Numerically, when splitting along D̂ the numerical roundoff

may give D(P±) ⊆ D(P) — instead of D(P±) ⊆ D(P) \ Span(D̂) — and in

the continuation along the binary tree we will obviously end up on leaves that

are only approximately extremal, with numerical errors due to those on λ±
accumulated at each step, which poses a precision problem for large dimen-

sion of H. We emphasize that what makes the algorithm feasible, with respect

to the case of a generic convex decomposition, is the availability of a border

condition in terms of a solvable (eigenvalue) problem.

It is clear that the above decomposition algorithm can be modified by

adding a “Caratheodory reduction” after each splitting step, thus keeping the

number of leaves in the tree smaller than r+1 at each step, with the net result

of maintaining the algorithm polynomial in r.

It would be also interesting to investigate the possibility of defining a set

of rules for the choice of the splitting direction with the purpose of optimizing

the decomposition algorithm, perhaps leading to fewer elements without any

post-reduction.

2.1.3 Translating the result to QO’s

We want now to briefly show how our result can be also used in the classifi-

cation and convex decomposition of quantum operations describing the state

reduction one has in correspondence of a fixed outcome of a measurement,

whose related POVM element is equal to P . Mathematically they are all the

QO’s whose corresponding operator SE satisfies the constraint (tr1[SE ])T = P ,

and we will call them P -maps, they form a cone, which we will call P -cone,

and we are going to characterize the extremal points of this cone. The non-

extremal points correspond to the state reductions that can be performed

by mixing other maps, and that thus produce more mixed reduced states, a

mixing that would affect the statistics of any subsequent measurement.
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Here, in strict analogy with POVM’s, the operator SE ≥ 0 corresponds to

a non extremal P -map when there exists a non vanishing operator D on H⊗H

such that both S± = SE±D correspond to P -maps, since then SE = 1
2(S++S−)

would be non extremal. Of course D must satisfy tr1[D] = 0 in order to

have both S± in the same P -cone, and it must be Hermitian with |D| ≤ SE
in order to have S± positive. It is clear that with lines analogous to those

used for Theorem 1, one proves the condition also to be necessary. Also in

this case both Hermiticity of D and the bound |D| ≤ SE can be relaxed

to Supp(D),Rng(D) ⊆ Supp(SE). By expanding D =
∑

ij Dij |Ai〉〉〈〈Aj | on

vectors which span Supp(SE) (for example the elements of the canonical Kraus

decomposition of the map) the condition tr1[D] = 0 rewrites as

∑

ij

DijA
T
i A
∗
j = 0, (2.11)

and the theorem then asserts that the P -map E is extremal iff A†iAj are linearly

independent. By choosing the |Ai〉〉’s as the eigenvectors of SE one has exactly

the characterization of extremal QO’s given by Choi [12].

The parallelism between QO’s and POVM’s is evident: the operators SE
and D take the place of P and D respectively, Eq. (2.11) substitutes Eq. (2.8),

the space D(SE) of the Herimitian operatorsD satisfying Eq. (2.11) substitutes

D(P). Then, it is clear that also for QO’s it is possible to find a decomposition

algorithm by cascaded splittings: a direction D̂ is chosen in D(SE), the two

constant λ± are determined as the greatest and smallest values of λ such that

SE + λD is still positive, SE being the convex combination the two children

QO’s S± = SE +λ±D. We end up with a weighted binary tree of QO’s rooted

in SE , with extremal leaves to which we can apply the Caratheodory theorem,

exactly as for POVM’s. Also in this case, the application of a “Caratheodory

reduction” after each splitting step, would keep the decomposition algorithm

polynomial.

2.1.4 Translating the result to quantum devices

The very same technique can be applied also for characterizing the extremal

points of the set of quantum devices having outcomes is E = {1 . . . N}. A

quantum device can be represented as the vector S = (Se) of positive operators

Se = SE(e) ∈ B(H⊗ H) describing the state reduction for the outcome e,

and fulfilling the completeness constraint
∑

e tr1[Se]
T = I, which guarantees
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the normalization of the probability distribution of the outcomes. In strict

analogy to the previous cases, the quantum device is indecomposable iff there

is not a non-vanishing vector of operators D = (De) such that Se ± De ≥ 0,

Supp(De),Rng(De) ⊆ Supp(Se), and satisfying the homogeneous version of

the completeness constraint, i.e.
∑

e tr1[De]
T = 0. In fact, in that case S±D

would describe two quantum devices that used at random with a probability

1/2 would lead to the quantum device S, which then would be decomposable.

If the operators A
(e)
i give the canonical Krauss decomposition of the map

E (e), then the condition for the extremality of the quantum device is that all

the operators A
(e)†
i A

(e)
j for varying i, j, e must be linearly independent. Also

in this case, a decomposition algorithm can be devised along the lines of the

ones given for POVM’s and QO’s.

2.2 Covariant QO’s

Many important problems in quantum information theory rely on the imple-

mentation of physical transformations being covariant with respect to some

group G of transformations of the input state, quantum cloning being a re-

markable example. In this section we will report the our results of Ref. [18]

in which the covariant quantum operations where classified in terms of their

corresponding operator. These results are also used first to characterize ex-

tremal covariant QO’s by means of the techniques of the previous section,

and the, in the next session, for the construction of optimal covariant cloning

transformations.

2.2.1 Elements of group theory

To talk about covariance, we must first give some important definitions (see,

for example, Ref. [30]). A unitary (projective) representation T of the group

G on H is an homomorphism associating any element g ∈ G to a unitary

transformation Tg ∈ B(H) in such a way that the composition law of the

group is preserved under the correspondence, i.e.

Tg1Tg2 = ω(g1, g2)Tg1g2 , (2.12)
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where |ω(g1, g2)| = 1 are the so called co-cycles, and they satisfy the following

restrictions

ω(g1g2, g3)ω(g1, g2) = ω(g1, g2g3)ω(g2, g3) ,

ω(g, g−1) = ω(g, e) = 1 . (2.13)

A unitary representation is irreducible (UIR) if there are not proper subspaces

leaved invariant by the action of all its elements. Two G-representations T 1

on H1 and T 2 on H2 are equivalent if there exists an isomorphism (a one-

to-one and norm-preserving linear correspondence) I : H1 → H2, such that

I T 1
g = T 2

g I for any g ∈ G.

The most important result for UIR is the so called Schur’s lemma: let T 1

on H1 and T 2 on H2 be irreducible unitary G-representation, and let B ∈
B(H1,H2) satisfy

B T 1
g = T 2

g B ∀g ∈G , (2.14)

if T 1 and T 2 are equivalent then B is proportional to the isomorphism I

connecting them, otherwise B is null.

Group invariant operators

Suppose the G-representation W on H is reducible, i. e. the space can be

decomposed into a direct sum of minimal invariant subspaces Mi

H =
⊕

i=1

Mi , (2.15)

each Mi supporting a unitary irreducible representation (UIR) T i of the group.

Given this decomposition one can look at any operator O on H as a set of op-

erators Oi
j in B(Mj,Mi), so that O =

∑
ij O

i
j , in a sort of block decomposition.

Being the Mi the minimal irreducible invariant subspaces, the blocks of any

group representative Wg will satisfy the equation

(Wg)
i
j = δij T

j
g ,

where T j is the UIR supported by Mj. Whenever two UIR T i and T j are

equivalent, i∼ j, there exists an isomorphism I ij ∈ B(Mj,Mi) such that T j =

(Iij)
−1T iIij .

Now suppose we have an operator R on H which is invariant with respect

to the reducible unitary representation W of the group G, namely

RWg = Wg R ∀g ∈ G. (2.16)
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The above equation can be expressed equivalently block-by-block as

Rij T
j
g = T ig R

i
j ∀g ∈ G ,

so that, by Schur’s lemmas, one deduces that the blocks of R must be of the

form

Rij = cij I
i
j , (2.17)

where if i�j then cij = 0, and, if i∼j, cij can be different from zero.

Since equivalent unitary representations are related by an isomorphism, in

any invariant subspace Mi one can choose the basis {|i, l〉, l = 1 . . . dimMi} so

that for i∼j
〈i, l|T i|i,m〉 = 〈j, l|T j |j,m〉 , (2.18)

and thus

Iij =
∑

l

|i, l〉〈j, l| , (2.19)

namely I ij is an identity block. Therefore, the G invariant operator R =∑
ij cijI

i
j , in the basis {|i, l〉} is represented by a block matrix, whose block

structure corresponds to the decomposition of H in (2.15), and whose blocks

are proportional to the identity in the case they connect equivalent subspaces,

and vanishing everywhere else.

By labeling with µ the inequivalent representations, the invariant operator

R can also be written as

R =
∑

µ

Cµ ⊗ Iµ , (2.20)

where for each term in the above sum the tensorial polarization is different,

and the vector |i〉 ⊗ |l〉 should be interpreted as |iµ, l〉, where iµ labels one

of the subspaces supporting µ. Hence, the first space factor has dimension

equal to the multiplicity of the representation µ whereas the second one has

the dimension of the subspaces supporting µ. The operator Cµ has matrix

elements equal to ciµjµ , and actually it represents the block of coefficients

connecting the equivalent subspaces.

2.2.2 Covariant QO’s characterization

Now we will use the tools presented in the previous subsection to deal with

covariant QO’s. We would like to find a suitable parametrization of all the

QO’s being covariant with respect to some chosen group.
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Let E be a QO on B(H), and let G be a group with unitary representations

U and V on H. The map E is G-covariant with respect to U and V if

E
(
Ug ρU

†
g

)
= Vg E(ρ)V †g , (2.21)

for any ρ ∈ B(H) and g ∈ G. Physically, this equation translates the require-

ment that any transformation Ug on the input must be propagated to the

output as the transformation Vg. For example, we could be interested in a QO

operating on qubits, with the property that a rotation around the z axis of

the block sphere on the input is propagated to the output as well, or maybe

as a rotation around the y axis.

By means of Eq. (1.16), the covariance condition becomes

E(ρ) = trH

[
I ⊗ ρT SE

]
=

≡ trH

[
I ⊗ ρT V †g ⊗ UTg SE Vg ⊗ U∗g

]
, (2.22)

so that we conclude that E is G-covariant if and only if

SE = V †g ⊗ UTg SE Vg ⊗ U∗g , ∀g ∈G , (2.23)

or equivalently [
SE , Vg ⊗ U∗g

]
= 0 , ∀g ∈ G . (2.24)

Thus, G-covariance of a QO E is equivalent to G-invariance of the corre-

sponding positive operator SE with respect to the reducible representation

Wg = Vg ⊗U∗g of the group G on the space H⊗H. By decomposing the space

H⊗ H into the minimal W -invariant subspaces Mi, and by choosing the right

basis in each subspace, as we did in the previous subsection, we find that the

operator SE must be equal to

SE =
∑

ij

cijI
i
j, (2.25)

where as before cij = 0 if i � j, and I ij is a block equal to the identity.

Since we are working with QO’s, the operator SE must be positive, and thus

it could be interesting to analyze how this requirement fits into the structure

of SE dictated by the covariance condition. One can immediately see that,

in order to have a positive SE , the matrix cij must be positive, since, taking

|ψ〉〉 =
∑

i

∑dimMi
l=1 ψil |i, l〉, one has

〈〈ψ|SE |ψ〉〉 =
∑

ij

dimMi∑

l=1

ψ∗li cij ψlj ,
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which gives a positive result for any choice of |ψ〉〉 only in the case cij is positive.

Recalling that cij = 0 if i � j, it can be convenient to reorder the indices

i by grouping the ones corresponding to equivalent representations. In fact,

in this way, the matrix cij assumes a block diagonal form, where different

blocks correspond to inequivalent representations, and each block includes all

representations equivalent to the same one, and it has a dimension equal to the

multiplicity of the representation. This reordering is somewhat analogous to

what one does to derive Eq. (2.20). Positivity of SE implies positivity of each

block of matrix cij , and from the point of view of Eq. (2.20) this is equivalent

to the positivity of the operators Cµ.

We can conclude by saying that Eq. (2.25), with cij satisfying the proper-

ties prescipted above, parametrizes any G covariant QO. This parametrization

can be effectively employed when one has to look for a covariant QO which is

optimal for some given figure of merit.

2.2.3 Extremal covariant QO’s

The set of P -maps (see Par. 2.1.3 for their definition) which are covariant

with respect to a given group G can easily checked to be convex, and also in

this case the very same techniques of Sec. 2.1 allow the characterization of

its extremal points. Analogously to what we did in Par. 2.1.3, we find that

the covariant P -map — represented by the positive operator SE satisfying

(tr1[SE ])T = P and the covariance equation (2.25) — is not extremal iff there

exists a non-vanishing operator D which fulfills the homogeneous version of

the linear constraint, i.e. (tr1[D])T = 0, is Hermitean with |D| ≤ SE , and

moreover satisfies the covariance requirement of Eq. (2.25). Also in this

case the conditions of D Hermitean and |D| ≤ SE can be replaced by the

simpler requirement Supp(D),Rng(D) ⊂ Supp(SE). Actually, this is almost

the condition for non-extremality of a generic P -map that we gave in Par.

2.1.3, but with the additional covariance requirement for D, which reflects the

fact that here we are dealing with the subset of covariant P -maps.

An equivalent formulation of non-extremality can be expressed in terms

of the customary matrix cij characterizing SE : the map is not extremal if

there exists an hermitean matrix dij such that its support is contained in the

support of cij , and
∑

ij dij tr1[Iij ] = 0. This condition is the starting point for

adapting the convex decomposition algorithm to the present problem.

As in the previous section, a more explicit condition for non-extremality
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can be given by choosing a basis {v(n)
i } for Supp(cij): the covariant P -map is

not extremal iff the operators

Anm =
∑

ij

v
(n)
i v

(m)∗
j tr1[Iij ] (2.26)

are linealy dependent.

2.3 Quantum cloning as a covariant CP map

The impossibility of perfectly cloning an unknown input state is a typical quan-

tum feature [31, 32], nonetheless, in the laws of quantum mechanics there’s

enough room either to systematically produce approximate copies [33] or to

make perfect copies of orthogonal states [34] or of non-orthogonal ones with

a non-unit probability [35]. These possibilities have been studied in several

works [36, 37, 38].

Recently, quantum cloning has entered the realm of experimental physics

[39, 40]. Moreover it has became interesting from a practical point of view,

since it can be used to speed-up some quantum computations [41] or to perform

some quantum measurements [42, 43]. All these tasks require a “spreading”

of the quantum information contained in a system into a larger system, and

quantum cloning is a way to achieve it.

Such a spreading is a physical transformation and still it corresponds to

a trace preserving CP map E , the only difference with customary quantum

channels being that in this case the output space K is larger than the input

space H. Still the correspondence between the CP map E and the positive

operator SE = E⊗I(|I〉〉〈〈I|) holds, together with all the other results, the only

difference being that in this case the corresponding operator is in B(K⊗ H),

and analogously the elements of a Krauss decomposition live in B(H,K). This

kind of CP map can be realized by letting the system interact with a big

ancillary composite system prepared in some way, and then disregarding only

part of it. The net result is an output state living on a bigger Hilbert space

given by the space of the original system and the portion of ancilla which has

not been disregarded. This output will be a linear fucntion of the initial state

of the system, more precisely, it will be the result of a CP map applied to the

input state.
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2.3.1 Optimal covariant cloning

A cloning map is just a quantum channel C from B(H) to B(H⊗N) with the out-

put copies invariant under the permutations of the N output spaces. This is

equivalent to covariance of the map C with respect to a particular representa-

tion the group of permutations SN . Actually, it corresponds to the invariance

of the positive operator SC under the representation Wπ = Vπ ⊗ I, where V

is the representation of SN permuting the N identical output spaces, and I is

the trivial representation of SN on the input space. In an equation, one has

C(ρ) = Vπ C(ρ)V †π , ∀π ∈ SN . (2.27)

Notice that permutation covariance does not imply that the output state has

support in the symmetric subspace of the output space H⊗N .

As explained in the previous section, Eq. (2.27) determines a peculiar block

structure for the operator SC ∈ B(H⊗N ⊗ H) associated to the map C. Such

a structure is strictly related to the decomposition of H⊗N ⊗ H into minimal

invariant subspaces for Vπ⊗ I. Any possible cloner is described by an SC with

that structure and satisfying the trace-preserving condition trH⊗N [SC ] = I

of Eq. (1.23). In this way, one classifies all possible cloning maps through

the decomposition of H⊗N into the minimal invariant subspaces of the SN -

representation V .

In addition to permutation invariance, which leads to a cloning map, here

we will consider also an additional covariance with respect to a group of trans-

formations G, with representation T on H. This corresponds to the following

identity

C(Tg ρ T †g ) = T⊗Ng C(ρ)T †⊗Ng . (2.28)

This is the definition of a G covariant cloning map, i.e. a map that propagates

the same transformation Tg performed on the input to all the clones. Its

corresponding SC will be covariant with respect to both the permutation group

and the additional group G.

The interest in having either the cloning covariance or the additional co-

variance is dictated by the many situations in which the quality of the map

is evaluated by a score function Γ(SC) which is invariant as well, namely it

fulfills

Γ(SC) = Γ(T⊗Ng ⊗ T ∗g SC T †⊗Ng ⊗ T Tg ) . (2.29)

A typical example of invariant score function arises when one is interested

in cloning a restricted covariant family of states ρg = Tg ρ T
†
g given with a
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covariant a priori probability dp(g). In fact, in this case the most appropriate

score function is the average fidelity between the input ρg and a single copy

ρ′g = trH⊗N−1 [C(ρg)]. This figure of merit is group invariant being it equal to

Γ(SC) =

∫

G
dp(g) tr[I⊗N−1 ⊗ ρg C(ρg)] =

=

∫

G
dp(g) tr[I⊗N−1 ⊗ (TgρT

†
g )⊗ (TgρT

†
g )T SC] =

= tr[I⊗N−1 ⊗ ρ⊗ ρT SC ] = Γ(SC ) , (2.30)

where ρ is the seed of the covariant family, and SC is the group-average of SC

SC =

∫

G
dp(g)T⊗Ng ⊗ T ∗g SC T †⊗Ng ⊗ T Tg . (2.31)

The operator SC corresponds to a covariant cloning map, as it commutes

with all the operators T⊗Ng ⊗ T ∗g as one can easily check. Actually it is the

covariant counterpart of SC , and it achieves exactly the same score, as Eq.

(2.30) indicates. The above equations also indicate that if the score function

is invariant for some group, then there always exists an optimal cloning map

which is covariant with respect to that group, and this map can be obtained

by the group average of any of the other optimal maps.

When one wants to derive the optimal cloner for a given score function

Γ(SC), one has to find the point of maximum for SC satisfying

1. invariance under permutation and G,

2. positivity,

3. trace preserving condition.

The constraint 1) implies that SC must be of the form of Eq. (2.25); constraint

2) can be taken into account by writing the blocks of the representation-wise

reordering of the matrix cij of Eq. (2.25) via a Cholevsky decomposition (see,

for example, Ref. [44]); constraint 3) is imposed directly on the resulting

parameterization of the operator SC .

In the following we will see how to exploit these parametrization to calcu-

late some examples of optimal cloning maps.
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Phase covariant qubit cloning

Here, we consider the problem of cloning a qubit in a U(1)-covariant fashion,

where the group representation is given by

Tφ = exp

[
i

2
φ (I − σz)

]
. (2.32)

It is the problem of optimal phase covariant cloning, which turned out to be an

interesting eavesdropping strategy. Since the cloning to two copies is already

given in Ref. [45], whereas the general case for N copies is very complicated,

here for simplicity we will consider the case of N = 3 copies. We want to

achieve the maximum fidelity between input and clones, when the input is an

equatorial qubit

|ψφ〉 = Tφ
1√
2

[|0〉+ |1〉] =
1√
2

[|0〉+ eiφ|1〉] . (2.33)

In other terms, we want to maximize the average “equatorial” fidelity

F =

∫ 2π

0

dφ

2π
tr
[
I⊗2 ⊗ |ψφ〉〈ψφ| C(|ψφ〉〈ψφ|)

]
, (2.34)

which, by covariance, can be written as

F = tr
[
I⊗2 ⊗ |ψ0〉〈ψ0| ⊗ (|ψ0〉〈ψ0|)T SC

]
. (2.35)

Since the equator is invariant even for spin flipping, here we will require the

additional covariance with respect to the group Z2, with representation {I, σx}.
In order to satisfy all the covariance requirements, SC must be invariant

for permutations, phase shift, and spin flip, i. e. for products of any of the

following unitary operators

Vπ ⊗ I , T⊗3
φ ⊗ T ∗φ , σ⊗3

x ⊗ σ∗x .

The Hilbert space H⊗3+1 can be decomposed into subspaces which are

irreducible with respect to the joint action of U(1) and S3. In Table 2.1, we

list the irreducible subspaces with their basis, reporting in the columns III and

IV the kind of representation supported for U(1) and SN respectively.

Referring to Table 2.1 and Fig. 2.1, one has to group together the subspaces

supporting equivalent representation for U(1) and for S3. This leads to the

peculiar block structure for the matrix cij that we mentioned in Sec. 2.2. In
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Space Unnormalized Basis U(1) S3 Flipped

M1 |0001〉 -1 T M5

M2 |0000〉 0 T M6

M3 |1001〉 + |0101〉 + |0011〉 0 T M7

M4
|1001〉 − |0101〉 ,

1
2 |1001〉 + 1

2 |0101〉 − |0011〉
0 D M8

M5 |1110〉 3 T M1

M6 |1111〉 2 T M2

M7 |0110〉 + |1010〉 + |1100〉 2 T M3

M8
|0110〉 − |1010〉 ,

1
2 |0110〉 + 1

2 |1010〉 − |1100〉
2 D M4

M9 |1000〉 + |0100〉 + |0010〉 1 T M10

M10 |0111〉 + |1011〉 + |1101〉 1 T M9

M11
|1000〉 − |0100〉 ,

1
2 |1000〉 + 1

2 |0100〉 − |0010〉
1 D M12

M12
|0111〉 − |1011〉 ,

1
2 |0111〉 + 1

2 |1011〉 − |1101〉
1 D M11

Table 2.1: H⊗3+1 decomposition into U(1)−S3 irreducibles. U(1) acts on each

subspace as a phase shift einφ, where n ∈ Z (column III) labels inequivalent

representation. S3 acts trivially (T) on one-dimensional subspaces, whereas

on bidimensional ones it acts as the defining representation (D), which is the

one related to the transformations of an equilateral triangle. Spin flipping

connects subspaces (column V).

this example, we find that a phase- and flip-covariant cloning map is described

though Eq. (2.25) by a matrix cij having the following positive diagonal blocks:

{1}, {2, 3}, {4}, {5}, {6, 7}, {8}, {9, 10}, {11, 12}.

To ensure spin flipping covariance, the elements of cij connected by a flip must

be equal, for example c23 = c67.

At the end, to fill the blocks of cij in the right way, we need the parameters

a, b, c, d, e, f, g ∈ R+, v ∈ R3, where d ≥ e, f ≥ g, and c ≥ ||v||. Table 2.2

and Fig. 2.1 explain how to employ them.

The parameters must satisfy another constraint given by the trace-preserving
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Blocks Content

{1}, {5} a

{4}, {8} b

{2, 3}, {6, 7} c I + v · σ
{9, 10} d I + e σx

{11, 12} f I + g σx

Table 2.2: Content of the blocks of the matrix cij , chosen in order to have SC
describing the most general CP map from B(H) to B(H⊗3) which is covariant

with respect to permutations, phase shift, and spin flip.

condition defined by trHN [SC ] = I. Within this parameterization it reads

a+ 2b+ 2c+ d+ 2f = 1 . (2.36)

Substituting this equation into the equatorial fidelity F defined in Eq. (2.35),

one has

F =
1

2
+

1

3
(e− g) +

√
3

3
vx . (2.37)

This quantity can be easily maximized by hand, taking into account the con-

straint given by Eq. (2.36) and the properties of the parameters. The max-

imum fidelity is F = 5
6 and is achieved for d = e = 1 and all the other

parameters equal to zero. The value F = 5
6 exceeds the bound given in Ref.

[45]. The optimal phase covariant cloning is thus described by the operator

SoptC = |Φ〉〉〈〈Φ| , (2.38)

where

|Φ〉〉 = 1√
3
[ |1000〉 + |0100〉 + |0010〉 +

+ |0111〉 + |1011〉 + |1101〉] .

The Kraus’s decomposition of the optimal cloner is C(ρ) = B ρB †, where

B = 1√
3
[ |100〉〈0| + |010〉〈0| + |001〉〈0|+

+ |011〉〈1| + |101〉〈1| + |110〉〈1|] . (2.39)

The fidelity for the 1→ 2 case is 1
2 +

√
1
8 , as demonstrated in Ref. [45], and it

is larger than the present 1→ 3 value, since the “information” is spread into

a smaller number of copies.
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Figure 2.1: With the same color the U(1) equivalent minimal invariant sub-

spaces (EMIS), with the same border the SN -EMIS, the arrows connect blocks

mapped one into each other by flipping and that must be equal one to each

other for having flipping covariance, grey blocks connect EMIS for both U(1)

and SN .

Notice that in the general case one could have many cloning maps attaining

the same global maximum of a covariant cost-function like F in Eq. (2.35).

These maps can be either covariant or, if not, they are mapped one into the

other by the covariance group, whence for a continuous group they make a

manifold of maps. However, the non-covariant clonings are averaged into a

covariant cloning via the integral (2.31). Therefore, for a linear cost-function,

every optimal covariant cloning is just a convex combination of maps giving

the best fidelity. In this particular example, the optimal covariant cloning is

an extremal point of the convex set of all the cloning maps, either covariant

or not, and thus we can assert that it is the unique optimal cloning.
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Qutrits double-phase covariant cloning

In this section, we show another example of the use of the techniques presented.

Here, our target will be the construction of the 1 → 2 qutrit cloning which

gives the best average fidelity on the set of states of the form

|ψφϑ〉 =
1√
3

[|0〉 + eiφ|1〉+ eiϑ|2〉] . (2.40)

According to what we said at the end of the latter example, such an optimal

cloning can be found among the ones which are covariant with respect to φ and

ϑ phase-rotations, and with respect to permutations of the basis { |0〉, |1〉, |2〉 },
which are the equivalent of the spin-flip symmetry of the previous example.

The above are all the symmetries of the set of input states and of the fidelity.

Our SC will be a positive operator on H⊗2+1 being invariant for products

of any of the following unitary transformations

V ⊗ I , T⊗2
φϑ ⊗ T ∗φϑ , U⊗2

π ⊗ U∗π , (2.41)

where V is the permutation of the two clone-spaces (for two copies V is usually

called “swap”), and

Tφϑ
.
= |0〉〈0| + eiφ|1〉〈1| + eiϑ|2〉〈2| ,
Uπ|i〉 .= |π(i)〉 , ∀π ∈ S3 . (2.42)

Remember that swap-invariance makes SC a 1 → 2 cloning map. The entries

of Table 2.3 correspond to all the phase- and swap-invariant subspaces. Since

they are all unidimensional, each is labelled by its generating vector.

Let us define the operators Oi, i = 1...5, on H⊗2+1 having the following

matrix elements with respect to the basis reported in Table 2.4

O1 →




a d d

d∗ b c

d∗ c b


 , O2 →

(
e f

f e

)
,

O3 → g , O4 → h , O5 → i . (2.43)

These five operators are clearly invariant with respect to swapping and

phase-shifts, as one can see by comparing their expressions with Table 2.3.

Sums of operators of the form of the Oi and of the form of the operators ob-

tained by Oi with permutations, i.e. by acting on each Oi with U⊗2
π ⊗U∗π , are
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⊗ |0〉 |1〉 |2〉
|00〉 S, 0, 0, α S, -1, 0, β S, 0, -1, β

|11〉 S, 2, 0, β S, 1, 0, α S, 2, -1, β

|22〉 S, 0, 2, β S, -1, 2, β S, 0, 1, α
1√
2
[|01〉 + |10〉] S, 1, 0, γ S, 0, 0, γ S, 1, -1, δ

1√
2
[|02〉 + |20〉] S, 0, 1, γ S, -1, 1, δ S, 0, 0, γ

1√
2
[|12〉 + |21〉] S, 1, 1, δ S, 0, 1, γ S, 1, 0, γ

1√
2
[|01〉 − |10〉] A, 1, 0, γ A, 0, 0, γ A, 1, -1, δ

1√
2
[|02〉 − |20〉] A, 0, 1, γ A, -1, 1, δ A, 0, 0, γ

1√
2
[|12〉 − |21〉] A, 1, 1, δ A, 0, 1, γ A, 1, 0, γ

Table 2.3: H⊗2+1 decomposition into unidimensional invariant subspaces. The

invariant subspaces are obtained by making the tensor products of any vector

from the first column with either |0〉, |1〉, or |2〉: the corresponding cell in the

table gives the full symmetry of the subspace. The first letter denotes the kind

of action of the swap (Symmetric-Antisymmetric), the two numbers indicate

the representation for φ and ϑ phase-shifts, respectively. Subspaces having the

same greek letter are connected by a permutation U⊗2
π ⊗U∗π for some π ∈ S3.

swap- and phase-invariant. One may notice that by permutations O5 generates

3! different operators, whereas the other ones generate only 3 different opera-

tors each, since they are invariant with respect to the transposition |1〉 ↔ |2〉.
Thanks to these observations, one realizes that these five operators give

rise to five independent families of covariant cloning maps described by the

invariant positive operators

SiC =
∑

π∈S3

Uπ Oi Uπ . (2.44)

The positivity constraint for any family simply becomes Oi ≥ 0, while the

trace preserving condition leads to trO1 = trO2 = trO3 = trO4 = 1/2 and

trO5 = 1/4.

Any other covariant cloning map can be written as a convex linear combi-

nation of these five kind of maps in a unique way. Since the average fidelity is

linear in SC, we can look for the optimal maps among these five families sepa-

rately. With a little algebra one finds max(F2) = 1/2 and F3 = F4 = F5 = 1/3,

while max(F1) = 1
12(5+

√
17) ' 0.76. Thus the optimal covariant cloning map
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Operator Ordered Basis

O1 |000〉, 1√
2
[|011〉 + |101〉], 1√

2
[|022〉 + |202〉]

O2
1√
2
[|011〉 − |101〉], 1√

2
[|022〉 − |202〉]

O3
1√
2
[|210〉 + |120〉]

O4
1√
2
[|210〉 − |120〉]

O5 |001〉

Table 2.4: Vector basis to which the matrix elements of the operators Oi are

referred.

belongs to the S1
C family, in particular it is obtained for the following values

of the parameters

a = 1
4 (1− 1√

17
) , c = b = 1

8 (1 + 1√
17

) ,

d =
√

ab
2 = 1

2
√

17
, (2.45)

which have been determined maximizing the quantity

F1 =
2

3
[a+ 2b+ c+ 2

√
2 Re(d)] , (2.46)

within the constraints of trace preserving and positivity

a+ 2b = 1
2 ,

a, b ≥ 0 , |c| ≤ b , |d|2 ≤ a(b+ c)

2
. (2.47)

Cloning of continuous variables

The parameterization of channels though the related positive operator and its

specialization to the covariant case are useful tools for engineering measure-

ments. The idea is to “spread” a quantum state of H on a larger system K with

a channel E , and then to perform a measurement on the spread state. The

connection between the POVM Me on the larger space K and the resulting

one M ′e on H is given by

M ′e = E∨(Me)
.
= trK

[
Me ⊗ I STH

E
]
, (2.48)

where E∨ is the dual map of E , and the symbol TH stands for transposition

with respect to H only.
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In Ref. [42], the cloning map for continuous variables of Ref. [46] is used

to achieve the optimal POVM for the joint measurement of two conjugated

quadratures X0 and Xπ
2

of an oscillator mode a (where Xφ = 1
2 [a†eiφ+ae−iφ])

by measuring them separately on the two clones. Here, we will briefly show

how our general method works on this problem.

Denote by H3 the input space and by H1, H2 the two output spaces of the

oscillator modes a3, a1, a2 respectively. The cloning is described by

SC =
1

2
P12 ⊗ I3 I1 ⊗ (|I〉〉〈〈I|)23 P12 ⊗ I3 , (2.49)

where P = V |0〉〈0|⊗I V †, and V is the 50% beam splitter unitary transforma-

tion V = exp[π4 (a†1a2 − a1a
†
2)].

A simple calculation shows that

P =
2

π

∫
d2α |α〉〈α|⊗2 , (2.50)

where |α〉 = D(α)|0〉, and D(α)=eαa
†−ᾱa is the displacement operator gener-

ating the Weyl-Heisenberg (WH) group. By means of Eq. (2.50), the invari-

ance of SC defined in Eq. (2.49) with respect to permutations and displace-

ments can be easily verified.

Using the dual cloning map as in Eq. (2.48), we should check that

C∨(E0
x ⊗Eπ/2y ) =

1

π
|α〉〈α| , α = x+ iy , (2.51)

where Eφ
x = |x〉φ φ〈x|, and Xφ|x〉φ=x|x〉φ. In fact, the last term of Eq. (2.51)

is the well-known optimal POVM for the joint measurement of conjugated

quadratures, whereas Eφ
x is the POVM of the φ-quadrature measurement.

Hence identity (2.51) guarantees that the cloning achieves the optimal joint

measurement of the two conjugated quadrature via commuting measurements

on clones.

Noticing that

E0
x ⊗Eπ/2y = D(α)⊗2E0

0 ⊗Eπ/20 D(α)⊗2† , (2.52)

and exploiting the WH covariance, Eq. (2.51) reduces to

C∨(E0
0 ⊗Eπ/20 ) =

1

π
|0〉〈0| . (2.53)
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Substituting Eq. (2.48) into this last equation, and taking matrix elements

〈i| . . . |j〉, one finally must check that

0〈0| π
2
〈0|〈i|SC |0〉0|0〉π

2
|j〉 =

1

π
δi0 δj0 . (2.54)

Since V |0〉0|0〉π
2

=
√

2
π |I〉〉 and V |0〉|0〉 = |0〉|0〉 (see Ref. [47]), one has that

P |0〉π
2
|0〉0 =

√
2
π |0〉|0〉. Thus Eq. (2.54) holds, and the cloning really achieves

the wanted POVM.

Universal cloning

Clearly, the universal covariant cloning of Werner [37] is a special case of

covariant cloning for the covariance group U(d), d = dimH, of all unitary

operators on H. Here, for sake of comparison to Ref. [37], we consider more

generally the cloning from M to N > M copies. Hence the cloning is a CP

map C from B(H⊗M) to B(H⊗N) such that for any U ∈ U(d) and σ ∈ B(H)

C(U⊗Mσ⊗MU †⊗M ) = U⊗NC(σ⊗M )U †⊗N . (2.55)

The score function to optimize is the fidelity between clones and input

Γ(SC) = tr
[
σ⊗N C(σ⊗M )

]
, (2.56)

where σ is pure. Owing to covariance, the fidelity Γ does not depend on σ,

since any pure state lies in the U(d) orbit of any other pure state.

The optimal cloning map of Ref. [37] is given by

C(ρ) =
d(M)

d(N)
SN (ρ⊗ I⊗(N−M))SN , (2.57)

where ρ ∈ B(H⊗M), SN is the projector on the symmetric subspace H⊗N+ , and

d(N) = dim(H⊗N+ ). In our framework, one has

SC =
d(M)

d(N)
S̃ IH⊗(N−M) ⊗ (|I〉〉〈〈I|)H⊗(M+M) S̃ , (2.58)

where S̃ = SN ⊗ I⊗M . It can be easily verified that SC is both covariant and

permutation invariant as it must be.



Chapter 3

Imprinting quantum

operations into quantum

states

Characterizing a quantum device means to perform measurements providing

information about the QO operated by the device. However, quantum mea-

surements can only give information about the state of a system, and that’s

why we need to devise a way to encode the information about the QO into

a quantum state. This will then allow us to use the whole theory of state-

discrimination and state-tomography also for discrimination and tomography

of QO’s.

The way to encode the QO of a device on the state is to let the device

act on some systems suitably prepared, so that their final states contain an

imprinting of the device. The aim of this chapter is to classify, along the lines

of our work in Ref. [16], the input states that support a full imprinting of the

QO of the device, i. e. what we call faithful states. We will also contextually

consider the case in which the information on the QO is carried not by a single

state, but by a set of them, and we will correspondingly call this set faithful.

After briefly recalling the first proposed methods for quantum process to-

mography [3, 4], based on the use of many different input states, we shall report

our result of Ref. [10] showing how a single pure entangled state can support

a full imprinting of the QO. Then we will extend the analysis to mixed states,

reporting our results of Ref. [16] showing how entanglement is not strictly

needed, and finally giving a complete characterization of faithful states and
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sets of states, along with a measure of their “faithfulness”. It will become

clear that the possibility of characterizing a device with a single fixed input

state is a distinctive feature of Quantum Mechanics with no classical analog,

and it is rooted in the tensor-product nature of composite quantum systems,

instead of the cartesian-product “classical” composite systems. However, the

fact that entanglement is not strictly necessary for faithfulness also indicates

that the classical input-output correlations are enough to represent the device

itself, but using a set of states, whereas the possibility of imprinting a com-

plete description of the device into these correlations for a “single passage” of

the device intimately pertains to Quantum Mechanics.

In what follows, we will first restrict the analysis to devices performing

quantum processes (i.e. deterministic QO’s), and then we will extend the

treatment to devices performing non deterministic QO’s. Finally we will also

present our result of Ref. [19] on the encoding of a POVM on quantum states.

3.1 Sets of input states versus a single entangled

state

The first proposed method for quantum process tomography [3, 4] exploited

the linearity of the map representing the process, and since a linear operator

is defined by its action on a set of vectors spanning the Hilbert space, in

the same way, any linear map is completely defined by its action on a set

of operators generating the linear space of all operators B(H). Hence, for

encoding a quantum process E on states, one should look for a set of states

ρi which span B(H), since then their respective output states E(ρi) would

completely determine E , namely the set of states would be faithful. In fact,

the action of the map E on a generic ρ can be recovered by expanding ρ on

the generators of the space, ρ =
∑

i ci ρi, so that by linearity one obtains the

action of the map as E(ρ) =
∑

i ciE(ρi).

As an example, consider the set of states given in Ref. [48] for quantum

process tomography

{
|m〉, |φmn〉 =

|m〉+ |n〉√
2

, |ψmn〉 =
|m〉+ i|n〉√

2

}
(3.1)

it is a faithful set of states, as it is a set of generators for B(H) because the
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elements of the basis |m〉〈n| of B(H) can be written as

|m〉〈n| = |φmn〉〈φmn|+ i|ψmn〉〈ψmn| −
1 + i

2
|m〉〈m| − 1 + i

2
|n〉〈n| . (3.2)

Quantum process tomography has been realized with this methods in liquid

nuclear magnetic resonance systems [5, 6, 7], and for qubits encoded in the

polarization of a radiation mode [8, 9], all situations where the dimension of

the Hilbert space of the system is small. A method using the eigenstates of

the quadrature operator as inputs has also been proposed in Ref. [49], for a

phase-space representation of quantum transformations.

The above method has its main drawback in the difficulty – usually im-

possibility – of preparing the needed number – of the order of dim(H)2 –

of different inputs. As we will see in the following, the method also turns

out to be quite inefficient in achieving the information on the channel with a

minimal number of measurements (the point is not that the device must be

used several times to imprint the information on the channel only once, since

quantum tomography even of a single output state would need anyway many

measurements).

A viable alternative to the above method of “spanning states”, inspired

by the operator representation of a channel (1.15), was presented by us in

Ref. [10] and by others in Ref. [50], and experimentally implemented for

polarization qubits in Refs. [13, 14, 15]. By preparing a bipartite system in

the initial state R = |A〉〉〈〈A| and letting the first subsystem evolve under the

map, as depicted in Fig. 3.1, the output state RE reads

RE = (E ⊗ I) [ |A〉〉〈〈A| ] = (I ⊗AT )SE (I ⊗A∗) . (3.3)

It is clear that whenever the operator A is invertible (i.e. A is full rank, or

equivalently the bipartite system is in a maximal Schmidt’s number entangled

state) it is possible to recover SE from RE by the simple inversion

SE = [I ⊗ (AT )−1]RE [I ⊗ (A∗)−1] , (3.4)

and then the action of the map on a state ρ is found via Eq. (1.16), namely

E(ρ) = tr2[ (I ⊗ ρT ) SE ] . (3.5)

Summarizing, any bipartite state with maximal Schmidt number is faithful,

namely by entering a quantum device it gets imprinted of the full information
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-

-
R

E
RE

Figure 3.1: Encoding the information about a quantum device on an bipartite

state. Two identical quantum systems are prepared in the state R. One of

the two systems enters the device and undergoes the map E , whereas the

other is left untouched. The joint output state contains information on E .

When such information is complete the state R is called faithful. A pure input

R = |A〉〉〈〈A| is faithful iff rankA = dim(H).

about the device. This method for encoding a channel on a state exploits the

quantum parallelism of entanglement, with a fixed bipartite entangled state

playing the role of the several input states of the previous method. The infor-

mation on the device is encoded in a “native” way, which perfectly reflects the

nature of the CP map representing the device itself. Moreover, it is encoded

with a single use of the device, in contrast to the many uses of the method

based on the generating set of states (this feature can be exploited at best in

the context of devices discrimination [20], where a single measurement after

the imprinting is allowed). Of course, when no prior knowledge of the device is

provided, in order to recover the encoded information we have to perform a full

quantum tomography of the output state, whence many copies of the imprinted

state are still necessary. However, the main advantage of the method based

on a single entangled state resides on the fact that a generating set of states

is often not available in the lab, whereas we can produce entangled states:

this is the case, for example, of quantum optics (in the domain of so-called

continuous variables in contrast single qubits encoded on polarization of single

photons), where a faithful entangled state is provided by a twin-beam from

parametric down-conversion of vacuum, whereas photon number states and

their superpositions as in Eq. (3.1) will remain an impossible dream for many

years. Another relevant advantage of the single-pure-state method versus the

generating-set one is a much higher statistical efficiency, i.e. the number of

measurements needed to achieve a given statistical error in the reconstruction

of the map of the device. In addition, thanks to the “native way” of en-

coding the transformation — reflecting both completely positivity and trace

preserving/decreasing property of the map — the use of the single input state
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allows an easy implementation of the maximum likelihood strategies for the

characterization of the device.

All the above observations will be analyzed in detail later in this chapter,

when a measure of “faithfulness” will be introduced, and also in the next

chapter, where some practical applications of this framework for characterizing

quantum devices will be exposed.

3.2 Faithful states

In the previous paragraph we showed that a pure entangled bipartite state

|A〉〉 supports the imprinting of a quantum channel whenever the operator A

is invertible. Here we want to extend this result to a generally non pure input

state R, in order to characterize all faithful states.

So let’s consider a bipartite state R, with spectral decomposition R =∑
l |Al〉〉〈〈Al|. By applying the relation |Al〉〉 = (I⊗ATl )|I〉〉, we can rewrite the

corresponding output state RE = (E ⊗ I)[R] as

RE = (E ⊗ I)[R ] =
∑

l

( I ⊗ATl ) (E ⊗ I)[ |I〉〉〈〈I| ] ( I ⊗A∗l ) =

=
∑

l

( I ⊗ATl ) SE ( I ⊗A∗l ) . (3.6)

If we define the completely positive map R as

R(ρ) =
∑

l

ATl ρA
∗
l , (3.7)

it is immediate to notice that

RE = (I ⊗R) [SE ] , (3.8)

and therefore whenever the map R is invertible the output state RE will be in

one-to-one correspondence with SE , and thus with the map E , namely it will

contain all the information about the map.

From the above considerations it follows that the input state R is faithful

iff it leads to a map R which is invertible. Recalling what we wrote in Sec.

1.2, and in particular Eq. (1.14), the invertibility of the CP map R resorts

to the invertibility of a customary operator. In fact, by consider the following

equation involving vectors in H⊗ H

|R(ρ)〉〉 = |
∑

l

ATl ρA
∗
l 〉〉 = (

∑

l

ATl ⊗A†l ) |ρ〉〉 .= ŠR|ρ〉〉 , (3.9)
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one realizes that the map R is invertible iff the relation between vectors

|R(ρ)〉〉 ↔ |ρ〉〉 is invertible, and looking at the above equation it is clear that

this happens iff the operator ŠR
.
=
∑

lA
T
l ⊗A

†
l on H⊗H is invertible. As we

already noticed in Sec. 1.2, the action of the inverse map R−1 can be defined

through the relation

|R−1(ρ)〉〉 .= Š−1
R |ρ〉〉 , (3.10)

so that |R−1(R(ρ))〉〉 = Š−1
R ŠR|ρ〉〉 = |ρ〉〉. The operator ŠR can be expressed

directly in terms of R, without having to evaluate its spectral decomposition,

as

ŠR = (ER)T2E = (RT2E)T1 (3.11)

where E =
∑

ij |ij〉〈ji| is the swap operator, and OTl denotes the partial

transposition of the operator O on the lth Hilbert space.

In summary, we have found that R is faithful iff ŠR is invertible. In this

case the relation between the output state RE = (E ⊗ I)[R] and the operator

SE is one-to-one, with all the information about the CP map E encoded in RE .

The map E can be recovered from the joint output state RE as follows

E(ρ) = tr2

[
(I ⊗ ρT ) (I ⊗R−1)[RE ]

]
. (3.12)

Later we will show some examples of faithful states, and among them

there will be also separable states. On first sight this may be surprising, but it

becomes obvious if one realizes that the set of faithful states is dense, because

it is related to the set of invertible operators which is dense too.

As a further generalization, we now discuss the faithfulness of the bipartite

state R of two quantum systems described by different Hilbert spaces H and

K. We need now to consider vectors in either H⊗ K, H⊗2, or K⊗2, and in all

cases we will keep our notation |A〉〉 for the vectors, with the corresponding

operator A in B(K,H), B(H), or B(K) respectively.

Similarly to the previous reasoning lines, in relation to the biparite input

state R =
∑

l |Al〉〉〈〈Al| on H⊗K, the output reads RE = I⊗R [SE ], where the

map R(ρ) =
∑

l A
T
l ρA

∗
l now is from B(H) to B(K). Then, faithfulness of R is

still equivalent to the invertibility of the map R, but now it is more generally

equivalent to its left-invertibility 1. The operator ŠR =
∑

lA
T
l ⊗A

†
l associated

to R now maps vectors in H⊗2 to vectors in K⊗2, and it is still such that

ŠR|ρ〉〉 = |R(ρ)〉〉. Again, faithfulness of R is equivalent to left-invertibility of

the operator ŠR from H⊗2 to K⊗2, that in turn is equivalent to the condition
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rank ŠR = dim(H)2. Among all the possible left-inverses of ŠR one can use

the Moore-Penrose pseudo-inverse Š‡R, and thus define the left-inverse of the

map R as

|R−1(ρ)〉〉 .= Š‡R|ρ〉〉 , (3.13)

so that one can recover SE from RE by the relation SE = (I ⊗R−1) [RE ].

3.3 A measure of faithfulness

Even though in principle any faithful state can be used for encoding quantum

processes on their outputs, the actual choice of the input will be dictated

by some figure of merit depending on the particular situation. For example,

consider the case in which we want to discriminate bewteen two processes E1

and E2. For input state R, their respective outputs will be

RE1 = (I ⊗R) [SE1 ] and RE2 = (I ⊗R) [SE2 ] , (3.16)

and thus we shall tune R in order to improve the distingishability of these two

outputs.

More generally, we see that an overall performance indicator for the faith-

fulness of the state R is a measure of its ability to keep outputs corresponding

to different processes as far as possible in average, namely the ability of the

map R in Eq. (3.16) to keep its outputs as far as possible. By considering the

singular value decomposition for the operator ŠR

ŠR =
∑

i

σi|Vi〉〉〈〈Ui| , (3.17)

1 A generic operator T : H→ K is left-invertible iff rank T = dim(H). For having T left-

invertible is therefore necessary that dim(K) ≥ dim(H), the inverse being unique whenever

the equality holds, whereas non-unique in the case of a strict inequality. Among the infinitely

many possible left-inverses, the Moore-Penrose pseudo-inverse T ‡ [51] is the most used one,

due to its nice properties. Starting from the singular values decomposition (SVD) of T

T =
X

i

σi|vi〉〈ui| , (3.14)

where {|vi〉} and {|ui〉} are two sets of orthonormal vectors, and σi are positive real numbers

(the singular values), T ‡ is defined as

T ‡ =
X

i

σ−1
i |ui〉〈vi| . (3.15)

By definition, Q = T ‡T is the orthogonal projector on Supp(T ) ≡ Ker(T )⊥, whence T ‡

inverts T on its support, which for a left-invertible operator coincides with the whole space

H.
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with {|Vi〉〉} and {|Ui〉〉} sets of orthonormal vectors, and σi > 0, and by

remembering that |R(ρ)〉〉 = ŠR|ρ〉〉, the action of R on an operator ρ becomes

R(ρ) =
∑

i

σi tr[U †i ρ]Vi , (3.18)

whence it is clear that the smaller are the singular values σi, the nearer are

the outputs of R, since their components on the basis {|Vi} will be shrinked.

Therefore, in summary, the larger are the singular values of ŠR the better is

the chosen input state R.

Thus, a synthetic measure of faithfulness could be for example

F (R) =
∑

i

σ2
i = tr[Š†RŠR] . (3.19)

This quantity can be expressed in a more meaningful form by observing that

if we use the spectral decomposition R =
∑

i |Ai〉〉〈〈Ai|, with the vectors |Ai〉〉
being an orthogonal basis, namely 〈〈Ai|Aj〉〉 = tr[A†iAj ] ∝ δij , then ŠR =∑

iA
∗
i ⊗A†i , and thus the following equations hold

tr[Š†RŠR] =
∑

ij

tr[ATi A
∗
j ] tr[AiA

†
j ] =

∑

i

tr[ATi A
∗
i ] tr[AiA

†
i ] =

=
∑

i

(〈〈Ai|Ai〉〉)2 = tr[R†R] . (3.20)

Therefore, from Eq. (3.19) one obtains

F (R) = tr[R†R] , (3.21)

so that faithfulness of a state turns out to be exactly its purity. This result

implies that faithful pure states are the optimal faithful states, and that they

yield outputs states encoding the maps which are the most far apart.

The definition of F (R) can be also interpreted in another way. Imagine to

implement quantum process tomography using a finite number of copies of R

as input states, and then to reconstruct the output RE . The measured RE will

be affected by experimental errors which will be mostly independent on RE
itself, and these errors will be propagated to the experimental estimation of

SE by the inversion map R−1. Since, in practice, the inversion map involves

multiplications by σ−1
i , then the smaller are the singular values of ŠR the

higher will be the amplification of experimental errors on the measured SE .

For an unfaithful state R, ŠR ha at least one null singular value, yet F (R)

is different from zero. Actually, as we shall see, the state can still be used to
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recover the action of a device on some inputs only. Moreover, on such inputs

it can achieve an even better reconstruction resolution than a faithful state,

since its faithfulness is focused on a smaller subspace.

3.4 Faithful sets of states

Now we will consider the case in which not a single bipartite state, but a

certain set of them {R(n)}Nn=1 on H ⊗ K is used, and we want to understand

whether or not it is faithful, namely if it supports a complete imprinting of the

information about a quantum process. In other words, we will discuss when

the set of outputs {R(n)
E }, with R

(n)
E = (E ⊗ I) [R(n)], is a perfect encoding

of a generic channel E . This analysis will bridge the scenario with the set of

generating states and the one of single bipartite faithful state.

Mathematically, it is evident that the state Rset on H⊗K⊗CN defined as

Rset =

N∑

n=1

pnR
(n) ⊗ |n〉〈n| , (3.22)

where pn are fixed non vanishing probabilities, is in 1-to-1 correspondence with

the set of states {R(n)}. The same correspondence holds between the output

state

Rset E = (E ⊗ I ⊗ I) [Rset] =
N∑

n=1

pnR
(n)
E ⊗ |n〉〈n| (3.23)

and the set of outputs {R(n)
E }. Hence, if the state Rset E contains all the

information about the map, then the same holds also for the set of outputs

{R(n)
E }, or, equivalently, if Rset is faithful, then the set {R(n)} is faithful too.

Briefly, faithfulness for the set of states {R(n)} is translated into faithful-

ness for the single state Rset. The latter can be evaluated with the techniques

exposed in the previous paragraph for bipartite states, by simply considering

Rset as a bipartite state of H and K⊗ CN .

The nature of the state Rset can be interpreted from two subtly different

points of view. On one hand, to use Rset is equivalent to running all the states

{R(n)} in parallel, while keeping track of each of them thanks to the tensoring

with the basis |n〉〈n| of CN . On the other hand, Rset represents the situation

in which the states {R(n)} are employed in the characterization each with a

frequency equal to pn. In fact, when the inital state is Rset, to measure the

basis |n〉〈n| on CN (either before or after the action of the device) is equivalent
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to preparing the input R(n) with a probability pn, where n is the outcome of

the measurement.

For this reasons, any quantity (e.g. the faithfulness F ) being defined for

faithful states can be extended consistently to sets of states simply by evalu-

ating it on the corresponding Rset. For example, the faithfulness of a set of

generating states ρn (employed with the same frequency) is equivalent to the

faithfulness of the bipartite state Rset =
∑

n
1
nρn⊗ |n〉〈n|, and since the latter

is a mixed state, it will lead to a non-optimal faithfulness. This shows why

the encoding on an entangled state is theoretically better than the encoding

on a set of generating states: while in the first case faithfulness is 1, in the

second one it scales as O[1/dim(H)].

3.5 Patching sets of unfaithful states

An unfaithful state R can still be useful in encoding only some quantum chan-

nels, or at least in encoding a partial information about them, which can then

be used to evaluate their action on some particular states. In fact, even if the

map R is not invertible (it maps to zero any state ρ such that |ρ〉〉 ∈ Ker(ŠR)),

one can still employ its pseudo-inverse R‡ defined as

|R‡(ρ)〉〉 .= Š‡R|ρ〉〉 . (3.24)

This map is such thatR‡R = Q, whereQ is the projection map on the support

of the map R, and which is also defined by

|Q(ρ)〉〉 = Š‡RŠR|ρ〉〉 = ŠQ|ρ〉〉 , (3.25)

the operator ŠQ being the projector on Supp(ŠR) = Ker(ŠR)⊥.

It is clear that such pseudo-inversion, instead of returning the full operator

SE , gives its projection

S̃E = (I ⊗R‡)[RE ] = (I ⊗Q)[SE ] (3.26)

which represents a partial encoding of E . The partially recovered map Ẽ(ρ) =

tr2[(I ⊗ ρT ) S̃E ] could have also been written as Ẽ = EQ∗, Q∗ being the pro-

jection map corresponding to the operator Š∗Q. Clearly Ẽ coincides with E for

any ρ such that Š∗Q|ρ〉〉 = |ρ〉〉.
For any bipartite R one can define a number of faithfulness ϕ as ϕ(R) =

rank(ŠR), i.e. as the dimension of the space of input states R for which
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the action of the map E is described faithfully. Clearly, a state is faithful iff

ϕ(R) = dim(H)2. Notice that for ϕ(R) < dim(H)2 one can have the situation

in which Ker⊥(ŠR) = Span{|ρ〉〉, ρ ∈ A}, with A abelian algebra, in which case

the state R allows to reconstruct completely only “classical” channels, with

the input restricted to commuting states.

The introduction of pseudo-inversion provides an alternative yet equivalent

way for studying the faithfulness of a set of states {R(n)} . Suppose they lead to

the projection maps {Q(n)}, then the set will be faithful iff we can recover any

operator ρ from its projections Q(n)(ρ), and this is possible iff, given a basis

{Bi} for B(H), one has Span{Q(n)(Bi)}i,n = B(H). In such circumstances,

any element of the basis can be expressed as a linear combination of the

Q(n)(Bi), i.e. Bi =
∑

jn λ
n
ijQ(n)(Bj), and therefore it is possible to recover

ρ ≡∑i tr[B†i ρ]Bi by “patching” the projections Q(n)(ρ) as

ρ =
∑

ijn

λn∗ij tr[B†j Q(n)(ρ)]Bi . (3.27)

Analogously, by patching the partial encodings {S̃(n)
E } (see Eq. (3.26)) we get

SE as

SE =
∑

ijn

λn∗ij tr2[(I ⊗B†j ) S̃
(n)
E ]⊗Bi . (3.28)

Of course this patching procedure can also be used with an unfaithful set of

states, to obtain a more complete yet still partial encoding of the channel.

3.6 Generalization to QO’s and POVM’s

Suppose we have a quantum device performing the measurement described by

the CP maps E (e), e = 1 . . . N being the outcomes, is it possible to encode

all the maps or else their corresponding POVM? If we use a bipartite input

state R and we let the device act on the first subsystem, the output state

corresponding to the outcome e will be

RE(e) =
(I ⊗R) [SE(e) ]

tr[ (I ⊗R) [SE(e) ] ]
, (3.29)

where the denominator is equal to the probability of occurrence for the out-

come e. In the case of R faithful, from this output it is possible to recover

SE(e) up to a normalization factor by means of the inverse map R−1.
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After preparing an ensemble of systems described by a faithful state R, we

let the measuring device act on them, and then we separate them according

to the outcome e, thus obtaining N different ensembles, each labeled by the

corresponding e, and described by the states RE(e) . The denominator of Eq.

(3.29) can be evaluated as the fraction of systems of the original ensemble that

have been transformed into the e-th state, therefore an exact reconstruction

of all the SE(e) is possible, being equivalent to the full reconstruction of the

measuring device. Notice that, in contrast to what happens for a determin-

istic device, in the case of a probabilistic QO a single use is not enough to

imprint the whole information about it, due to of the need of evaluating the

normalization factor.

In many practical situations, e.g. in a photodetector, the measuring device

destroys the measured system. Here, however, with the same setup with a

bipartite faithful R, the reduced state ρe on the unmeasured system is still

available, an it reads

ρe = tr1 RE(e) =
R [tr1 SE(e) ]

tr[R [tr1 SE(e) ] ]
=
R [P Te ]

tr[R [P Te ] ]
, (3.30)

where Pe is the POVM of the measurement relative to the outcome e. Hence,

by performing a quantum tomography on the above reduced output states,

one can recover the POVM of the apparatus by inverting the map R, while

evaluating the denominator of the previous equation as the probability of

occurrence of e.

3.7 Faithfulness and separability

Since, as we have seen, faithfulness is equivalent to an invertibility condition,

the set of faithful states R is dense within the set of all bipartite states. There-

fore, there must be faithful states among mixed separable ones, which means

that classical correlations in mixed bipartite states are sufficient to support

the imprinting of any quantum channel. Lets’ see some examples of separable

faithful states.

The Werner’s states for dimension d

Rf =
1

d(d2 − 1)
[(d− f)I + (df − 1)E], −1 ≤ f ≤ 1, (3.31)

are separable for f ≥ 0, however, they are faithful for all f 6= 1
d . In fact, one
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has

(ERf )T2 =
1

d(d2 − 1)
[(d− f)|I〉〉〈〈I|+ (df − 1)] , (3.32)

hence the singular values of ŠRf are df−1
d(d2−1)

with multiplicity d2−1 and 1
d with

multiplicity 1. In Ref. [14] an experiment employing these states for quantum

process tomography was presented.

Similarly, the “isotropic” states

Rf = f
d |I〉〉〈〈I| +

1−f
d2−1

(I − 1
d |I〉〉〈〈I|), (3.33)

are faithful for f 6= 1
d2 and separable for f ≤ 1

d , the singular values of ŠRf
being d2f−1

d(d2−1)
and f

d .

3.8 Faithfulness in infinite dimensions

For infinite dimensions (the so-called “continuous variables” in quantum op-

tics), one needs to restrict B(H) to the Hilbert space of Hilbert-Schmidt op-

erators on H, and this leads to the problem that the inverse map R−1 is un-

bounded. The result is that we will recover the channel E from the measured

RE , however, with unbounded amplification of statistical errors, depending on

the chosen complete set of operators B = {Bj} in B(H) used for representing

the channel map. As an example, let’s consider a twin beam from parametric

down-conversion of vacuum

|Ψ〉〉 = Ψ⊗ I|I〉〉, Ψ = (1− |ξ|2)
1
2 ξa

†a, |ξ| < 1 (3.34)

for a fixed ξ, a† and a, with [a, a†] = 1, denoting the creation and annihilation

operators of the harmonic oscillator describing the field mode corresponding to

the first Hilbert space in the tensor product (in the following we will denote by

b† and b the creation and annihilation operators of the other field mode). The

state is faithful, but the operator Ψ−1 is unbounded, whence the inverse map

R−1 is also unbounded. In a photon number representation B = {|n〉〈m|}, the

effect will be an amplification of errors for increasing numbers n,m of photons.

As an example, consider the quantum channel describing the Gaussian

displacement noise [52]

Nν(ρ) =

∫

C

dα

πν
exp[−|α|2/ν]D(α)ρD†(α), (3.35)



56 Chapter 3 Imprinting quantum operations into quantum states

where D(α) = exp(αa† − α∗a) denotes the usual displacement operator on

the phase space. The Gaussian noise is in a sense the analogous of the de-

polarizing channel for infinite dimension. The maps Nν for varying ν satisfy

the multiplication rule NνNµ = Nν+µ, thus the inverse map is formally given

by N−1
ν ≡ N−ν . Notice that, since the map Nν is compact, the inverse map

N−1
ν is necessarily unbounded. As a faithful state consider now the mixed

state given by the twin-beam, with one beam spoiled by the Gaussian noise,

namely

R = I ⊗Nν(|Ψ〉〉〈〈Ψ|). (3.36)

Since the (unnormalizable) vector |D(z)〉〉 = [D(z) ⊗ I]|I〉〉 is a eigenvector of

the operator Z = a− b†, with eigenvalue z, one can easily find that

R =
1

ν
(Ψ⊗ I) exp[−(a− b†)(a† − b)/ν](Ψ† ⊗ I), (3.37)

thus its partial transposed on the second space reads

RT2 = (ν + 1)−1(Ψ⊗ I)

(
ν − 1

ν + 1

) 1
2

(a−b)†(a−b)
(Ψ† ⊗ I), (3.38)

where transposition is defined with respect to the basis of eigenvectors of a†a

and b†b. Since our state R is Gaussian, it is separable iff its partial transpo-

sition is a positive operator [53], therefore, for ν > 1, R is separable (see also

Ref. [54]), yet it is formally faithful, since the operator Ψ and the map Nν

are both invertible. Notice that unboundedness of the inversion map can even

wash out completely the information on the channel in some particular chosen

representation B = {Bj}, e. g. when all operators Bj are out of the bound-

edness domain of R−1. This is the case, for example, of the (overcomplete)

representation B = {|α〉〈β|}, with |α〉 and |β〉 coherent states, since from the

identity

Nν(|α〉〈α|) =
1

ν + 1
D(α)

(
ν

ν + 1

)a†a
D†(α), (3.39)

one obtains

N−1
ν (|α〉〈α|) =

1

1− νD(α)
(
1− ν−1

)−a†a
D†(α), (3.40)

which has convergence radius ν ≤ 1
2 , which is the well known bound for

Gaussian noise for the quantum tomographic reconstruction for coherent-state

and Fock representations [55]. Therefore, we say that the state is formally

faithful, however, we are constrained to representations which are analytical

for the inverse map R−1.



Chapter 4

Homodyne tomography of

channels and POVM’s

Once the information about a device is encoded into quantum states, all the

techniques of quantum tomography can be applied to determine the channel

or, more generally, the quantum operation describing the device. To date,

several experiments of quantum process tomography have been implemented

for qubits either in NMR systems [5, 6, 7] or in quantum optics [8, 13, 14, 9].

However, no experiments in the realm of continuous variable optical systems

have been realized yet. Here, with the help of Monte Carlo simulations, we

analyze the feasibility of some experiments in such context, using as a faith-

ful state a twin-beam emerging from parametric down-conversion of vacuum,

and performing a joint homodyne tomography on both the modes of radia-

tion at the output. The actual experimental feasibility of the technique is

partly proved by the experiment of Ref. [56], in which quantum homodyne

tomography of the (joint number probability distribution of) a twin-beam was

achieved using the setup depicted in Fig. 4.1. After a brief introduction on

homodyne tomography, we report as an example of quantum process tomogra-

phy the result we presented in Ref. [10] for the tomography of a displacement

unitary transformation. Then we address the problem of the feasibility of the

homodyne tomography of a POVM for an ON/OFF photo-detector, and a

photon-counting detector. For the tomography of the unitary transformation

the tomographic reconstruction will be performed by the method of pattern

function averaging. For the tomography of the photo-detector, on the other

hand, we will also consider maximum likelihood methods, to show how they
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Figure 4.1: A nondegenerate optical parametric amplifier (a KTP crystal) is

pumped by the second harmonic of a Q-switched mode-locked Nd:YAG laser,

which produces a 100-MHz train of 120-ps duration pulses at 1064 nm. The

orthogonally polarized twin-beams emitted by the KTP crystal are separately

detected by two balanced homodyne setups that use two independent local

oscillators derived from the same laser. The output of the apparatus is a

measure of the quadrature amplitudes Xφ′ ⊗ Xφ′′ for random phases φ′ and

φ′′ with respect to the local oscillators. (From Ref. [56])

can give a huge boost to the precision of the characterization, at the sole

expense of greater computational complexity.

Overall, homodyne tomography of processes and detectors will become

a major diagnostic tool in quantum optics, opening new perspectives for the

calibration of measuring apparatuses and the characterization of the dynamics

of optical devices.

4.1 Homodyne tomography

A balanced homodyne detector in the strong oscillator limit ideally measures

the field quadrature observable

Xφ =
a†eiφ + a e−iφ

2
, (4.1)

where a and a† are the annihilation and the creation operators of the mode

of interest (set by the local oscillator), for a chosen value of the phase φ. In

the Fock basis |n〉 the (unnormalizable) eigenstate |x〉φ of the quadrature Xφ

is given by

|x〉φ =

∞∑

n=0

(
2

π

) 1
4 1√

2nn!
exp(−x2)Hn(

√
2x)einφ|n〉 , (4.2)
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Hn(x) denoting Hermite polynomials. Once fixed the phase φ, the ideal mea-

surement realizes the POVM Hom(x;φ) = |x〉φ φ〈x| for the “continuous vari-

able” x, with a probability density distribution of the outcomes given by

p(x;φ) = tr [ ρHom(x;φ) ] , (4.3)

ρ being the state of the system. In the non-ideal situation with non-unit

quantum efficiency, the POVM, and in turn the probability distribution of out-

comes, becomes Gaussian convoluted with variance ∆2
η = 1−η

4η , the parameter

η denoting the quantum efficiency of photo-detectors used in the homodyne.

Homodyne tomography is a method for estimating the state ρ from a finite

sample of homodyne data, i.e distributed according to p(x;φ) in Eq. (4.3). The

easiest strategy estimates the ensemble average of any operator O by averaging

bounded pattern function Pη[O](x, φ) of homodyne data. This means that one

has

〈O〉 = tr[ ρO ] =

∫ π

0

dφ

π

∫ +∞

−∞
dx pη(x;φ)Pη [O](x, φ) , (4.4)

and the expectation value is achieved by averaging the pattern function on the

homodyne data {(xn, φn)} in the limit of infinitely many data

1

N

N∑

n=0

Pη [O](xn, φn)
N→∞−→ 〈O〉 (with probability 1) . (4.5)

By averaging the pattern functions of the form Pη[|j〉〈i|], the matrix elements

〈i|ρ|j〉 of the state of the system are estimated. These pattern functions can

be found in Ref. [57].

Here we are interested in the homodyne tomography of the joint state of

two modes of radiation, which can be experimentally separately measured, so

that their quadratures Xφ and X ′φ′ are jointly and independently measured,

yielding the set of outcomes {(xn, φn, x′n, φ′n)}. It is easy to show that the

pattern function of the tensor product of two operators factorizes, namely

P[O1 ⊗O2](xn, φn, x
′
n, φ
′
n) = P[O1](xn, φn)P[O2](x′n, φ

′
n) , (4.6)

whence the matrix elements of a bipartite state R can be estimated as

1

N

N∑

n=0

Pη[|j〉〈i|](xn, φn) Pη[|m〉〈l|](x′n, φ′n)→ 〈i|〈l|R |j〉|m〉 . (4.7)

Another estimation strategy for homodyne tomography is the maximum

likelihood one, in which the “true” state ρ̂ is estimated from homodyne data
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{(xn, φn)} as the one which most likely has generated the observed data,

namely the one that maximizes the likelihood functional

L[ρ] =
∑

n

ln tr[ ρHomη(xn;φn) ] . (4.8)

Obviously, for finite samples the estimated state will differ from the true one,

and an estimation of errors (statistical and systematic) is in order.

The maximum likelihood (ML) method is an effective method for solving

more generally LININPOS (i.e. positive linear inverse) problems [58], and the

present case of state estimation from homodyne data is just an example. Of

course, the ML approach extends straightforwardly to the case of bipartite

systems.

4.2 Homodyne tomography of a field displacement

In this first example, the input state |Ψ〉〉 = (1 − |ξ|2)
1
2
∑∞

n=0 ξ
n|n〉|n〉 is gen-

erated by parametric downconversion of the vacuum, with ξ = [n̄/(n̄+ 1)]
1
2 , n̄

being the average number of photons in each mode. A displacement unitary

transformation D(z) = exp(za†−z∗a) is then applied to one of the two beams,

thus yielding the output state

Rz = [D(z)⊗ I]|Ψ〉〉〈〈Ψ|[D†(z)⊗ I] = (1−|ξ|2) |D(z) ξa
†a〉〉〈〈D(z) ξa

†a | , (4.9)

which is then measured with two balanced homodyne setups, one each mode.

In Fig. 4.2 some results of the Monte Carlo simulation of the proposed

experiment are reported. To show how this technique is effective, the matrix

elements 〈n|〈n|Rz|0〉|0〉 are estimated by pattern function averaging, and then

an estimate of diagonal elements of the operator D(z) is calculated as

Ann = 〈n|D(z)|n〉 = (1− |ξ|2)−1/2ξ−n
〈n|〈n|Rz|0〉|0〉√
〈0|〈0|Rz |0〉|0〉

, (4.10)

and compared with the theoretical value. As one can see, a meaningful re-

construction of the matrix elements of D(z) can be achieved in the range

n = 0 ÷ 7 with 106 ÷ 107 data, with approximately n̄ = 3 thermal photons,

and with quantum efficiency as low as η = 0.7. These experimental parameters

correspond to those of the experiment of Ref. [56]. Improving quantum effi-

ciency and increasing the amplifier gain (toward a maximally entangled state)
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Figure 4.2: From Ref. [10]. Homodyne tomography of the displacement of

one mode of the radiation field. The estimated diagonal elements Ann of

the displacement operator (shown by thin solid line on an extended abscissa

range, with their respective error bars in gray shade) are compared to the

theoretical values 〈n|D(z)|n〉 (thick solid line). Similar results are obtained for

the remaining matrix elements. The reconstruction has been achieved using an

entangled state |Ψ〉〉 at the input corresponding to parametric downconversion

of vacuum with mean thermal photon n̄ and quantum efficiency at homodyne

detectors η. Left: z = 1, n̄ = 5, η = 0.9, and 1.5 × 106 data have been used.

Right: z = 1, n̄ = 3, η = 0.7, and 6× 107 data have been used. The last plot

corresponds to the same parameters of the experiment in Ref.[56].

have both the effect of making statistical errors smaller and more uniform

versus the photon labels n and m of the matrix Anm.

In the experiment of Ref. [56], the relative phases between the local os-

cillators of the two homodyne detectors and the pump of the twin-beam were

completely random and uncontrolled, and this allowed to measure only the

diagonal matrix elements 〈n|〈m|R|n〉|m〉 of the two mode state R, since the

corresponding pattern functions are the only ones not depending on the phases.

This experimental limitation is difficult but not impossible to overcome.

4.2.1 Comments on the maximum-likelihood strategy

The reconstruction can be made much more efficient by ML methods [59,

60, 61, 62, 63, 64, 65], with a reduction of the needed number of data up

to a factor 100 − 1000. Within our experimental scheme, the action of a

generic quantum process E on one mode of the twin-beam generates the output

state RE = (I ⊗ ΨT )SE (I ⊗ Ψ∗) (cfr. Eq. (3.3)), SE being the operator

corresponding to the quantum process under analysis, which is positive and



62 Chapter 4 Homodyne tomography of channels and POVM’s

satisfies tr1 SE = I. The probability distribution of the result (x, φ, x′, φ′) of a

double homodyne detection on the two modes becomes

Pr(x, φ, x′, φ′;SE) = tr
[
Homη(x;φ)⊗Homη(x

′;φ′) RE
]
,

= tr
[
Homη(x;φ)⊗ (Ψ∗Homη(x

′;φ′)ΨT ) SE
]
.(4.11)

Given a set of N double homodyne data {(xn, φn, x′n, φ′n)}, the investigated

quantum process can be estimated as the one whose corresponding operator

SÊ maximizes the likelihood functional

L[SE ] =
N∑

n=0

ln
[

Pr(xn, φn, x
′
n, φ
′
n;SE )

]
, (4.12)

within the simplex defined by the constraints SE ≥ 0 and tr1 SE = I. If some

prior knowledge about the process is available (for example, one could already

know that the device performs a unitary transformation) then the maximiza-

tion can be further restricted to a smaller set of candidates, thus improving

further the efficiency of the estimation. In contrast to what happens with

pattern averaging, here by construction the estimated map is automatically

CP and trace preserving, and can fulfill any desired additional requirement.

The only downside of the ML approach is the difficulty involved in the

maximization of the non linear functional in Eq. (4.12), which can be tackled

either with standard techniques of numerical constrained maximization or with

suitable modifications [69] of the iterative algorithms of the kind expectation-

maximization (EM) for maximum likelihood [70, 58]. In practice, several tech-

nical problems may arise, as we will discuss concretely for the examples of the

next sections.

Cramer-Rao bound, and its constrained version

As regards statistical efficiency, for the ML estimator we can assert that it is

the most efficient with the following reasoning. Given a generic family of prob-

ability distributions Pr(x;θ) depending on the independent and unconstrained

parameters θ ∈ Rd, one defines the Fisher information matrix as

F (θ)mn =

〈
∂ ln Pr(x;θ)

∂θm

∂ ln Pr(x;θ)

∂θn

〉

x

, (4.13)

and for any unbiased estimator θ̂ of θ, defined on samples of N data drawn

from Pr(x;θ), one defines also the covariance matrix

Σmn =
〈

(θ̂m − θm)(θ̂n − θn)
〉
x1...xN

. (4.14)
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The two matrices satisfy the Cramer-Rao bound

Σ ≥ 1

N
F (θ)−1 , (4.15)

which puts a limit to the efficiency of the estimation which is independent

on the estimator. It is possible to prove that if there exist an estimator that

achieves the bound, then it coincides with the ML estimator, and that ML

saturates the bound asymptotically, for increasing sample size N , when the

ML estimator becomes approximately Gaussian distributed around θ, with a

covariance matrix given by the so called CR matrix F −1(θ)/N .

When the parameters θ ∈ Rd are constrained to a subset Θ ⊂ Rd, the

problem should be reparametrized, at least in a neighborhood of the true

value θ, and the new set of independent unconstrained parameters should be

then used to calculate a new Fisher information and the related CR matrix.

However, this procedure is in general inelegant and difficult to use. In Ref.

[66], a much more convenient way to compute the constrained CR bound was

presented, based on the distinction between regular points of Θ (i.e. the points

in the closure of the set of interior points of Θ) and non-regular points. As

an example, for Θ defined by the constraints 0 ≤ θi ≤ 1, all the points are

regular, whereas for Θ equal to a lower dimensional manifold embedded in

Rd (e. g. a surface defined by some equality constraints) all points are non

regular. The result is that if θ is a regular point, then the CR matrix is

unalterated, whereas if θ is not a regular point then the CR matrix must be

corrected by subtracting a positive matrix depending on θ that makes the CR

matrix smaller and singular. The singularity of the CR matrix reflects the fact

that some parameters could be actually evaluated as functions of others, and

thus do not have an independent associated error. A very simple derivation of

equality constrained CR bound can be found in Ref. [67], along with a proof

that also for constrained problems, if the bound is achieved by an estimator,

then the estimate is a stationary point for the problem of maximizing the

likelihood function subject to the constraints. For the problem of k < d

equality constraints fj(θ) = 0, the corrected constrained CR bound becomes

Σ ≥ 1

N

[
F−1 − F−1G(GTF−1G)−1GTF−1

]
, (4.16)

whereG denotes the d×k matrix of the gradient of the constraintsGij =
∂fj(θ)
∂θi

.
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Sieved ML for the infinite dimensional case

For the general problem of quantum process tomography, the likelihood func-

tional L[SE ] of Eq. (4.12) is defined for a parameter SE living in an infinite

dimensional Hilbert space. The maximum of the likelihood is not achieved

over the whole space and it is more appropriate to restrict the attention to a

subspace Q(N) on which the maximum exists, and to let its dimension grow

with the number N of data, so to cover the whole parameter space in the limit

of infinite size sample. This method—called sieved maximum likelihood—has

been analyzed in Ref. [68] for homodyne tomography of a quantum state,

with the sieves as the span of the Fock states |0〉 . . . |d(N)〉, and the function

d(N) chosen in order to guarantee the consistency of the estimator, i.e. the

convergence of the estimated state to the true value in the limit of infinite N .

For the particular problem at hand, because of the exponentially decreas-

ing twin-beam components on the Fock basis, the choice of a suitable cut-off

dimension will not introduce any significant bias in the estimation, and the

action of the quantum channel will be reconstructed only on a finite dimen-

sional subspace, consitently with the fact that the faithfulness of the input

state rapidly vanishes for larger photon numbers.

4.3 Homodyne tomography of an On/Off detector

In what follows we exploit the ideas of Sec. (3.6) for realizing the tomography

of the POVM of a measuring apparatus. One of the beams in the twin-beam

state |Ψ〉〉 generated by parametric down-conversion of the vacuum (same setup

as before) is now measured by an ON/OFF photo-detector. This is described

by a two-value POVM, with elements Π(0) and Π(1) = I −Π(0). As discussed

in Sec. (3.6), looking at Eq. (3.30), the reduced states of the remaining beam

after the measurement will be

ρ(i) =
ΨTΠ(i)TΨ∗

tr[ ΨT Π(i)T Ψ∗ ]
, (4.17)

i being the measurement outcome, with the denominator of the previous ex-

pression giving its probability. Homodyne tomography is then performed on

each reduced state in order to recover the POVM elements.

As a model of ON/OFF detector with non unit quantum efficiency and dark

current, we will use an ideal ON/OFF photodetector preceeded by a beam-

splitter of transmissivity τ with one port entered by the mode of interest and
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with the other port fed by a thermal radiation state with mean photon number

µ [71]. The POVM element for the OFF outcome reads

Π(0) =
1

ν + 1

∞∑

n=0

(
1− τ

ν + 1

)n
|n〉〈n| , (4.18)

ν = µ(1−τ) being the resulting mean photon number of the background noise,

whereas the POVM element for the ON outcome is Π(1) = I −Π(0).

4.3.1 Reconstruction using pattern-function averaging

The graphs in Fig. 4.3 show that a meaningful reconstruction can be obtained

within the same range of values for the parameters used in the tomography

of the displacement. As usual, in order to achieve the reconstruction of the

off-diagonal terms of the POVM, the phase-control for the local oscillator of

the balanced homodyne detector relative to the pump of the down-converter

is required. The presence of non-vanishing off-diagonal terms in the POVM

would allow the detector to reveal some form of coherence in the input state,

and in our model it could be simulated by having some coherence for the

thermal radiation injected in the beam-splitter. Of course, if one already knows

that the detector is perfectly phase-insensitive (as for a customary photo-

detector, for its intrinsic detection mechanism), one can focus the attention

only on the diagonal part of the state, without the need of phase-control for

the local oscillators.

It is important to notice that when the only diagonal part of the POVM of

the measuring apparatus is under examination, it is not necessary to have the

input state R faithful, but is sufficient to have the matrixRmn = 〈m|〈n|R|m〉|n〉
invertible, with more easily experimentally available input states. In fact, in

correspondence with the measurement outcome i, the diagonal matrix ele-

ments of reduced state ρ(i) of the auxiliary system are given by

ρ(i)
nn =

∑
mRmnΠ

(i)
mm

tr[
∑

mnRmnΠ
(i)
mm ]

, (4.19)

so that, once measured ρ
(i)
nn, it is possible to recover Π

(i)
mm given that Rmn is

invertible. In summary, a “diagonally faithful” state and homodyne tomogra-

phy (i.e. without phase control) is enough for the reconstruction of a diagonal

POVM.
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Figure 4.3: Homodyne tomography of an On/Off photo-detector having trans-

mittivity τ = 0.4 and number of thermal noise photons ν = 0.1. Only the

diagonal matrix elements of the POVM elements Π(0) and Π(1) are reported

(the off-diagonal ones are zero, and have similar error bars). The reconstruc-

tion is obtained by pattern-function averaging of 1.5 · 106 data, for quantum

efficiency η = 0.9 and n̄ = 3, and presents error bars of the same magnitude

as the ones for the displacement reconstruction reported in Fig. 4.2

4.3.2 Reconstruction using maximum-likelihood strategy.

Now, we will analyze the data from the same experimental scheme using the

maximum likelihood strategy, assuming, for simplicity, that we already know

the POVM is diagonal in the Fock basis for its intrinsic detection mechanisms,

such that a bipartite diagonally faithful state R and homodyne tomography

without phase-control will suffice for the porpoise of reconstructing the POVM.

Non-ideal homodyne detection can be modeled as the action of the loss map

followed by ideal homodyne detection, with a suitable rescaling of outcomes,

such that the POVM can be written as follows

Homη(x, φ) =
√
η

∞∑

j=0

V †j e
iφa†a|√ηx〉〈√ηx|e−iφa†aVj , (4.20)

where Vj = (η−1 − 1)
j
2 ajη

1
2
a†a/
√
j! are the elements of the Kraus decompo-

sition of the loss map, and η denotes the quantum efficiency of the detectors

(this scheme is equivalent to have an ideal homodyne detector preceded by a

beam-splitter with transmissivity η and its second port fed with the vacuum

state). If the phase is out of control and uniformly random, then the POVM

corresponding to the measurement is the average over the phase of Eq. (4.20),

which yields a diagonal POVM Homη(x) (this also makes it clear why without

phase control it is impossible to reconstruct the off-diagonal matrix elements).
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The probability of getting the outcome (i, x) with the photon-counter sig-

naling outcome i and the homodyne measuring x, is given by

Pr(i, x; Π) = tr[R Π(i) ⊗Homη(x) ] =
∑

mn

RmnΠ(i)
mmHomηnn(x) =

=
∑

m

Π(i)
mmAm(x) , (4.21)

where R is denotes input state (here the twin-beam), Rmn = 〈m|〈n|R|m〉|n〉,
and the positive coefficents Am(x) are defined as

Am(x) =
√
η
∑

n≥h
Rmn

(
n

h

)
ηh(1− η)n−h

(
2

π

) 1
2 e−2ηx2

2hh!
H2
h(
√

2ηx) > 0 . (4.22)

For a given set of experimental data {(il, xl)}, the maximum likelihood esti-

mate Π̂ is the one maximizing the functional

L[Π] =
∑

l

ln

[∑

m

Π(il)
mm ·Am(xl)

]
, (4.23)

with Π restricted to the simplex of diagonal POVM’s.

Comments on the numerical aspects of the likelihood optimization

First, one must choose the dimension of the subspace on which performing the

maximization of the likelihood and thus the estimation of the POVM elements.

In such a finite dimensional subspace, the ML estimate is well defined, being

the point attaining the unique maximum of a convex functional restricted to

a simplex. In principle this restriction introduces a bias in the estimation,

however, in our case the exponentially decreasing components of the twin-

beam state in the Fock basis in practice makes the bias negligible, by making

the components 〈n|ρ(i)|n〉 of the reduced state after the measurement rapidly

vanishing for large n.

The maximization of the functional L[Π] is a non-linear convex program-

ming problem, and can be faced with several different kind of algorithms

as the simplex method (see review of D’Ariano et al. [57]), or the methods

of sequential quadratic programming (SQP), or the methods of expectation-

maximization (EM) type [70, 58], whose elementary step in this particular

example, for the data {(il, xl)}, reduces to the upgrades

Π(i)
m ← Π(i)

m

∑

xl|il=i

Am(xl)

Pr(i, xl; Π)
(4.24)
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followed by a normalization of the resulting Π to a POVM. For all methods

convergence is assured, since the functional to be maximized is convex and

differentiable over the simplex of diagonal POVM’s. However, when applying

any of these methods, the convergence speed and the reliability of the result at

a given iteration step are two major concerns. In fact, the derivatives of L[Π]

with respect to some of the parameters θ defining Π can be very small, so that

very different values of the parameters will give almost the same likelihood,

thus making hard to judge whether the point reached at a given iteration step

is a good approximation of the point corresponding to the maximum: in few

words, the problem becomes numerically ill conditioned, with an extremely

low convergence rate.

Notice that the Fisher information matrix (Eq. (4.13)) for the probability

distribution Pr(i, x; Π) can be expressed in terms of the expectation value of

the derivatives of the likelihood with respect to the independent parameters

θm defining Π

F (Π)mn =
1

N

〈
∂L[Π]

∂θm

∂L[Π]

∂θn

〉

(i1,x1)...(iN ,xN )

, (4.25)

so that the derivatives of the likelihood not only affect the numerical stability

of the maximization, but also limit the theoretical precision of the estimation

via Cramer-Rao lower bound. This bound, in turn, can be used to check

whether or not the estimation is good, depending on how much the variance

of the estimator is bigger than the lower bound of Eq. (4.15). This, however,

needs the calculation of the Fisher information matrix in correspondence of

the unknown true value of Π, and this can be approximated by the Fisher

information at the estimated value, which is a reasonably good approximation

provided the estimated value doesn’t deviate too much from the true one.

As already mentioned, in the limit of large size samples, the ML estimator

is Gaussian distributed around the true value with covariance matrix equal to

(NF )−1. Therefore for large samples the confidence levels can be assumed to

be Gaussian, with variances calculated from the Fisher information, which can

be evaluated on the estimated parameter for not too large errors. However, this

is an asymptotic property, so that for finite size samples sometimes there is the

problem of establishing the errors and the confidence levels for the estimation.

When working with Monte Carlo simulation, the virtual homodyne experiment

can be repeated several times, in order to evaluate the distribution of the

ML estimator, and thus its confidence levels. Clearly, this approach is not
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satisfying for an experimentalist, who would need to collect a lot of data only

to evaluate the statistical errors for a small subset of them. A valid alternative

is then provided by the method of bootstrap [72], which is based on the simple

idea that when some data are drawn from an unknown probability distribution,

then the distribution of those data is the best approximation we have of the

real probability distribution. Thus, once the experimental data are collected,

we can perform the ML estimation on artificial samples repeatedly generated

by random sampling the experimental data: the distribution of such estimates

approximates well the one that we would have from the real experiment, and

can be used to evaluate the confidence levels for the estimator.

Here we will perform the numerical maximization by means the routine

donlp2 [73] which implements an SQP algorithm, and then the self-consistency

of the solution will be checked by means of a few EM type iterations. Of

course, it would be much easier to implement the only EM algorithm, being a

recursive application of the easily implementable step of Eq. (4.24). However,

this algorithm has an extremely low convergence speed, which also could make

the iteration stop too early, leading to (statistically wrong!) results — which

may even fit too well the theoretical POVM when this is a particularly smooth

function of the photon number.

Results for the On/Off detector

Back to our problem of On/Off detector tomography, we have produced a

Monte Carlo simulation of the joint homodyne and on/off data distributed

according to Eq. (4.21), for the POVM model presented in Eq. (4.18), with

the same parameters as Fig. 4.3, and various values of the quantum efficiency

η. The detector POVM has been estimated with maximum likelihood method,

with the only hypotesis of diagonal POVM, and putting the dimesnional cut-

off at the first 15 elements of the Fock basis (for a number of photons in

the twin-beam equal to n̄ = 3 this introduces almost no bias, with an actual

suppression of a factor 100 between the first diagonal element of the POVM

and the first excluded element). The results are reported in Fig. 4.4 for

different sample sizes and quantum efficiencies, where the only “Off” element

of the POVM is reported, since the “On” element is simply its complement

with respect to the identity.

A direct comparison with Fig. 4.3 evidences the much higher efficency

of maximum likelihood reconstruction. The graph on the left shows how the
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Figure 4.4: Homodyne tomography of an On/Off photodetector with trans-

mittivity τ = 0.4 and number of thermal noise photons ν = 0.1, with n̄ = 3

photons in the twin-beam. The ML estimation of the diagonal of the only Off

POVM element are reported for different values of sample size N and quan-

tum efficiency η. Left: N = 105, η = 0.7; Middle: N = 104, η = 0.9; Right:

N = 106, η = 0.7 .

same magnitude of errors is achieved on a larger subspace with less than one

tenth of the data (105 vs. 106) and with a much lower quantum efficiency (0.7

vs. 0.9). For the same quantum efficiency η = 0.9, here the results are much

better even with as few as 1% of the data (graph in the middle), analogously,

for the same amount of data (N = 106), here the results are much better even

for a quantum efficiency as low as 0.7 (graph on the right).

The distribution of the estimator in each bin, which is necessary for giving

proper confidence levels for the result, has been evaluated by repeated Monte

Carlo experiments, which is equivalent to the bootstrapping techniques for

truly experimental data. As a result the estimator in each bin is not Gaussian

distributed, a sign of the fact that the number of data used is not enough

to reach the asymptotic Gaussian distribution of the ML estimator. In the

plot, the only variances are reported for each bin, showing that the errors are

distributed with respect to n differently than for pattern averaging.

4.4 Homodyne tomography of a photon-counter

Now we will implement maximum likelihood techniques for the reconstruction

of a photon-counting detector modeled as an ideal photo-detector preceeded

by a beam splitter of transmittivity τ fed with the measured mode and with

a thermal state, with mean photon number ν, simulating the thermal noise of
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the apparatus. The POVM of such an apparatus reads

Π(i) =

∞∑

n,m=0

min(n,i)∑

k=max(0,i−m)

(
n

k

)(
m

i− k

)
τm−i+2k(1− τ)n+i−2k λm

1− λ |n〉〈n| .

(4.26)

Being it impossible to achieve a meaningful reconstruction for any i, neither on

a small subspace, one should focus the attention only on the first I elements,

and sum up all the remaining ones into a last fictious POVM element. The

likelihood functional has the form in Eq. (4.23), and it can be maximized with

the same technique of the preceding example.

In Fig. 4.5 the results obtained by Monte Carlo simulation are reported.

The first four elements of the POVM have been considered, and all the others

have been “concentrated” into the fifth element. The model has been simu-

lated for transmittivity τ = 0.9 and number of thermal noise photons ν = 0.05,

with n̄ = 3 and η = 0.7. The plots correspond to a reconstruction obtained

with N = 105 data. Here the number of data necessary for a very good recon-

struction is much lower than the values of the On/Off photodetector example,

because of the very small overlap of the elements Π(i) of the POVM that leads

to a much larger Fisher information.

Figure 4.5: Homodyne tomography of an photon-counting detector with trans-

mittivity τ = 0.9 and number of thermal noise photons ν = 0.05, with n̄ = 3

and η = 0.7, obtained with N = 105 data.





Chapter 5

Measurements improved by

entanglement

Entanglement is certainly the most distinctive feature of quantum mechanics.

The quantum nonlocality due to entanglement, which has puzzled generations

of theoreticians since the work of Einstein, Podolsky, and Rosen [74], in the

last decade eventually has been harnessed for practical use in the new quan-

tum information technology [75, 48]. Entanglement has become the essential

resource for quantum computing, quantum teleportation, and secure crypto-

graphic protocols [48]. Recently, entanglement has been proved as a valuable

resource for improving optical resolution [76], spectroscopy [77], and has been

shown to be a crucial ingredient for making the tomography of a quantum

device [10], with a single input entangled state playing the role of all possible

states at the input of the device — another manifestation of the quantum par-

allelism, the feature of entanglement that is the core of quantum computing

algorithms [78, 79].

In this chapter we will report our results in Ref. [20] showing how in

general entanglement can be used to improve quantum measurements, for ei-

ther precision or stability. The measurement scheme will be considered in the

general framework of quantum estimation theory [80], in which one needs to

estimate the parameter θ of the density operator ρθ on the Hilbert space H

being the result of a unitary transformation ρ→ ρθ = UθρU
†
θ . More generally

a quantum operation Qθ could be considered, with ρθ = Qθ(ρ), θ correspond-

ing to a parameter of any physical (amplifying, measuring, etc.) device. In

other words, the measurements we are going to consider are aimed at the
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discrimination of a family of quantum devices parametrized by θ.

This situation for known input state ρ is very common in practice, e. g. in

interferometry [81], and more generally whenever the measurement is indirect,

resorting to the detection of a change in an ancillary part of the measuring

apparatus. In this scenario we will consider the use of an entangled input state

R in place of ρ, with the unknown transformation Uθ acting locally only on one

side of the entangled state. In tensor notation: R→ Rθ = (Uθ⊗ I)R (U †θ ⊗ I).

The situation is depicted in Fig. 5.1. As we will see in this section, the

entangled configuration is better than the conventional one, for either precision

or stability of the measurement. This is due to the fact that, in some sense, the

input entangled state is equivalent to many input states in “quantum parallel”.

In the following we will examine different measurement situations separately,

and we will draw general conclusions at the end.

Uθρ ρθ

Uθ
R Rθ

Figure 5.1: Measurement schemes considered in the present chapter. The

parameter θ of the density operator ρθ is estimated as the result of a unitary

transformation ρ→ ρθ = UθρU
†
θ (top). In this scenario the use of an entangled

input R in place of ρ is considered, with the unknown transformation Uθ acting

locally on one Hilbert space only (bottom).

5.1 Covariant measurements

In a covariant measurement the parameter θ is the element g ∈ G of a group G

of transformations. This kind of measurement has been thoroughly analyzed

in Ref. [23].

Let us first illustrate the mechanism of entanglement on a simple example.

We want to discriminate among the four unitary transformations represented

by the Pauli matrices σ0 ≡ I , σ1 ≡ σx , σ2 ≡ σy , σ3 ≡ σz. As well known,
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they form a unitary discrete group, as they form a projective nonabelian ir-

reducible representation of the (abelian) dihedral group D2 of π rotations in

three dimensions. By applying the four transformations to any single-qubit

input state |ψ〉 ∈ C2 we always obtain four linearly dependent states, which

makes the conventional scheme in Fig. 5.1 useless for a reliable discrimination.

On the contrary, if we apply the four matrices to the maximally entangled in-

put state 1√
2
|I〉〉 we obtain the four Bell states σj ⊗ I 1√

2
|I〉〉 ≡ 1√

2
|σj〉〉, which

are mutually orthogonal.

This simple example is very instructive: the discrimination among the four

Pauli transformations σj , which is impossible with a single qubit input state,

becomes possible and exact when applying σj to a maximally entangled state.

The mechanism is clear: using an entangled state instead of a single qubit,

doubles the dimension of the Hilbert space Hout spanned by the output states,

allowing perfect discrimination of the four σj.

The above example can be generalized easily to any dimension d, when

discriminating among the d2 unitary transformations

U(m,n) =
d−1∑

k=0

e2πikm/d|k〉〈k ⊕ n| , (5.1)

n and m ranging in 0÷d−1, and ⊕ denoting addition modulo d. The unitary

operators U(m,n) form a projective nonabelian irreducible representation of

the (abelian) group Zd×Zd describing translations on a two-dimensional lattice

embedded in a torus. The dihedral group D2 corresponds to the particular

case d = 2. Now, using the maximally entagled state 1√
d
|I〉〉 at the input will

produce the d2 orthogonal output states U(m,n)⊗ 1√
d
|I〉〉, which allows perfect

discrimination among all U(m,n), whereas a non entangled input |ψ〉 ∈ H

would output d2 linearly dependent states in the d-dimensional H.

More generally, let us consider a set of unitary transformations {Ug}, g ∈
G that form a (projective) representation of the group G. For simplicity

let us consider the case of an irreducible representation (the reducible case

is technically more complicate, and needs the knowledge of all irreducible

components on invariant subspaces). For every operator O on H, from the

Schur’s lemma one has the trace identity

[Ug OU
†
g ]G = tr[O]I , (5.2)

where [f(g)]G denotes the group averaging [f(g)]G
.
=
∑

g∈G µ(g)f(g) with

µ(g) = d
|G| , |G| the cardinality of G, and d = dim H. Eq. (5.2) generalizes



76 Chapter 5 Measurements improved by entanglement

to the continuous case for group averaging defined as [f(g)]G
.
=
∫
G µ(dg)f(g),

µ(dg) being a (normalized) invariant measure on G.

In order to show that entanglement is of help in improving the discrimina-

tion, and to quantify this improvement, we now consider several parameters,

by supposing the input is a generic bipartite state |E〉〉 that can be either

entangled or not. First of all, as in the first two examples, one can see that

the dimension of the Hilbert space Hout spanned by the output states is larger

for an entangled input than for factorized states. In fact, dim(Hout) can be

calculated as the rank of the operator

O =
[
|Ψg〉〉〈〈Ψg|

]
G

=
[
Ug ⊗ I|E〉〉〈〈E|U †g ⊗ I

]
G
, (5.3)

where Ψg = UgE. By means of Eq. (5.2) one has O = I ⊗ Tr1[|E〉〉〈〈E|] =

I ⊗ (E†E)T , so that

dim(Hout) = d× rank(E†E) , (5.4)

i.e. the output space is enlarged by a factor equal to the Schmidt number

[48] of the input state. Indeed, since probing the operation with a bipartite

entangled system gives access to a larger Hilbert space we have, literally, more

room for improvement. In the following, we refine these concepts, and give

conditions under which and entangled scheme is convenient.

The Schmidt number is only a coarse measure of the amount of entangle-

ment stored in |E〉〉, and the dimension of the output space is only indirectly

connected to the distinguishability of the outputs. A more refined goodness

criterion is given by the Holevo’s information χ of the set of output states, all

taken with the same probability p(g) = 1/|G| (or p(dg) = µ(dg)/µ(G) in the

continuous case), this quantity is an upper bound for the accessible informa-

tion [48]. Denoting by S(ρ) = − tr ρ log ρ, the von Neumann entropy of ρ, the

Holevo’s information χ reads

χ = S

(
1

µ(G)

[
|Ψg〉〉〈〈Ψg|

]
G

)
− 1

µ(G)

[
S(|Ψg〉〉〈〈Ψg|)

]
G

=

= S

(
1

µ(G)
I ⊗ETE∗

)
=

=
d

µ(G)
log µ(G) +

d

µ(G)
S(ETE∗) , (5.5)

and thus the bound is increased by an amount proportional to the degree of
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entanglement S(ETE∗)1 of the input state |E〉〉 (recall that for discrete groups

µ(G) = d).

Facing the problem with a maximum likelihood strategy, the optimal co-

variant POVM that discriminates among the {|Ψg〉〉} takes the form [23]

Πg = µ(g)(Ug ⊗ I)P (U †g ⊗ I) , (5.6)

with P ≥ 0 a positive operator on H⊗H normalized as Tr1[P ] = I. By covari-

ance, the likelihood – i.e. the probability of getting an outcome g when the

state is |Ψg〉〉 – is proportional to 〈〈E|P |E〉〉 ≤ d, where the bound comes from

the normalization condition on P , which limits the largest possible eigenvalue

of P below d. Again, the optimality (saturation of the bound) is reached for

a maximally entangled input state, i.e. for E = d−
1
2U , with U unitary, and

P = |U〉〉〈〈U |. The optimality of a maximally entangled input state for the

estimation of unitaries in SU(d) has also been noticed in Ref. [82].

Since the overlap of two states is the only parameter that determines their

distinguishability, we will consider the average overlap Ω(E) of all the couples

of states in {|Ψg〉〉}: the lower is Ω(E) the better will be the overall distin-

guishability. One has

Ω(E) =
1

2µ(G)2

[
|〈〈Ψg|Ψg′〉〉|2

]
G×G

=
1

2µ(G)

[
〈〈E|Ψg〉〉〈〈Ψg|E〉〉

]
G

=

=
1

2µ(G)
〈〈E|I ⊗ (ETE∗)|E〉〉 =

1

2µ(G)
〈〈E|EE†E〉〉 =

=
1

2µ(G)
tr[(E†E)2] . (5.7)

In order to analyze the properties of Ω(E), we have to briefly recall the def-

inition of the “majorization” relation between entangled pure states and its

physical meaning. Given two states |A〉〉 and |B〉〉 in H⊗ H, let λ↓A and λ↓B be

the vectors of eigenvalues of A†A and B†B respectively, sorted in descending

order. We say that |A〉〉 ≺ |B〉〉 iff

k∑

j=1

(λ↓A)j ≤
k∑

j=1

(λ↓B)j , for each k ≤ d . (5.8)

The physical meaning of this partial ordering relation has been clarified in

Ref. [83]: |A〉〉 can be transformed into |B〉〉 by local operations and classical

communication if and only if |A〉〉 ≺ |B〉〉.
1S(ETE∗) represents the entropy of the partial traces of |E〉〉, which indeed is the measure

of entanglement for pure states.
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Our average overlap Ω(E) is a so called “Schur convex function” of the

eigenvalues of E†E, namely if |A〉〉 ≺ |B〉〉 then Ω(A) ≤ Ω(B). Since any

maximally entangled state is majorized by any other state, it is clear that the

minimum overlap is found in correspondence with |E〉〉 maximally entangled,

and any manipulation of such a state can only increase Ω(E), thus reducing the

distinguishability, and, as a consequence, the sensitivity of the measurement.

As an example in infinite dimensions, consider the problem of estimat-

ing the displacement of a harmonic oscillator in the phase space, i. e. the

parameter α ∈ C of the transformation ρ → ρα = D(α)ρD†(α), where

D(α) = exp(αa† − αa) is the displacement operator for annihilation and cre-

ation operators a and a† respectively (in this case G is the Weyl-Heisenberg

group). For unentangled ρ, an estimation of α isotropic on C is equivalent

to a optimal joint measurement of position and momentum, which, as well

known, is affected by a unavoidable minimum noise of 3dB [84]. Here, the op-

timal state (for fixed minimum energy) is the vacuum, and the corresponding

conditional probability of measuring z given α is p(z|α) = π−1 exp[−|z −α|2].

Now, consider the case in which the estimation is made with D(α) acting on

the entangled state

|E〉〉 =
√

1− |x|2
∞∑

n=0

xn|n〉|n〉 , (5.9)

with |x| ≤ 1 (the state (5.9) can be achieved by parametric downconver-

sion of vacuum). Here, we can use the orthonormal resolution of the iden-

tity |D(z)〉〉〈〈D(z)| of eigenvectors |D(z)〉〉 of Z = a ⊗ I − I ⊗ a† with eigen-

value z (this is just a heterodyne measurement [85]), now achieving p(z|α) =

(π∆2)−1 exp[−∆−2|z − α|2], with variance ∆2 = 1−|x|
1+|x| that, in principle, can

be decreased at will with the state (5.9) approaching a state an eigenstate of

Z (by increasing the gain of the downconverter).

5.2 Measurement in the presence of noise

What happens if the estimation is performed in the presence of noise, namely

the channel before and after the unknown transformation is affected by noise?

Here it is instructive to reconsider the problem of estimating the displace-

ment of a harmonic oscillator in the phase space in the presence of Gaussian
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displacement noise, which maps states as follows

ρ→ Γn(ρ)
.
=

∫

C

d2γ

πn
exp[−|γ|2/n]D(γ)ρD†(γ) . (5.10)

The variance n of the noise is usually referred to as “mean thermal pho-

ton number”. The case of Gaussian displacement noise is particularly sim-

ple, since one has the composition law Γn ◦ Γm = Γn+m, and, moreover

Γn[D(α)ρD†(α)] = D(α)Γn(ρ)D†(α). Therefore, if the measurement is made

on the entangled state (5.9), one can easily derive a a Gaussian conditional

probability distribution with variance δ2 = ∆2 + 2nT , where nT is the to-

tal Gaussian displacement noise before and after the displacement D(α), and

the noise is doubled since it is supposed equal on the two entangled Hilbert

spaces. On the other hand, in the measurement scheme with unentangled

input (remind that the optimal is the vacuum), one has δ2 = 1 + nT . One

concludes that the entangled input is no longer convenient above one thermal

photon nT = 1 of noise. This is exactly the threshold of noise above which

the entanglement is totally degraded to a separable state [53], and therefore

the quantum capacity of the noisy channel vanishes [86].

5.3 Discrimination between two unitaries

Let us suppose that we have to distinguish among two unitaries U1 and U2.

Given an input state |ψ〉, one optimizes over the possible measurements, and

the minimum error probability in discriminating U1|ψ〉 and U1|ψ〉 [80] is given

by

PE =
1

2

[
1−

√
1− |〈ψ|U †2U1|ψ〉|2

]
, (5.11)

so that one has to minimize the overlap |〈ψ|U †2U1|ψ〉| with a suitable choice

of |ψ〉. Chosing as a basis the eigenvectors {|j〉} of U †2U1, and writing |ψ〉 =∑
j ψj |j〉, we define

zψ
.
= 〈ψ|U †2U1|ψ〉 =

∑

j

|ψj |2eiγj , (5.12)

where eiγj are the eigenvalues of U †2U1. The normalization condition for |ψ〉
is
∑

j |ψj |2 = 1, so that the subset K(U †2U1) ⊂ C described by zψ for varying
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|ψ〉 is the convex polygon having the points eiγj as vertices. The minimum

overlap

r(U †2U1)
.
= min
||ψ||=1

|〈ψ|U †2U1|ψ〉| (5.13)

is the distance of K(U †2U1) from z = 0. This geometrical picture indicates

in a simple way what is the best one can do in discriminating U1 and U2:

if K contains the origin then the two unitaries can be exactly discriminated,

otherwise one has to find the point ofK nearest to the origin, and the minimum

probability of error is related to its distance from the origin. Once the optimal

point in K is found, the optimal states ψ are those corresponding that point

through Eq. (5.12).

γ+

γ−6

-r

Figure 5.2: r is the minimum distance between the origin and the polygon K

If ∆(U †2U1) is the angular spread of the eigenvalues of U †2U1 (referring to

Fig. 5.2, it is ∆ = γ+ − γ−), from Eq. (5.11) for ∆ < π one has

PE =
1

2
− 1

2

√
1− cos4

∆

2
, (5.14)

whereas for ∆ ≥ π one has PE = 0 and the discrimination is exact.

Given U1 and U2 non exactly discriminable, one is interested in under-

standing wheter or not an entangled input state could be of some use. The

answer is negative, in fact using entanglement translates the problem into the

one of distinguishing between U1 ⊗ I and U2 ⊗ I, thus one has to analyze of

the polygon K(U †2U1 ⊗ I). Since U †2U1 ⊗ I has the same eigenvalues as U †2U1,

the polygons K(U †2U1 ⊗ I) and K(U †2U1) are exactly the same, so that they

lead to the same minimum probability of errror.

The situation changes dramatically if N copies of the unitary transforma-

tion are used, as depicted in Fig. 5.3: here one has to compare the “per-

formance” of K(U †2U1) to the one of K((U †2U1)⊗N ). Since ∆((U †2U1)⊗N ) =

min{N ×∆(U †2U1), 2π}, it is clear that there will be an N̄ such that U⊗N1 and
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U

U

U

· · ·

Figure 5.3: When distinguishing between two unitaries U = U1,2 it is pos-

sible to achieve perfect discrimination even for nonorthogonal U1 and U2 for

sufficiently large number N of copies of the unitary transformation, using a

N -partite entangled state as in figure (see text).

U⊗N2 will be exactly discriminable. This same result has been demonstrated

in Ref. [87] starting from a different approach.

5.4 Improving the stability of the measurement

In the istances in which the optimal discrimination between transformations

is already optimized by a unentangled input, an entangled state can still be

better in achieving a more stable sensitivity. We have seen that a unentangled

input is already optimal in the discrimination of (one use of) two unitaries. A

unentangled input is also optimal in the covariant measurement for abelian G,

since the irreducible representations are one dimensional. Consider, for exam-

ple, the problem of distinguishing among displacements on a fixed direction of

the phase space, say D(x), with x ∈ R. In this case one could use a squeezed

state |x0〉s .= exp[ s2 ((a†)2−a2)]D(x0)|0〉, with s > 0, i. e. squeezed in the direc-

tion of the “quadrature” X = 1
2 (a†+ a). Then, a conditional Gaussian proba-

bility with variance 〈∆X2〉 = 1
4e
−2s is obtained, which can be narrowed at will

by using ns = sinh2 s squeezing photons. However, if the phase of the quadra-

ture is slightly mismatched, and the quadrature Xφ = 1
2 (a†eiφ+ae−iφ) is mea-

sured instead, then the variance becomes 〈∆X2
φ〉 = 1

4 (e2s sin2 φ+ e−2s cos2 φ),
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and the sensitivity is exponentially unstable. Using the entangled input in Eq.

(5.9), instead, gives the same Gaussian noise ∆2 = 1−|x|
1+|x| , independently on φ,

by using n = 2|x|2/(1 − |x|2) downconverted photons.

5.5 Further generalizations and remarks

Up to now we have focused our analysis only on discrimination among uni-

taries, however, we could have considered more generally nonunitary quantum

operations, to see that entanglement is still a useful resource for improving the

measurement. For the case of two operations Q1 and Q2 the distinguishability

is related to the completely bounded (cb) norm [86] ||p1Q1 − p2Q2||cb which

is the supremum over all possible entangled input states of the trace-distance

between the output states. Since the cb-norm is equivalent to the usual trace-

norm for completely positive maps, it follows that a unentangled state already

achieves optimality in the special case that the difference p1Q1− p2Q2 is com-

pletely positive.

In conclusion, we have seen that entanglement is a useful resource for

upgrading the quantum measurements which are based on the estimation of a

quantum transformation. It is always of benefit, in improving either precision

or stability. In many cases the measurement precision becomes in principle

unbounded, even when the conventional measurement is noise limited. The

upgrading is effective in the presence of noise, below the threshold of total

entanglement degradation.



Conclusions

In this thesis, we have exploited the representation of quantum devices as suit-

ably chosen operators, which has proven to be a powerful tool providing the

necessary insight to derive either exquisitely theoretical results, or practical

ones, which could have a technological impact in the future for the character-

ization and calibration of quantum devices.

In Chapter 1 we introduced some known results in an original way, showing

how the transformations operated by a quantum devices (quantum operations,

QO’s) are completely positive maps (CP maps), and presenting some ways to

represent these maps. We used the representation of a CP map as a pos-

itive operator to easily derive its Krauss decomposition, and its realization

as a customary unitary transformation on an enlarged system, followed by

a projective measurement. Then we reviewed the concept of positive oper-

ator valued measure (POVM) for describing the statistics of the outcomes

of a quantum measurement, and the connection between the elements of the

POVM and the operators describing the state reduction transformation was

reported.

In Chapter 2 we characterized those POVM’s whose statistics of the out-

comes is affected by an intrinsic noise of purely quantum nature, they are the

extremal points of the convex set of POVM’s, and we showed how an ele-

ment of that set can be decomposed as a mixing of pure ones. This result was

extended to quantum devices, for which the added noise affects also the statis-

tics of the outcomes of any subsequent measurement carried on the reduced

states. Then we classified covariant quantum operations, i.e. physical trans-

formations propagating the action of a unitary representation of a group from

the input to the output: the covariance requirement on the transformation

becomes an invariance requirement for the corresponding positive operator,

and this last property leads – through Schur’s lemma – to a peculiar block
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structure for such operator. In this way, all the quantum operations which are

covariant with respect to a given group can be parametrized. The techniques

of extremal point characterization previously employed were also applied to

covariant QO’s. Quantum cloning was interpreted as a permutation covariant

QO, and the parametrization previously explained was used to calculate some

examples of optimal phase-covariant cloning.

Chapter 3 was devoted to the classification of all the sets of input states

which support the imprinting of the information about a quantum device —

i.e. faithful sets of states. This class of states represents all the possible inputs

that can be used for the experimental characterization of quantum devices. We

showed that a fixed entangled probe can be used for a full reconstruction of a

quantum device, a fact with no classical analog and with important practical

consequences. Then we developed the theory of faithful states, showing how

faithfulness of a state is equivalent to the invertibility of a CP map related

to that state. As a consequence, we proved the existence of separable faithful

states, thus clarifying that entanglement is not strictly necessary. A measure of

faithfulness was proposed as an indicator of the performance of the employed

state in providing a sensitive reconstruction of quantum operations, and it

turned out that this measure coincides with the purity of the state, so that

maximally entangled states are actually the best faithful states. The concept of

faithfulness was then extended to set of states, and a procedure for “patching”

unfaithful states into faithful ones was presented, thus achieving a complete

classification of the input which are suitable for devices characterization.

In Chapter 4 we presented an experimental setup for homodyne tomogra-

phy of devices in the realm of quantum optics, where our technique is the only

feasible one. We analyzed the sensitivity of the method for several examples of

devices — a field displacement, an on/off photodetector, and a photon-counter

— showing that by means of a maximum likelihood strategy a very good re-

construction of the device can be obtained from homodyne data even with a

low quantum efficiency and a small number of data, with all the parameters in

the range given by a realistic experimental situation. Our results attest this

technique as a promising tool for devices characterization and above all for

photo-detectors calibration.

In the last Chapter, we exploited entanglement in improving either the

precision or the stability of those quantum measurements which resort to the

discrimination of quantum operations. First, we analyzed the case of dis-
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crimination of the elements of a unitary irreducible representation of a group,

showing how entanglement improves several figures of merit — i.e. the dimen-

sion of the space spanned by the outputs, the Holevo information, the average

likelihood, the inverse of the average overlap of the outputs. Then we showed

by two examples how entanglement helps in presence of noise or in the case of

miscalibration of the measuring apparatus. As a final remarkable result, we

showed how an unknown transformation picked up from a finite set of known

unitaries can be perfectly determined with a single measurement, by means

of a multiparty entangled probe and a finite number of uses the unknown

transformation.
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